
J
H
E
P
0
9
(
2
0
1
6
)
1
4
1

Published for SISSA by Springer

Received: August 30, 2016

Accepted: September 10, 2016

Published: September 22, 2016

Manifest duality for partially massless higher spins

Kurt Hinterbichlera and Austin Joyceb

aCERCA, Department of Physics, Case Western Reserve University,

10900 Euclid Ave, Cleveland, OH 44106, U.S.A.
bEnrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,

Chicago, IL 60637, U.S.A.

E-mail: kurt.hinterbichler@case.edu, ajoy@uchicago.edu

Abstract: In four dimensions, partially massless fields of all spins and depths possess

a duality invariance akin to electric-magnetic duality. We construct metric-like gauge

invariant curvature tensors for partially massless fields of all integer spins and depths, and

show how the partially massless equations of motion can be recovered from first order field

equations and Bianchi identities for these curvatures. This formulation displays duality in

its manifestly local and covariant form, in which it acts to interchange the field equations

and Bianchi identities.

Keywords: Duality in Gauge Field Theories, Higher Spin Symmetry

ArXiv ePrint: 1608.04385

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2016)141

mailto:kurt.hinterbichler@case.edu
mailto:ajoy@uchicago.edu
http://arxiv.org/abs/1608.04385
http://dx.doi.org/10.1007/JHEP09(2016)141


J
H
E
P
0
9
(
2
0
1
6
)
1
4
1

Contents

1 Introduction and summary 2

2 Partially massless equations and complexes 4

2.1 Partially massless points 4

2.2 Differential complex 6

2.3 Field strength and equation of motion 7

2.4 Duality 8

3 Depth t = 0 9

3.1 Bianchi identities 9

3.2 Field equations 10

3.3 d+ 1 decomposition 12

3.4 Example: s = 3, t = 0 13

4 Depth t = 1 15

4.1 Bianchi identities 15

4.2 Field equations 17

4.3 d+ 1 decomposition 19

4.4 Example: s = 3, t = 1 19

5 Depth t ≥ 2 22

5.1 Bianchi identities 23

5.2 Field equations 24

5.3 d+ 1 decomposition 26

5.4 Example: s = 4, t = 2 27

6 Conclusions 30

A Off shell spin-3 31

A.1 Stückelberg and decoupling limit 33

A.2 Equations of motion 34

A.2.1 t = 0 partially massless point 36

A.2.2 t = 1 partially massless point 37

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
1

1 Introduction and summary

On flat space, spin-s fields fall into a binary classification; they are either massive or

massless. On curved backgrounds, there is a more intricate structure. The (anti) de

Sitter group possesses exotic irreducible representations which do not have any flat space

analogues. These “partially massless” (PM) fields come in various depths, labelled by t ∈
{0, 1, . . . , s− 1}, and display gauge invariances which remove helicity components 0, 1, . . . , t

from the massive field, leaving a number of degrees of freedom intermediate between that

of a massless and a massive field [1–11].

Partially massless fields have recently seen renewed interest due to possible connections

between a PM spin-2 field and cosmology (see e.g., [12] and the review [13]). There have

been attempts and no-go’s bearing on the construction of a self-interacting theory of a

partially massless spin-2 [12, 14–17], and extensive exploration of the properties of the

linear theory and other possible nonlinear extensions [16, 18–29].

It was shown in [30, 31], using a non-manifestly covariant 3+1 formulation, that par-

tially massless fields in four dimensions possess a duality invariance in a manner akin to

electric-magnetic duality [32].1 Electromagnetic duality, since its origins almost a century

ago [49, 50], has played a central role in many of the advances of modern theoretical physics

(see e.g. the reviews [51–53]), so it is naturally of interest to explore its implications in the

partially massless case.

Our goal will be to see the duality of the partially massless fields in its manifestly

covariant form. In general, accomplishing this requires casting the field equations into a first

order form, which is different from the standard, second order, Fronsdal approach [54, 55].

In particular, the equations of motion are reproduced by taking as the fundamental object

a gauge-invariant curvature. For massless spin-1 and spin-2, these are just the standard

Maxwell field strength and Riemann curvatures respectively, but for massless higher spins

it requires the introduction of new generalized curvatures [56, 57]. (For some reviews of

various aspects of higher spin theory, see e.g. [58–64].) In [23], the duality of [30] was

displayed in covariant form, with manifest de Sitter invariance, for the partially massless

spin-2. Here we generalize this construction to partially massless fields of arbitrary integer

spin and depth.

