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Abstract

This paper argues that many visual scenes are based on a ”Manhattan” three-

dimensional grid which imposes regularities on the image statistics. We construct

a Bayesian model which implements this assumption and estimates the viewer

orientation relative to the Manhattan grid. For many images, these estimates

are good approximations to the viewer orientation (as estimated manually by the

authors). These estimates also make it easy to detect outlier structures which are

unaligned to the grid. To determine the applicability of the Manhattan world model

we implement a null hypothesis model which assumes that the image statistics

are independent of any three dimensional scene structure. We then use the log-



likelihood ratio test to determine whether an image satisfies the Manhattan world

assumption. Our results show that if an image is estimated to be Manhattan then

the Bayesian model’s estimates of viewer direction are almost always accurate

(according to our manual estimates), and vice versa.
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1 Introduction

In recent years, there has been growing interest in the statistics of natural images

(see Huang and Mumford 19990 for a recent review). Much of the interest in

these statistics lies in their usefulness for quantitatively describing the regularities

of images. Image statistics are also useful, however, for solving visual inference

problems. They can be used to design statistical edge detectors (Konishi, Yuille,

Coughlan, Zhu 1999, 2003), to determine statistical image invariants (Chen, Bel-

humeur, Jacobs 2000), and to determine semantic categories (Oliva and Torrabla

2001). It is plausible that the receptive fields of neurons, adapt to these statis-

tics and exploit them for making inferences about the world, see (Balboa and

Grzywacz 2000).

This paper investigates the Manhattan world assumption (Coughlan and Yuille

1999, 2000) where statistical image regularities arise from the geometrical struc-

ture of the scene being viewed. It assumes that the scene has a natural cartesian

x, y, z coordinate system and the image statistics will be determined by the align-

ment of the viewer with respect to this system. The Manhattan world assumption
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is plausible for indoor and outdoor city scenes. But, as we will show, it also applies

to some scenes in the country and even to some paintings.

Informal evidence that human observers use a form of the Manhattan world

assumption is provided by the Ames room illusion, see Figure (1), where the

observers appear to erroneously make this assumption, thereby perceiving the

sizes of objects in the room to be grotesquely distorted. The Ames room is

actually constructed in a shape that strongly violates the Manhattan assumption

but human observers, and our model (see top row of Figure (18)), interpret the

room as if it had a Cartesian structure.

Figure 1: The Ames room, a geometrically distorted room that nevertheless ap-

pears rectangular from a special viewpoint. Despite appearances, the two people

are the same size.

In particular, we demonstrate a Bayesian statistical model that exploits the

Manhattan-world assumption to determine the orientation of the viewer relative

to the grid. This enables us to to determine the orientation of the viewer in a

scene, indoor or outdoor, from a single image. It might, for example, be used

as part of the “reptilian layer” of a vision system in accordance with the active
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vision philosophy (Blake and Yuille 1992). It gives a calibration method that is an

alternative to well established techniques in computer vision based on calibration

patterns (Faugeras 1993) or motion flow (Hartley and Zisserman 2000). It is

related to methods for calibration by estimating vanishing points, see review in

(Deutscher, Isard, and MacCormack 2002) but these methods require multiple

images or manual labelling of detected lines. The Bayesian model also allows us

to detect outlier edges which are not aligned to the dominant structures in the

scene and which may simplify object detection.

We evaluate our model by comparing its estimates of the viewer orientation

with estimates made manually by the authors (see (Deutscher, Isard, and MacCor-

mack 2002) for recent comparisons of Manhattan-type algorithms to alternative

methods and groundtruth). This is demonstrated by figures in the text (enabling

the reader to make his/her own judgement). In addition, we construct a null

hypothesis model which assumes that the image statistics are independent of the

three-dimensional scene structure. This enables us to determine if an image obeys

the Manhattan world assumption by comparing the evidence of the Manhattan

and the null hypothesis model.

This paper is organized as follows. In Sections (2) and (3) we describe the

geometry of the problem and the connection between three-dimensional structures

in the scene and the corresponding properties of the image that are measured.

Section (4) describes our statistical model of images. Section (5) describes the full

Bayesian model of Manhattan world and Section (6) shows experimental results

applying this model to a range of images and uses the null hypothesis model to

estimate if an image is Manhattan. In Section (7) we describe the application

of the Manhattan model to finding outlier objects unaligned to the Manhattan
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grid. Section (8) presents a consistency check of the accuracy of the prior model.

Finally, Section (9) summarizes the paper.

2 The Geometry of the Problem

There has been an enormous amount of work studying the geometry of computer

vision (Faugeras 1993, Mundy and Zisserman 1992). Techniques from projective

geometry have been applied to finding the vanishing points (Brillault-O’Mahony

1991, Lutton, Mâıtre, Lopez-Krahe 1994); see (Shufelt 1999) for a recent review

and analysis of these techniques. This work, however, has typically proceeded

through the stages of edge detection, Hough transforms, and finally the calculation

of the geometry. Alternatively, a sequence of images over time can be used to

estimate the geometry, see for example (Torr and Zisserman 1998). In this paper,

we demonstrate that accurate results can be obtained from a single image directly

without the need for techniques such as edge detection and Hough transforms, by

exploiting the statistical regularities of scenes.