The duality-covariant equations for a spin-s depth-t field will be formulated in terms

of an (s+ t+ 1)-index tensor with the symmetry type

K ∈ ⊗ s− 1

t
. (1.1)

This tensor is then constrained to satisfy the following Maxwell-like equations,

tr ∗ K = 0 , dK = 0 , (1.2)

trK = 0 , d ∗ K = 0 , (1.3)

1Similarly, it is known that massless and massive spin-s fields on various backgrounds possess such a

duality invariance [33–45], which extends to fields of arbitrary mixed symmetry [46–48].
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where the exterior derivative and Hodge star act covariantly on the first tensor factor

of (1.1). The equations (1.2) are Bianchi-like identities and (1.3) are dynamical equations

which together will reproduce the equations of motion of the partially massless field.

The algebraic Bianchi identity restricts the form of the tensor (1.1), projecting away

many of the components and leaving a residual tensor of the symmetry type

s

t+ 1
, (1.4)

which will become the gauge invariant PM curvature.2 The second of the Bianchi identi-

ties (1.3) is a differential Bianchi identity, and fits into a differential complex of the form

t −−−→ s −−−→ s

t+ 1
−−−→

s

t+ 1 −−−→ · · · (1.5)

We will use the assumption of trivial cohomology of this complex to write the tensor K
as an appropriately symmetrized (t + 1)th derivative of a totally symmetric rank-s gauge

potential.

We will then turn to the equations (1.3), from which we will recover the on shell

equations of motion for the partially massless field. For the higher depths, this involves

generalizing the approach of [34, 35] to the partially massless (A)dS setting. From this

formulation, it is manifest that the equations (1.2), (1.3) are invariant in D = 4 under the

duality rotation δK = ∗K, which is the PM analogue of electric-magnetic duality.

The curvature construction for depth-t fields will be strongly reminiscent of that of

a spin-(t + 1) massless field’s. This will reinforce the notion that fields of different spins

but the same depth of partial masslessness have more in common with each other than do

fields which have different depths but the same spin. The arguments for the lower depths

t = 0, 1, are somewhat different from those for the higher depths t ≥ 2, so we will treat

them separately, organizing the discussion according to the depth of partial masslessness.

We begin in section 2 by reviewing some salient features of partially massless fields,

including the on-shell equations of motion that we aim to reproduce. We then consider

partially massless fields of depth t = 0 in section 3 and show how their equations of motion

can be reproduced by considering a generalized Maxwell tensor. This is a more-or-less

direct generalization of the story for the PM spin-2 case presented in [23] (see also [26]).

We next consider depth t = 1 fields and perform a similar construction in section 4. Here

the construction follows the pattern of linearized Einstein gravity. Finally, we discuss the

case of depths t ≥ 2 in section 5. The main difference in this case is that the curvature

tensor has ≥ 3 derivatives, so the second order equations of motion are recovered in a

somewhat subtle way, similar to the massless case for s ≥ 3 [34–36]. In appendix A, we

work out the equations of motion for both partially massless points of a spin-3 field on de

2Note that this tensor has the same symmetry type as the frame-like curvature tensors of Skvortsov

and Vasiliev [10]. Here we provide an alternative metric-like construction of these tensors and show how to

reproduce the on-shell equations of motion for a PM field from these curvatures.

– 3 –
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Sitter space from the off-shell Lagrangian starting point. This is provided for convenience

to illustrate the relationship between this standard viewpoint and the formalism which we

adopt in the rest of the paper. We comment on some natural future directions in section 6.

Conventions. We use the mostly plus metric signature. We (anti) symmetrize tensors

with unit weight, e.g., S(µν) = 1
2(Sµν + Sνµ). We work on de Sitter space of dimension

D and Hubble radius 1/H throughout. The curvature tensors of this de Sitter space are

given by

Rµνρσ = H2 (gµρgνσ − gµσgνρ) , Rµν = (D − 1)H2gµν , R = D(D − 1)H2.

All of our formulae apply equally well to anti-de Sitter by taking H2 7→ −L−2, with L

the AdS radius. We define the depth, t, of a partially massless field to be the highest

helicity component removed by a gauge symmetry or, equivalently, the number of indices

on the gauge parameter.3 Young tableaux are employed in the manifestly antisymmetric

convention, and on the tensors we use commas to delineate anti-symmetric groups of indices

corresponding to columns of length two or greater. The projector onto a tableau with row

lengths r1, r2, · · · is denoted Pr1,r2,··· where the indices to be projected should be obvious

from context. The action of the projector is to first symmetrize the indices in each row,

and then anti-symmetrize the indices in each column, with an overall normalization fixed

so that P 2
r1,r2,··· = Pr1,r2,···. An excellent introduction to Young tableaux can be found in

section 4 of [65] or the book [66].

2 Partially massless equations and complexes

A spin-s field of mass m on (A)dSD is carried by a totally symmetric tensor `µ1···µs which

obeys the on-shell equations of motion(
�−H2 [D + (s− 2)− (s− 1)(s+D − 4)]−m2

)
`µ1···µs = 0 , ∇ν`νµ2···µs = 0 ,

`ννµ3···µs = 0. (2.1)

At generic values of the mass, these equations propagate

(D − 3 + 2s)(D − 4 + s)!

s!(D − 3)!
(2.2)

degrees of freedom.

2.1 Partially massless points

These massive fields, at particular values of the mass, can develop a gauge invariance which

removes a subset of the helicity components of the representation. A spin-s field has (s−1)

3Note that this definition of the depth differs from some papers in the literature, which define the depth

by the number of derivatives in the gauge transformation; it is straightforward to convert between these

conventions by sending t 7→ s− t.
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partially massless points, labeled by the depth t ∈ {0, 1, . . . , s− 1} [8, 9], which occur at

the masses

m2 = (s− t− 1)(s+ t+D − 4)H2 . (2.3)

The value t = s−1 corresponds to the massless theory. At these special values of the mass, a

depth-t partially massless field possesses a gauge invariance with a t-index totally symmetric

gauge parameter, which removes the components of the massive field with helicity ≤ t.

Combining (2.1) and (2.3), the on-shell equations for a partially massless field of spin-s

and depth-t are [8, 9, 67],(
�−H2 [D + (s− 2)− t(D + t− 3)]

)
`µ1···µs = 0 , ∇ν`νµ2···µs = 0 , `ννµ3···µs = 0,

(2.4)

which has a gauge invariance

δ`µ1···µs = ∇(µt+1
∇µt+2 · · · ∇µsξµ1···µt) + · · · (2.5)

=



Ps

(∏ s−t
2
n=1

[
∇µn∇µn+ s−t2

+ (2n− 1)2H2gµnµn+ s−t2

])
ξµs−t+1···µs

for (s− t) even

Ps

(∏ s−t−1
2

n=1

[
∇µn∇µn+ s−t−1

2

+ (2n)2H2gµnµn+ s−t−1
2

])
∇µs−tξµs−t+1···µs

for (s− t) odd.

.

Here the ellipses stand for O(H2) terms with fewer derivatives, which we can write in the

indicated factorized form, with Ps a projector onto the totally symmetric s-index part.

The gauge parameter, ξµ1···µt , is a totally symmetric tensor which is itself restricted to

satisfy the on-shell equations(
� +H2 [(s− 1)(D + s− 2)− t]

)
ξµ1···µt = 0, ∇νξνµ2···µt = 0, ξννµ3···µt = 0, (2.6)

so that the equations (2.4) are on-shell gauge invariant. The values of the mass in (2.3), as

well as the form of the O(H2) terms in (2.5) and (2.6), are completely fixed by requiring

that the system (2.1) have the partially massless symmetry with the leading derivative part

δ`µ1···µs = ∇(µt+1
∇µt+2 · · · ∇µsξµ1···µt).