For completeness, we give the basic geometry. The camera orientation is de-

fined by a set of camera axes aligned to the camera body which has been rotated

relative to the Manhattan xyz axis system. We define the camera axes by three

unit vectors �a, �b and �c. �a and �b specify the horizontal and vertical directions,

respectively, along the film plane in xyz coordinates. �c is the unit vector that

points along the line of sight of the camera, so that �a ×�b = −�c. The projection

from a 3-d point �r = (x, y, z) to 2-d film coordinates �u = (u, v) (centered at the

physical center of the film) is given by:

u =
f�r · �a

�r · �c
, v =

f�r ·�b

�r · �c
. (1)
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where f is the focal length of the camera. Here the film coordinates are chosen

such that the u-axis is aligned to �a and the v-axis is aligned to �b.

The camera orientation relative to the Manhattan xyz axis system may be

specified by three Euler angles α, β, and γ. We can think of starting with the

vectors �c, �a and �b aligned to the x,−y, z axes and applying three successive rota-

tions to the coordinate frame defined by these vectors (i.e. active transformations

rather than passive coordinate transformations). The first angle is the compass

angle (or azimuth) α, which rotates the camera about the z axis, yielding a trans-

formed coordinate system x′y′z′. Next, the camera is rotated around the y′ axis

by the elevation angle β, yielding the next coordinate system x′′y′′z′′. This has

the effect of elevating the line of sight from the xy plane. Finally, a twist angle

γ applies a rotation γ about the x′′ axis, producing a twist in the plane of the

film. We use �Ψ to denote all three angles (α, β, γ) of the camera orientation. (In

previous work we made the assumption that β = γ = 0 and only allowed the

compass angle α to vary, which was a reasonable approximation for many images

in our database.)

To derive expressions for �a, �b and �c as functions of �Ψ we follow a stan-

dard procedure (Mathews and Walker 1970) of constructing rotation matrices

Rx(γ), Ry(β), Rz(α) and defining the overall rotation matrix R(�Ψ) = Rx′′(γ)Ry′(β)Rz(α)

= Rz(α)Ry(β)Rx(γ). The resulting expression is R(�Ψ) given by















cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γ

sin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ

− sin β cos β sin γ cos β cos γ















(2)
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We then obtain that �a = R(�Ψ)(0,−1, 0)T ,�b = R(�Ψ)(0, 0, 1)T and �c = R(�Ψ)(1, 0, 0)T .

3 Mapping Manhattan Lines to Image Gradi-

ents

Straight lines in the x, y, z directions in the Manhattan world project to straight

lines in the image plane. Our Bayesian model, see section (5), will use estimates

of the orientations of these lines on the image plane, provided by image gradient

information, to find the camera orientation which is most consistent with these

orientation measurements. We now derive the orientation in the image plane of

an x, y, or z line projected at any pixel location (u, v) as a function of camera

orientation �Ψ. The calculation proceeds by first calculating the x, y, z vanishing

point positions in the image plane as a function of �Ψ. The resulting (u, v) coor-

dinates for the x, y, z vanishing points are (fax/cx, fbx/cx), (fay/cy, fby/cy) and

(faz/cz, fbz/cz), respectively.

Next, it is a straightforward calculation to show that a point in the image

at �u = (u, v) with intensity gradient direction (cos θx, sin θx) is consistent with

an x line in the sense that it points to the vanishing point if tan θx = (ucx −

fax)/(fbx − vcx). This calculation is for an ideal edge for which the intensity

gradient direction (cos θx, sin θx) points exactly perpendicularly to the x vanishing

point; our Bayesian model will exploit the fact that the orientation of true intensity

gradients fluctuates about the ideal direction (see Section (5)) by modeling these

fluctuations statistically. Observe also that this equation is unaffected by adding

±π to θx and so it does not depend on the polarity of the edge. We get similar

expressions for y and z lines: tan θy = (ucy−fay)/(fby−vcy) for intensity gradient
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direction (cos θy, sin θy) and tan θz = (ucz −faz)/(fbz −vcz) for intensity gradient

direction (cos θz, sin θz). See Figure 2 for an illustration of this geometry.

θ

(u,v)

vanishing
point

u

v

x-line V.P. 

x

y

z

u

v

Figure 2: Examples of projection. Left Panel: Geometry of an x line projected

onto the (u, v) image plane. θ is the normal orientation of the line in the image.

Right Panel: the vanishing point due to two square boxes aligned to the Manhat-

tan grid. In both cases the camera is assumed to point in a horizontal direction,

and so the x vanishing point lies on the u axis.