A partially massless field of spin-s and depth-t possesses helicity components {±(t +

1), · · · ,±s} and propagates

(D − 3 + 2s) (D − 4 + s)!

s!(D − 3)!
− (D − 3 + 2t) (D − 4 + t)!

t!(D − 3)!
(2.7)

physical degrees of freedom in D spacetime dimensions. These degrees of freedom transform

irreducibly under an exotic representation of the (anti) de Sitter group which has no true

flat-space counterpart.4

4In the flat space limit (H → 0) the partially massless representation becomes reducible and breaks up

into a sum of flat space massless helicity representations {±(t+ 1), · · · ,±s}.
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2.2 Differential complex

Central to the arguments that follow will be the following sequence of first order differential

operators mentioned in the introduction,

t
d
(s,t)
1−−−→ s

d
(s,t)
2−−−→ s

t+ 1

d
(s,t)
3−−−→

s

t+ 1 −−−→ · · · (2.8)

where the d(s,t) operators act as(
d
(s,t)
1 ξ

)
µ1···µs

∝ ∇(µt+1
∇µt+2 · · · ∇µsξµ1···µt) + · · · (2.9)

∝



Ps

(∏ s−t
2
n=1

[
∇µn∇µn+ s−t2

+ (2n− 1)2H2gµnµn+ s−t2

])
ξµs−t+1···µs

for (s− t) even

Ps

(∏ s−t−1
2

n=1

[
∇µn∇µn+ s−t−1

2

+ (2n)2H2gµnµn+ s−t−1
2

])
∇µs−tξµs−t+1···µs

for (s− t) odd

,

(
d
(s,t)
2 `

)
µ1ν1,··· ,µt+1νt+1,µt+2···µs

∝ Ps,t+1∇ν1 · · · ∇νt+1`µ1···µs + · · · (2.10)

∝


Ps,t+1

(∏ t+1
2
n=1

[
∇νn∇νn+ t+1

2

+ (2n− 1)2H2gνnνn+ t+1
2

])
`µ1···µs for t odd

Ps,t+1

(∏ t
2
n=1

[
∇νn∇νn+ t

2

+ (2n)2H2gνnνn+ t
2

)]
∇νt+1`µ1···µs for t even

,

(
d
(s,t)
3 K

)
µ1ν1ρ,µ2ν2,··· ,µt+1νt+1,µt+2···µs

∝ Ps,t+1,1∇ρKµ1ν1,··· ,µt+1νt+1,µt+2···µs , (2.11)

...

Here the P are projectors onto the Young tableaux that appear in (2.8), and the ellipses

are lower derivative terms proportional to H2 which can be written in the indicated fac-

torized form.

The key property of this sequence of operators is nilpotency,

d
(s,t)
i+1 ◦ d

(s,t)
i = 0, i = 1, 2, · · · , (2.12)

which makes it into a differential complex. The O
(
H2
)

terms in the d(s,t) operators are

uniquely fixed by the requirement (2.12).5

5We may gain more insight into the form of these operators by considering embedding space. Given a

(D + 1)-dimensional Minkowski space with coordinates XA and metric, ηAB = diag{−1, 1, 1, · · · }, dSD is

realized as the surface ηABX
AXB = H−2 (the AdSD case follows similarly, only with a two-time embedding

space). Letting e Aµ = dXA

dxµ
be the projectors onto the dSD with intrinsic coordinates xµ, we can assign to

each D-dimensional tensor, Tµ1···µr , on dSD (here T is either the gauge parameter, gauge field or gauge

field strength, with r the number of indices) a corresponding (D + 1)-dimensional tensor, T̃A1···Ar , in the

embedding space, which satisfies a homogeneity and scaling condition

XA∂AT̃A1···Ar = (s− 1 + t)TA1···Ar , XAT̃AA2···Ar = 0. (2.13)

– 6 –
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This complex generalizes the de Rham complex on (A)dS (which appears as the special

case s = 1, t = 0) and contains, from the left to right respectively, the gauge parameters,

gauge fields, field strengths and Bianchi identities of the partially massless spin-s field of

depth t. It generalizes to (A)dSD and to higher spin the complexes of [23, 46, 72]. In

particular, (2.12) implies that if the curvature tensor is written in terms of a gauge field as

K = d
(s,t)
2 `, then it is gauge invariant under δ` = d

(s,t)
1 ξ.