4 Pon and Poff : Characterizing Edges Statisti-

cally

A key element of our approach is that we do not use a binary edge map. Such

edge maps make premature decisions based on too little information. The poor

quality of some of the images we used – underexposed and overexposed – makes

edge detection particularly difficult. Our algorithm showed significant decrease in

performance when we adapted it to run on edge maps unless the edge detection

threshold is varied from image to image.
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Instead we use the power of statistics. Following work by Konishi et al. (Kon-

ishi, Yuille, Coughlan, Zhu 1999, 2003), we determine probabilities Pon(E�u) and

Poff (E�u) for the probabilities of the response E�u of an edge filter at position �u in

the image conditioned on whether we are on or off an edge. These distributions

were learned by Konishi et al for the Sowerby image database which contain one

hundred presegmented images (see (Konishi, Yuille, Coughlan, Zhu 1999, 2003)

for the similarity of these statistics from image to image). The more different

Pon is from Poff then the easier edge detection becomes, see Figure 3. A suit-

able measure of difference is the Chernoff Information (Cover and Thomas 1991)

C(Pon, Poff) = −min0≤λ≤1 log
∑

y P λ
on(y)P 1−λ

off (y). This is motivated by theoreti-

cal studies of the detectability of edge contours (Yuille, Coughlan, Wu, Zhu 2001).

Moreover, empirical studies (Konishi, Yuille, Coughlan, Zhu 1999, 2003) showed

that the Chernoff Information for this task correlates strongly with other perfor-

mance measures based on the ROC curve. Konishi et al tested a variety of different

edge filters and ranked them by their effectiveness based on their Chernoff infor-

mation. For this project, we chose a very simple edge detector
∣

∣

∣

�∇Gσ=1 ∗ I
∣

∣

∣
– the

magnitude of the gradient of the grayscale image I filtered by a Gaussian Gσ=1

with standard deviation σ = 1 pixel units – which has a Chernoff of 0.26 nats

or 0.37 bits (1 bit = loge 2 nats ≈ 0.69 nats). More effective edge detectors are

available – for example, the gradient at multiple scales using color has a Chernoff

of 0.51 nats or 0.74 bits. But we do not need these more sophisticated detectors.

We extend the work of Konishi et al by putting probability distributions on

how accurately the edge filter gradient estimates the true perpendicular direction

of the edge, see figure (4). These were learned for this dataset by measuring the

true orientations of straight-line edges and comparing them to those estimated
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Figure 3: Poff(y) (left) and Pon(y)(right), the empirical histograms of edge re-

sponses off and on edges, respectively. Here the response y =
∣

∣

∣

�∇I
∣

∣

∣
is quantized to

take 20 values and is shown on the horizontal axis. Note that the peak of Poff (y)

occurs at a lower edge response than the peak of Pon(y). These distributions were

very consistent for a range of images.

from the image gradients.

This gives us distributions on the magnitude and direction of the intensity

gradient Pon( �E�u|θ), Poff( �E�u), where �E�u = (E�u, φ�u), θ is the true normal ori-

entation of the edge, and φ�u is the gradient direction measured at point �u.

We make a factorization assumption that Pon( �E�u|θ) = Pon(E�u)Pang(φ�u − θ) and

Poff ( �E�u) = Poff(E�u)U(φ�u). Pang(.) (with argument evaluated modulo 2π and nor-

malized to 1 over the range 0 to 2π) is based on experimental data, see Figure 4,

and is peaked about 0 and π. In practice, we use a simple box function model:

Pang(δθ) = (1 − ǫ)/4τ if δθ is within angle τ of 0 or π, and ǫ/(2π − 4τ) otherwise

(i.e. the chance of an angular error greater than ±τ is ǫ ). In our experiments

ǫ = 0.1 and τ = 6◦. By contrast, U(.) = 1/2π is the uniform distribution.
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Figure 4: Distribution Pang(.) of edge orientation error (displayed as an unnor-

malized histogram, modulo 180◦). Observe the strong peak at 0◦, indicating that

the image gradient direction at an edge is usually very close to the true normal

orientation of the edge. We modelled this distribution using a simple box function.
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5 Bayesian Model

We now devise a Bayesian model which combines knowledge of the three-dimensional

geometry of the Manhattan world with statistical knowledge of edges in images.

The model assumes that, while the majority of pixels in the image convey no in-

formation about camera orientation, most of the pixels with high edge responses

arise from the presence of x, y, z lines in the three-dimensional scene. The edge ori-

entations measured at these pixels provide constraints on the camera angle, and

although the constraining evidence from any single pixel is weak, the Bayesian

model allows us to pool the evidence over all pixels (both on and off edges),

yielding a sharp posterior distribution on the camera orientation. An important

feature of the Bayesian model is that it does not force us to decide prematurely

which pixels are on and off (or whether an on pixel is due to x, y or z), but allows

us to sum over all possible interpretations of each pixel.

5.1 Evidence at one pixel

The image data �E�u at pixel �u is explained by one of five models m�u: m�u = 1, 2, 3

mean the data is generated by an edge due to an x, y, z line, respectively, in the

scene; m�u = 4 means the data is generated by a random edge (not due to an x, y, z

line); and m�u = 5 means the pixel is off-edge. The prior probability P (m�u) of

each of the edge models was estimated empirically to be 0.02, 0.02, 0.02, 0.04, 0.9

for m�u = 1, 2, . . . , 5, see section (8).