We will assume that the cohomology of this complex is trivial.6 This implies, for

example, that if K is annihilated by the operator d
(s,t)
3 , it may be written in terms of a

spin-s potential `, and so we have a two way implication,

d
(s,t)
3 K = 0 ⇐⇒ K = d

(s,t)
2 `. (2.16)

2.3 Field strength and equation of motion

The field strength of a spin-s depth-t partially massless field will start out as an (s+ t+1)-

index tensor K with the following symmetry type,

Kµ1ν1|µ2ν2,··· ,µt+1νt+1,α1···αs−1−t ∈ ⊗ s− 1

t
. (2.17)

It is anti-symmetric in its first two indices, and in its remaining indices it has the symmetry

of the two-row Young diagram with rows of length s−1 and t. It has no symmetries among

the first two indices and the rest, and no constraints on traces.

We will show that under the assumption of trivial cohomology for the complex of

section 2.2, the equations of motion (2.4) for a depth-t PM field of spin-s are equivalent to

The dSD tensor is then recovered from the embedding space tensor by pulling back to the dSD surface,

Tµ1···µr =
√
X2
−(s−1−t)

e A1
µ1
· · · e Arµr T̃A1···Ar . (2.14)

The expressions (2.9), (2.10), (2.11) descend from simple Young projections of flat derivatives,(
d
(s,t)
1 ξ̃

)
A1···As

∝ ∂(At+1
∂At+2 · · · ∂As ξ̃A1···At) ,(

d
(s,t)
2

˜̀
)
A1B1,··· ,At+1Bt+1,At+2···As

∝ Ps,t+1∂B1 · · · ∂Bt+1
˜̀
A1···As , (2.15)(

d
(s,t)
3 K̃

)
A1B1C,A2B2,··· ,At+1Bt+1,At+2···As

∝ Ps,t+1,1∂CK̃A1B1,··· ,At+1Bt+1,At+2···As ,

...

The property (2.12) is now manifest, and so it must reproduce the intrinsic dSD expressions upon reduction.

See [68–71] for more on the embedding space formulation of partially massless fields.
6For appropriate boundary conditions on a patch of trivial topology it should be possible to prove trivial

cohomology in a manner similar to [46, 72–74]. It would also be interesting to investigate the consequences

of a non-trivial cohomology due to the presence of non-trivial boundaries, topologies, or PM monopoles

such as those of [25].

– 7 –
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the following Maxwell-like set of equations for the tensor K,

tr ∗ K = 0 , dK = 0 , (2.18)

trK = 0 , d ∗ K = 0 . (2.19)

Here the Hodge star and exterior d operator act only with respect to the first set of indices,7

(∗K)µ1ν1β1···βD−2|µ2ν2,··· ,µt+1νt+1,α1···αs−1−t
=

1

2
ε ρσ
µ1ν1β1···βD−2

Kρσ|µ2ν2,··· ,µt+1νt+1,α1···αs−1−t ,

(2.20)

(dK)ρµ1ν1|µ2ν2,··· ,µt+1νt+1,α1···αs−1−t
= 3∇[ρKµ1ν1]|µ2ν2,··· ,µt+1νt+1,α1···αs−1−t , (2.21)

and the trace is between one index in the first set and the first index in the second set,

(trK) ν1|ν2,··· ,µt+1νt+1,α1···αs−1−t
= Kρν1|ρν2,··· ,µt+1νt+1,α1···αs−1−t

. (2.22)

The equations (2.18) consist of two Bianchi-type identities; the first is an algebraic

Bianchi identity, which will restrict the symmetry type of the tensor K, while the second is

a differential Bianchi identity which will tell us that K can be written as the field strength

of a gauge field. The equations (2.19) will then become field equations which reproduce

the equations of motion for the spin-s field. This is the generalization of the story for

electromagnetism or for PM spin-2 [23].

2.4 Duality

In the case D = 4, ∗K and K have the same number of indices and carry the same

representation. In this case, the equations (2.18), (2.19) are symmetric under rotations

mixing the field strength tensor with its dual,

δK = ∗K. (2.23)

The Hodge star operation acts to implement duality, interchanging the roles of the Bianchi

identities and the field equations. The dual gauge field is also a totally symmetric s-index

tensor, non-locally related to the original gauge field. This is the same phenomenon as

electric-magnetic duality in electromagnetism, and holds for all values of s and t.