Using the factorization assumption mentioned before, we assume the proba-

bility of the image data �E�u has two factors, one for the magnitude of the edge
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strength and another for the edge direction:

P ( �E�u|m�u, �Ψ, �u) = P (E�u|m�u)P (φ�u|m�u, �Ψ, �u) (3)

where P (E�u|m�u) equals Poff (E�u) if m�u = 5 or Pon(E�u) if m�u �= 5. Also, P (φ�u|m�u, �Ψ, �u)

equals Pang(φ�u−θ(�Ψ, m�u, �u)) if m�u = 1, 2, 3 or U(φ�u) if m�u = 4, 5. Here θ(�Ψ, m�u, �u))

is the predicted normal orientation of lines determined by the equation tan θx =

(ucx − fax)/(fbx − vcx) for x lines, tan θy = (ucy − fay)/(fby − vcy) for y lines,

and tan θz = (ucz − faz)/(fbz − vcz) for z lines. The structure of the probability

distribution for all the variables relevant to one pixel (i.e. �E�u, m�u, �Ψ) is graphically

depicted in the Bayes net shown in Figure 5.

m
u

E
uu

Figure 5: Bayes net for all variables pertaining to a single pixel. The net repre-

sents the structure of the joint probability of the image gradient direction φ�u and

magnitude E�u at pixel �u, the assignment variable m�u at that pixel and the camera

orientation �Ψ. (The dependence of φ�u on the pixel location �u is not shown since

we assume �u is known.)

In summary, the edge strength probability is modeled by Pon for models 1

through 4 and by Poff for model 5. For models 1,2 and 3 the edge orientation is

modeled by a distribution which is peaked about the appropriate orientation of
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an x, y, z line predicted by the compass angle at pixel location �u; for models 4 and

5 the edge orientation is assumed to be uniformly distributed from 0 through 2π.

Rather than decide on a particular model at each pixel, we marginalize over

all five possible models (i.e. creating a mixture model):

P ( �E�u|�Ψ, �u) =

5
∑

m�u=1

P ( �E�u|m�u, �Ψ, �u)P (m�u) (4)

In this way we can determine evidence about the camera orientation �Ψ at each

pixel without knowing which of the five model categories the pixel belongs to.

5.2 Evidence over all pixels: finding the MAP

To combine evidence over all pixels in the image, denoted by { �E�u}, we assume

that the image data is conditionally independent across all pixels, given the camera

orientation �Ψ:

P ({ �E�u}|�Ψ) =
∏

�u

P ( �E�u|�Ψ, �u) (5)

Conditional independence is a key assumption of the Manhattan model (de-

picted in the Bayes net in Figure 6). By neglecting coupling of image gradients at

neighboring pixels, the conditional independence assumption makes an approxi-

mation that yields a model for which MAP inference is tractable (see equation 6).

Note also that the conditional independence assumption provides a way of com-

bining evidence across pixels without an explicit grouping process (e.g. by which

pixels could be grouped into straight line segments). Conditional independence

is, of course, an approximation of the form used in many statistical inference algo-

rithms. Indeed, there exist theoretical studies (Yuille, Coughlan, Wu, Zhu 2001)

which prove that, for certain types of problem, approximate models can give re-

sults almost as good as the correct models. We did implement a Manhattan model
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which included spatial interactions, but the results did not improve significantly

and the model was far slower to implement.

E
u

m
u

E
u

m
u

E
u

m
u

E
u

m
u

11 12

21 22

Figure 6: Bayes net for all variables in the Manhattan model. The net represents

the structure of the joint probability of the image gradient vector �E�uij
at pixel

�uij (the pixel at row i and column j), the assignment variable m�uij
at that pixel

and the camera orientation �Ψ. The box represents the entire image, with an

image gradient vector �E�uij
and assignment variable m�uij

at each pixel location.

The structure of the net graphically illustrates the assumption that the image

gradient vectors �E�u are conditionally independent from pixel to pixel.

The posterior distribution on the camera orientation is thus given by:
∏

�u P ( �E�u|�Ψ, �u)P (�Ψ)/Z

where Z is a normalization factor and P (�Ψ) is a uniform prior on the camera ori-

entation. To find the MAP (maximum a posterior) estimate, we need to maximize
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the log posterior term (ignoring Z, which is independent of �Ψ):

log[P ({ �E�u}|�Ψ)P (�Ψ)] = log P (�Ψ) +
∑

�u

log[
5

∑

m�u=1

P ( �E�u|m�u, �Ψ, �u)P (m�u)] (6)

We denote the MAP estimate by �Ψ∗. To find the MAP, our algorithm evaluates

the log posterior numerically for the compass direction for a quantized set of

�Ψ values. (The conditional independence assumption makes the form of the log

posterior simple enough that it can be evaluated for any given �Ψ value by summing

over only 5 terms for each pixel.) One such set of quantized values that works for

a range of images is given by searching over all combinations of α from −45◦ to 45◦

in increments of 4◦, elevation β from −40◦ to 40◦ in increments of 2◦, and twist γ

from −4◦ to 4◦ in increments of 2◦. In our preliminary work (Coughlan and Yuille

1999) we assumed that the camera was pointed horizontally, so we effectively set

β = 0 and γ = 0 and searched for all α from −45◦ to 45◦ in increments of 2◦.

A coarse-to-fine search strategy was employed to speed up the search for the

MAP estimate, which succeeded for most images for which the true values of β

and γ were close to 0. The first stage of the search was to find the best value of

α from 45◦ to 45◦ in increments of 4◦, while setting β = 0 and γ = 0. The best

value of α that was obtained, αc, was used to initialize a medium-scale search,

which searched over all (α, β, γ) of the form (αc + i∆αm, j∆βm, k∆γm), where

i, j, k ∈ {−1, 0, 1} and ∆αm = 2◦, ∆βm = 5◦ and ∆γm = 5◦. The best Euler

angles thus obtained, (αm, βm, γm), were then used to initialize a fine-scale search,

which searched over all (α, β, γ) of the form (αm, βm + j∆βf , γm + k∆γf), where

j, k ∈ {−2,−1, 0, 1, 2} and ∆βf = 2.5◦ and ∆γf = 2.5◦.

We should mention the issues of algorithmic speed. At present the algorithm

takes half a minute on a Pentium 3 using the coarse-to-fine search strategy on
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images of size 640× 480. Optimizing the code and subsampling the image will al-

low the algorithm to work significantly faster. Other techniques involve rejecting

image pixels where the edge detector response is so low that there is no realis-

tic chance of an edge being present. This would mean that at least 70% of the

image pixels could be removed from the computation. We observe that the algo-

rithm is entirely parallelizable. Stochastic gradient-descent techniques may also

be employed for significant speed-ups (Deutscher, Isard and MacCormick 2002).

6 Experimental Results for Determining Man-

hattan Structure

Our model has been tested on four datasets of images: indoor scenes, outdoor city

scenes, outdoor rural scenes and miscellaneous non-Manhattan scenes. Images

from the first two datasets were taken by an unskilled photographer unfamiliar

with the goals of the study; the outdoor rural scenes were obtained from a database

of scenes of English countryside; and the non-Manhattan scenes were downloaded

from the web.

We tested our model is two ways. Firstly, we compared the vanishing points

estimated by the algorithm to manual estimates made by the authors. Secondly,

we implemented a null hypothesis model and used a log-likelihood test to estimate

whether an image does, or does not, obey the Manhattan world assumption.

The null hypothesis model removes the image intensity depedence on any three-

dimensional scene structure.

Our experiments show that the algorithms’ estimates are usually close to the

manual estimates for the first three domains, see section (6.1,6.2,6.3). Moreover,
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images in these domains are almost always estimated as obeying the Manhattan

world assumption while the miscellaneous images are typically estimated as not

obeying the assumption, see Section (6.4).

6.1 Estimating Viewpoint for Indoor Scenes

On this dataset, the camera was held roughly horizontal but no special attempt

was made to align it precisely. The camera was set on automatic so some images

are over- or under- exposed.

A total of twenty-five images were tested. Since the camera was held roughly

horizontal, we set β = 0 and γ = 0 and searched for the optimal value of α (the

results are similar when searching simultaneously over all three camera angles α, β

and γ). On twenty-three images, the angles estimated by the algorithm was within

5◦ of the manual estimate made by the authors. On two images, the orientation

of the camera was far from horizontal and the estimation was poor. Examples of

successes, demonstrating the range of images used, are shown in Figures 7,8. The

log posteriors for typical images, plotted as a function of α, are shown in Figure 9

and are sharply peaked.

6.2 Estimating Viewpoint for Outdoor City Scenes

We next tested the accuracy of estimation on outdoor city scenes. Again we used

twenty-five test images (taken by the same photographer as for the indoor scenes).

In these scenes the vast majority of the results (twenty-two) were accurate up to

10◦ (with respect to the manual estimates made by the authors). On three of

the images the angles were worse than 10◦. Inspection of these images showed

that the log posterior had multiple peaks, one peak corresponding to the true
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Figure 7: Estimates of the compass angle and geometry obtained by our algorithm.

The estimated orientations of the x and y lines are indicated by the black line

segments drawn on the input image. At each point on a subgrid two such segments

are drawn – one for x and one for y. Left panel: Observe how the x directions

align with the wall on the right hand side and with features parallel to this wall.

The y lines align with the wall on the left (and objects parallel to it). Right panel:

Observe that the x, y directions align with the appropriate walls despite the poor

quality of the image (i.e. under-exposed).
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Figure 8: Another indoor (left panel) scene, its exterior (right panel), and another

indoor scene (right panel). Same conventions as above. The vanishing points are

estimated to within 5◦ (perfectly adequate for our purposes). Note poor quality

of the indoor image (i.e. over-exposed). (Indoor 23,8 and Outdoor 12).
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Figure 9: The log posteriors as a function of α (from −45◦ to 45◦ along the

horizontal axis) for images Indoor 17 (left) and Indoor 15 (right). These results

are typical for both the indoor and outdoor dataset. (For these plots it was

assumed that the camera is roughly horizontal so only the angle α needs to be

varied.)
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compass angle (to within 10◦), as well as false peaks which were higher. The false

peaks typically corresponded to the presence of structured objects in the scene

(e.g. stairway railings) which did not align to Manhattan structure.

Figure 10: Results on four outdoor images. Same conventions as before. Observe

the accuracy of the x, y projections in these varied scenes despite the poor quality

of some of the images.

On twenty-two of the twenty-five images, however, the algorithm gave esti-

mates accurate to 10◦ (compared with the authors’ manual estimates). See Fig-

ure 10 for a representative set of images on which the algorithm was successful.