Though our arguments formally demonstrate duality invariance of the equations of

motion of PM fields, this by itself is not sufficient to establish duality invariance of the

action. This requires, instead, an explicit action of duality on the canonical variables of

the theory (or the fundamental fields), which leaves the action invariant. An instructive

example is that of Yang-Mills, where the action appears superficially duality-invariant,

but this duality cannot be implemented via field transformations [32]. However, duality

invariance of PM theories has already been demonstrated in [30] using a 3+1 decomposition.

The price of this approach is that it obscures the symmetries of the theory, which are

manifest in our formalism. The two approaches are therefore complimentary.

7However, it is to be understood that the Christoffel symbols associated with the covariant derivative

are to included for all the indices, i.e., the equations are (A)dS covariant.

– 8 –
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3 Depth t = 0

We begin by considering the simplest case, that of depth t = 0 partially massless fields

(often referred to as “maximal depth” in other references). These fields possess every

helicity component except their scalar polarization. They are the most direct generaliza-

tion of electromagnetism and the partially massless spin-2 theory. Here we construct the

gauge-invariant curvature tensor for spin-s > 1, t = 0 and show how it reproduces the equa-

tions of motion.8 These tensors are also constructed in [26, 75], and are the higher-spin

generalizations of the Maxwell field strength tensor and the PM spin-2 curvature of [76].

The curvature starts out as the (s+ 1)-index tensor,

Kµν|α1···αs−1
∈ ⊗ s− 1 , (3.1)

which is explicitly antisymmetric in its first two indices, explicitly symmetric in its last

s − 1 indices, and has no other symmetry or trace conditions imposed. We want to show

show that the equations of motion (2.4) for a depth t = 0 PM field of spin-s are equivalent

to the equations (2.18), (2.19) for the tensor K.

3.1 Bianchi identities

We first consider the Bianchi identities (2.18). When we decompose the tensor Kµν|α1···αs−1

into irreducible GL(D) representations we find the components

⊗ s =

s− 1

⊕ s
. (3.2)

The algebraic Bianchi identity is the equation tr ∗ K = 0, which in components reads

(∗K) ρ
µ1···µD−3ρ| α2···αs−1

∝ ε ρσβ
µ1···µD−2

Kρσ|βα2···αs−1
= 0. (3.3)

Stripping off the epsilon symbol, we find that K vanishes if we try to antisymmetrize it

over three indices

K[µν|α1]α2···αs−1
= 0 . (3.4)

This means that the component of K with the symmetry type
s− 1

vanishes, and thus K

has the on-shell symmetry

Kµν,α1···αs−1 ∈
s

. (3.5)

Next, we consider the differential Bianchi identity dK = 0, which in components reads

(dK)ρµν,α1···αs−1 ∝ ∇[ρKµν],α1···αs−1
= 0 . (3.6)

8The s = 1 case is the well-known Maxwell case. Its analysis is straightforward but doesn’t quite fit the

general pattern we consider in this section, so we omit it and consider s > 1 in the following.

– 9 –
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Taking inspiration from electromagnetism and the spin-2 case, we want the operator d to

be part of a differential complex with zero cohomology. The needed complex is the t = 0

case of the complex (2.8)

•
d
(s,0)
1−−−→ s

d
(s,0)
2−−−→ s d

(s,0)
3−−−→

s

−−−→ · · · (3.7)

where the d(s,0) operators maps between the various tensors as

(d
(s,0)
1 ξ)µ1···µs = ∇(µ1 . . .∇µs)ξ + · · · (3.8)

=


Ps

(∏ s
2
n=1

[
∇µn∇µn+ s2 + (2n− 1)2H2gµnµn+ s2

])
ξ for s even

Ps

(∏ s−1
2

n=1

[
∇µn∇µn+ s−1

2

+ (2n)2H2gµnµn+ s−1
2

)]
∇µsξ

for s odd

,

(d
(s,0)
2 `)µν,α1···αs−1 = 2∇[µ`ν]α1···αs−1

, (3.9)

(d
(s,0)
3 K)µνρ,α1···αs−1 = 3∇[ρKµν],α1···αs−1

, (3.10)

...