We also demonstrate the algorithm on two aerial views of cities downloaded from
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the web, see Figure 11. On these images we searched for all three camera angles

α, β and γ simultaneously, which was necessary since the camera was tilted from

the horizontal.

Figure 11: Aerial views of Manhattan, left and Vancouver, right. Note that the

camera is tilted from the horizontal in both cases.

6.3 Estimating Viewpoint for Outdoor Rural Scenes

We also applied the Manhattan model to less structured scenes in the English

countryside (see Coughlan and Yuille 2000 for a first report). Figure (12) shows

two images of roads in rural scenes and two fields. These images come from the

Sowerby database.

But some scenes, see Figure (13), contain so little Manhattan structure that

the Manhattan model may base its inference on chance alignments of various parts

of the scene.

The next four images, see Figure (14), were either downloaded from the web
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Figure 12: Results on rural images in England without strong Manhattan struc-

ture. Same conventions as before. Two images of roads in the countryside (left

panels) and two images of fields (right panel).
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Figure 13: Example of a scene with low Manhattan structure. The hill silhouettes

are mistakenly interpreted as x lines.

or digitized (the painting). These are the mid-west broccoli field, the Parthenon

ruins, the painting of the French countryside, and the ski scene. On all of the

images in this section, the Manhattan algorithm searched for all three camera an-

gles α, β and γ simultaneously. In almost all of these cases, the Manhattan model

makes reasonable inferences despite the absence of strong Manhattan structure,

and in some cases despite the absence of strong straight-line edges.

6.4 Manhattan World and the Null Hypothesis

We now propose a test to determine whether an image obeys the Manhattan world

assumption. Our previous results, see sections (6.1,6.2,6.3), show that on several

image classes we can detect accurate vanishing points (with respect to our manual

estimates) but there are many images, such as underwater images, for which the

Manhattan world assumption is highly implausible.

We proceed by constructing a null hypothesis model and then use model selec-

tion to estimate whether an image obeys the Manhattan world assumption. The
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Figure 14: Results on an American mid-west broccoli field, the ruins of the

Parthenon, a digitized painting of the French countryside and a ski scene.
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null hypothesis model is constructed by modifying our Manhattan model of equa-

tion (3) by setting P (φ�u|m�u, �Ψ, �u) = U(φ�u) where U(.) is the uniform distribution.

This give our null hypothesis model to be:

Pnull({ �E�u}) =
∏

�u

[P (edge)Pon(E�u) + P (not − edge)Poff (E�u)]U(φ�u), (7)

where P (edge) =
∑4

i=1 P (mi) = 0.1 and P (not − edge) = P (m5) = 0.9. In other

words, we no longer distinguish between different types of edges and no longer

assume that the image statistics reflect any three-dimensional scene structure.

To do model comparison for an image with statistics { �E�u}, we compute the

evidence log Pmanhat({E�u}) = log
∑

�(Ψ)
P ({ �E�u}|�Ψ)P (�Ψ) of the Manhattan model

and subtract the evidence log Pnull({ �E�u}) of the null model. This gives the

log-likelihood ratio between the two models. We approximate the evidence by

log Pmanhat({E�u}) ≈ log P ({ �E�u}|�Ψ
∗)P (�Ψ∗), where �Ψ∗ = arg max�Ψ P ({ �E�u}|�Ψ)P (�Ψ).

This approximation is a lower bound to the true evidence and we argue that it

is a good approximation because of the sharpness of the peaks in the posterior

P ({ �E�u}|�Ψ)P (�Ψ), see figure (9) (this figure plots the log posterior, so the posterior

is considerably sharper).

The experimental results, i.e. the plots of log Pmanhat({E�u})/Pnull({E�u}) in

figure (15), show that all the images reported in section (6.1, 6.2,6.3), satisfy

the Manhattan world assumption (according to our model selection test). It is

therefore not surprising that the algorithms estimates of the vanishing point were

accurate for these images. The figure also shows a plausible trend: indoor images

best satisfy the Manhattan world assumption followed by outdoor images and then

by rural images. The figure also shows ten miscellaneous images which are not

expected to satisfy the Manhattan world assumption. These images include an
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Figure 15: We plot the (normalized) loglikehood ratio

(1/N) log(Pmanhat({ �E�u})/Pnull({ �E�u}) of the (approximated) Manhattan model

with respect to the null hypothesis (where N is the image size). The vertical

axis is the log-likelihood ratio and the horizontal axis is the index label of the

images. We indicate indoor, outdoor, Sowerby, and miscellaneous images by

circles, crosses (×), triangles, and pluses (+) respectively.
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underwater image, see figure (16), and almost all have log-likelihoods than are less

than zero and considerably lower than those for indoor, outdoor, and rural scences.

The main exception is the fourth image which is a photograph of a helicopter, see

figure (13), and where the hill silhouettes are mistakenly interpreted as horizontal

x lines.

It is also interesting to plot the evidence, log(Pmanhat({ �E�u}), for the Manhat-

tan model alone, see figure (16). (As above, we approximate this sum by the

dominant contribution given by �Ψ∗). The evidence is useful for indicating trends

to determine what classes of images fit the Manhattan world assumption. To

avoid biases caused by different images sizes, we normalize the evidence by the

image size and plot L/N . (Our conditional independence assumption, if correct,

implies that the evidence scales linearly with the number of pixels). Observe that

the data is very high dimensional and so the probabilities of any image will be

very small.

7 Outliers in Manhattan world

We now describe how the Manhattan world model may help for the task of de-

tecting target objects in background clutter. To perform such a task effectively

requires modelling the properties of the background clutter in addition to those

of the target object. It has recently been appreciated (Ratches, Walters, Buser

and Guenther 1997) that simple models of background clutter based on Gaussian

probability distributions are often inadequate and that better performance can be

obtained using alternative probability models (Zhu, Lanteman and Miller 1998).

The Manhattan world assumption gives an alternative, and complementary,
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Figure 16: Evidence per pixel (approximated), 1/N log(Pmanhat({ �E�u}), evaluated

in three domains: indoor images (labeled by o’s), outdoor urban images (labeled

by x’s), and miscellaneous images (labeled by +’s). A representative image from

each domain is shown below. The trend is that the evidence per pixel decreases,

on average, as we go from images with strong Manhattan structure to images

without Manhattan structure.
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way of probabilistically modelling background clutter. The background clutter

will correspond to the regular structure of buildings and roads and its edges will

be aligned to the Manhattan grid. The target object, however, is assumed to

be unaligned (at least, in part) to this grid. Therefore many of the edges of

the target object will be assigned to model 4 by the algorithm. This enables us

to significantly simplify the detection task by removing all edges in the images

except those assigned to model 4. (Of course, further processing is required to

group these outlier edges into coherent targets).

Figure 17: Bikes (top row) and robots (bottom row) as outliers in Manhat-

tan world. The original image (left) and the edge maps (center) computed as

log Pon(E�u)/Poff(E�u) – see Konishi et al 1999 – displayed as a grayscale image

where black is high and white is low. In the right column we show the edges

assigned to model 4 (i.e. the outliers) in black. Observe that the edges of the bike

and robot are now highly salient (and would make detection simpler) because

most of them are unaligned to the Manhattan grid.

This idea is demonstrated in Figures 17, 18, where the targets are a bike, a
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Figure 18: People in Manhattan world: the Ames room twins (top) and a co-

author (bottom). Same conventions as in preceding figure. The Ames room

actually violates the Manhattan assumption but human observers, and our algo-

rithm, interpret it as if it satisfied the assumptions. In fact, despite appearances,

the two people in the Ames room are really the same size.
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robot and people. At each pixel, our algorithm decides whether the most likely

interpretation is model 4 or any of the other models. More precisely, it decides

”outlier” if P (m�u = 4| �E�u, �Ψ
∗)/P (m�u �= 4| �E�u, �Ψ∗) > T and ”non-outlier” oth-

erwise, where T ≈ 0.4 and �Ψ∗ is the MAP estimate of the camera orientation.

Observe how most of the edges in the image are eliminated as target object can-

didates because of their alignment to the Manhattan grid. The bike, robot and

people stand out as outliers to the grid.

The Ames room, see the top row of Figure (18), is a geometrically distorted

room which is constructed so as to give the false impression that it is built on

a Cartesian coordinate frame when viewed from a special viewpoint. Human

observers assume that the room is indeed Cartesian despite all other visual cues

to the contrary. This distorts the apparent size of objects so that, for example,

humans in different parts of the room appear to have very different sizes. In

fact, a human walking across the room will appear to change size dramatically.

Our algorithm, like human observers, interprets the room as being Cartesian and

helps identify the humans in the room as outlier edges which are unaligned to the

Cartesian reference system.

This simple example illustrates a method of modelling background clutter

which we refer to as scene clutter because it is effectively the same as defining a

probability model for the entire scene. Observe that scene clutter models require

external variables – in this case the �Ψ camera orientation – to determine the orien-

tation of the viewer relative to the scene axes. These variables must be estimated

to help distinguish between target and clutter. This differs from standard models

used for background clutter (Ratches, Walters, Buser and Guenther 1997, Zhu,

Lanterman and Miller 1998) where no external variable is used.
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8 Consistency Check of the Prior

Ideally, the parameters defining the model assignment prior P (m�u) should be

learned based on the ground-truth classification of pixels in Manhattan-type im-

ages into the five model categories. However, no such ground-truth information

is available, so we determined the parameters on the basis of both measurements

and guesswork. In the segmentations supplied with the Sowerby dataset images

about 10% of all pixels are edges. It is plausible to assume that 40% of all edges

are outliers (model 4) and that x, y and z edges occur in roughly equal pro-

portions. Hence we arrived at the prior frequencies 0.02, 0.02, 0.02, 0.04, 0.9 for

m�u = 1, 2, . . . , 5.

In this section we describe a consistency check for the prior frequencies by

estimating the frequencies of each model assignment using the above prior and

conditioning on image data. Our results show, see table (1), that the estimated

frequencies of the different edge types are similar to our prior frequencies. This

is only a crude check because, clearly, our estimated frequencies will be biased

towards our choice of prior frequencies.