Here ξ is a scalar function — which will be the gauge parameter — and `α1···αs is a totally

symmetric tensor which will be the fundamental spin-s PM field. The first line, (3.8), is the

action of the scalar gauge symmetry on `. The derivative operator so defined is nilpotent,

d
(s,0)
i+1 ◦ d

(s,0)
i = 0, i = 1, 2, · · · . (3.11)

As mentioned, we assume the sequence is exact, in which case the differential Bianchi

identity of (2.18), which becomes d
(s,0)
3 K = 0 in light of (3.5), implies that we may write

K as the antisymmetric derivative of a totally symmetric tensor ` as in (3.9),

Kµν,α1···αs−1 = 2∇[µ`ν]α1···αs−1
, (3.12)

which is invariant under a gauge transformation of the form (3.8),

δ`µ1···µs = (d
(s,0)
1 ξ)µ1···µs = ∇(µ1 . . .∇µs)ξ + · · · (3.13)

with a scalar gauge parameter, ξ.

3.2 Field equations

Now that we have the expression (3.12) for the curvature K in terms of a symmetric

tensor, ` (which will become the PM field), we want to show that the field equations (2.19)

reproduce the equations of motion (2.4) for a depth t = 0 field. We first consider the

algebraic field equation trK = 0, which in components reads

K ρ
µρ, α2···αs−1

= 0. (3.14)
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Upon using (3.12) this becomes

∇µ` ρ
α2···αs−1ρ −∇

ρ`ρµα2···αs−1 = 0. (3.15)

This equation has two irreducible components, a fully symmetric part and a mixed sym-

metry part. Projecting onto the mixed symmetry part by antisymmetrizing over µ and α2

we obtain

∇[µ`
ρ

α2]···αs−1ρ
= 0. (3.16)

Comparing this equation to (3.9) tells us that the d
(s−2,0)
2 operator, a member of the

complex (3.7) with s 7→ s − 2, annihilates the trace of `: d
(s−2,0)
2 tr ` = 0. This, under

the assumption of trivial cohomology, implies that tr ` is pure gauge, so we can write it as

d
(s−2,0)
1 of some scalar function χ,

` ρ
α1···αs−2ρ = d

(s−2,0)
1 χ = ∇(α1

. . .∇αs−2)χ+ · · · (3.17)

The relation (3.17) is important because it will allow us to set tr ` = 0 via a gauge

choice. Generically, a scalar gauge freedom would not be expected to be enough to set the

trace, a symmetric rank s− 2 tensor, to zero.9 To set the trace to zero, we would have to

find a gauge parameter ξ that solves

` ρ
α1···αs−2ρ + δ` ρ

α1···αs−2ρ = 0. (3.18)

However, explicitly evaluating δ` ρ
α1···αs−2ρ given the gauge transformation (3.13), we find

that the trace of ` transforms as d
(s−2,0)
1 of a second-order scalar operator �+· · · acting on ξ,

δ` ρ
α1···αs−2ρ =

(
d
(s−2,0)
1

[
� +H2(s− 1)(D + s− 2)

]
ξ
)
α1···αs−2

. (3.19)

We now see, using (3.17) and (3.19) in (3.18), that the traceless gauge can be reached if

we have

d
(s−2,0)
1

[
χ+

(
� +H2(s− 1)(D + s− 2)

)
ξ
]

= 0. (3.20)

Invoking the trivial cohomology of (3.7), this is satisfied if and only if the term in brackets,

χ+
(
� +H2(s− 1)(D + s− 2)

)
ξ, vanishes. Thus, we can make ` traceless by taking ξ to

satisfy this equation. This leaves a residual gauge symmetry satisfying the homogeneous

equation
[
� +H2(s− 1)(D + s− 2)

]
ξ = 0, which is the t = 0 case of (2.6).

Next we consider the differential equation of motion d ∗ K = 0, which upon taking

another Hodge star and writing in components becomes

∇νKµν,α1···αs−1 = 0 . (3.21)

Using (3.12), this can be written as

∇νKµν,α1···αs−1 ∝
[
�−H2(D + (s− 2))

]
`µα1···αs−1 + (s− 1)!H2gµ(α1

` ρ
α2···αs−1)ρ

−∇µ∇ρ`ρ α1···αs−1
= 0. (3.22)

9The exception is the spin-2 case, in which the trace can be gauged directly to zero.
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Now, in the traceless gauge where ` ρ
α2···αs−1ρ = 0, the symmetric part of (3.15) tells us

that ` is transverse. The traceless and transverse conditions along with (3.22) yield the

following system of equations,(
�−H2(D+ s− 2)

)
`µα1···αs−1 = 0 , ` ρ

α2···αs−1ρ = 0 , ∇ρ`ρµα2···αs−1 = 0 , (3.23)

which match (2.4) for a depth t = 0 PM spin-s, along with the residual gauge invariance

that preserves the gauge tr ` = 0, which restricts ξ to satisfy(
� +H2(s− 1)(D + s− 2)

)
ξ = 0, (3.24)

matching (2.6) in the case t = 0.