Our check is based on the following observation: assume a Bayesian model

P (X|Y ) = P (Y |X)P (X)/P (Y ), where Y is the observables and X is the variable

to be estimated. Let {Yi} be a set of samples from P (Y ). Then
∑

i P (X|Yi) =

∑

i P (Yi|X)P (X)/P (Yi) ∼
∑

Y P (Y )P (Y |X)P (X)/P (Y ) = P (X) as the number

of samples tends to infinity. Hence the posterior averaged over a set of representa-

tive samples should converge to the prior. Now because our images are large, and

we are assuming conditional independence, it is plausible that we get sufficient

number of samples from each image to ensure that the estimated edge frequencies

in each image are roughly equal to the prior frequencies (this is an ergodic, or
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self-averaging, assumption).

We can compute the empirical frequency hk of each model assignment k (h1 is

the empirical frequency of x lines, h2 is the empirical frequency of y lines, etc.) in

an image. We define hk as the mean frequency of model k in the image, conditioned

on all the image data and the MAP estimate of the camera orientation:

hk =< (1/N)
∑

�u

δk,m�u
>P ({m�u}|{ �E�u},�Ψ∗)= (1/N)

∑

�u

P (m�u = k| �E�u, �u, �Ψ∗),

where P (m�u = k| �E�u, �u, �Ψ∗) = P (m�u = k)P ( �E�u|m�u = k, �u, �Ψ∗)/Z and Z =

∑5
k′=1 P (m�u = k′)P ( �E�u|m�u = k′, �u, �Ψ∗).

We show results on 23 indoor images in Table 1. The empirical frequencies

are fairly consistent with the prior model frequencies, although in many of the

images the frequency of z lines appears to be higher than the x and y frequencies.

Averaging the empirical frequencies across an entire domain might be a useful

way to adapt the Manhattan prior to new domains.

Another useful consistency check on the prior is to calculate the MAP estimate

of the model assignment at each pixel conditioned on the entire image. To evaluate

this we calculate the most likely model assignment at each pixel given the image

data there and the global MAP estimate �Ψ∗ of the camera orientation. More

precisely, at each pixel u we find the value of m�u that maximizes P (m�u| �E�u, �Ψ∗).

We show results on two images in Figure 19, which demonstrates that pixels are

being classified appropriately.
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Image 1 2 3 4 5 6 7 8 9 10 11 12

h1 0.015 0.018 0.027 0.018 0.032 0.021 0.016 0.025 0.025 0.026 0.025 0.020

h2 0.023 0.019 0.014 0.032 0.036 0.030 0.028 0.045 0.044 0.030 0.025 0.028

h3 0.024 0.072 0.051 0.019 0.017 0.056 0.035 0.065 0.070 0.033 0.063 0.068

h4 0.025 0.038 0.033 0.031 0.035 0.036 0.033 0.054 0.056 0.055 0.035 0.038

h5 0.912 0.854 0.875 0.900 0.879 0.856 0.888 0.812 0.806 0.857 0.852 0.800

Image 13 14 15 16 17 18 19 20 21 22 23

h1 0.017 0.032 0.029 0.026 0.033 0.022 0.026 0.010 0.018 0.018 0.023

h2 0.028 0.055 0.026 0.027 0.044 0.020 0.022 0.028 0.056 0.024 0.020

h3 0.057 0.035 0.028 0.052 0.066 0.036 0.052 0.044 0.083 0.033 0.108

h4 0.035 0.065 0.041 0.035 0.065 0.043 0.041 0.026 0.060 0.033 0.049

h5 0.862 0.813 0.875 0.859 0.793 0.879 0.859 0.892 0.783 0.892 0.800

Table 1: Empirical estimates of prior model frequencies for 23 indoor images.

Figure 19: Detection of x, y, z lines. In each row, the original image on far left

is followed by images showing the locations of pixels inferred to be on x, y and z

lines, respectively, from center left to far right.
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9 Summary and Conclusions

We developed a Bayesian model for exploiting the Manhattan world assumption

and showed that it gave good estimates of vanishing points (e.g. viewpoint) as

compared to manual estimation. In addition, the model is able to detect outlier

edges, which are not aligned to the Manhattan world grid, and which may be useful

for detecting objects. We formulated a null hypothesis model and used model

comparison to test whether an image obeyed the Manhattan World assumption.

This demonstrated that the Manhattan world assumption applies to a range of

images, rural and otherwise, in addition to urban scenes. Moreover, the simplicity

of the algorithm makes it suitable for implementation by an artificial retina (Burgi

2002).

Our work adds to the growing literature on the statistics of natural images and

is, perhaps, the first to determine statistical regularities which depend explictly

on the three-dimensional scene structure. We expect that there are many further

image statistical regularities of this type which might be exploited by biological

and artificial vision systems.

More recently, Deutscher, Isard and MacCormick (2002) have made use of

the Manhattan world assumption as a component of a surveillance system (Isard

and MacCormick 2001). Deutscher et al have implemented a stochastic search

algorithm which is faster than the algorithms we use in this paper. In addition,

they extended the Manhattan formulation to estimate focal length as well as

camera orientation and demonstrated reasonably accuracy, although the approach

was less accurate than standard methods requiring calibration patterns or motion

estimation.
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