Finally, note that there is a second trace of the curvature tensor we could have taken,

K ρ
µν,ρ α3···αs−1 . This trace is equal to (3.16), so it is automatically constrained to be zero by

the original trace requirement trK = 0. The curvature tensor is thus completely traceless

on-shell.

3.3 d+ 1 decomposition

Another way to understand the presence of duality is by looking at how the field strength

breaks up under a D → d + 1 decomposition into space and time components. This is

analogous to breaking up the Maxwell field strength into electric and magnetic fields. On

shell, the field strength tensor has the symmetry type (3.5) and is completely traceless.

Upon reducing D → d + 1, it breaks up into d-dimensional fully traceless tensors as (this

decomposition follows from the branching rules for the orthogonal groups)

s
T

−−−−→
D→d+1

s
T

⊕ s− 1
T

⊕ · · · ⊕

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ , (3.25)

where the superscript T indicates that the tableaux are fully traceless. The spatial tensors

in the top line of the right hand side of (3.25) are analogous to magnetic fields, and those

in the bottom line are analogous to electric fields.

In D = 4, so that d = 3, we can dualize the magnetic fields by contracting the

anti-symmetric index pair with the spatial epsilon symbol, εijk, after which they become

ordinary traceless symmetric tensors,

s
T

−−→
4→3

s
T ⊕ s− 1

T ⊕ · · · ⊕ (3.26)

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ , D = 4.

The electric and magnetic fields now carry the same representation, and the action of

duality is to rotate them into each other. One can think of the magnetic fields as carrying

the physical helicity components: s, s − 1, · · · , 1 of the depth t = 0 PM field, and the

electric fields as carrying their canonical momenta.
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3.4 Example: s = 3, t = 0

The previous discussion was somewhat abstract, so here we work things out explicitly in

an example. The spin-2 version was worked out in [23], so we will do here the next simplest

example, spin-3. (For comparison, we have worked out the standard off-shell Lagrangian

approach to PM spin-3 in appendix A.)

The starting point is to consider a 4-index tensor, which is antisymmetric in the first

two indices and symmetric in the last two,

Kµν|α1α2
∈ ⊗ . (3.27)

This contains the following components,

⊗ = ⊕ . (3.28)

Bianchi identities. Following the general procedure outlined above, we first consider

the algebraic Bianchi identity, tr ∗K = 0, which implies that the curvature tensor vanishes

if we try to antisymmetrize over three indices,

(tr ∗ K) ρ
µ1···µD−3ρ| α2

∝ ε ρσβ
µ1···µD−2

Kρσ|βα2
= 0 =⇒ K[µ1µ2|α1]α2

= 0. (3.29)

This means that the part of K with the symmetry of the three row Young tableau on the

right hand side of (3.28) vanishes, and so K has the symmetry type Kµν,α1α2 ∈ .

Next, we consider the differential Bianchi identity dK = 0, which in components reads

∇[ρKµν],α1α2
= 0 . (3.30)

This mapping fits into the s = 3 case of the complex (3.7)

•
d
(3,0)
1−−−→

d
(3,0)
2−−−→

d
(3,0)
3−−−→ −−−→ · · · , (3.31)

where the d operator acts as

(d
(3,0)
1 ξ)µ1µ2µ3 =

(
∇(µ1∇µ2∇µ3) + 4H2g(µ1µ2∇µ3)

)
ξ , (3.32)

(d
(3,0)
2 `)µ1µ2,α1α2 = 2∇[µ1`µ2],α1α2

, (3.33)

(d
(3,0)
3 K)µ1µ2µ3,α1α2 = 3∇[µ1Kµ2µ3],α1α2

, (3.34)

...

One can check straightforwardly that with these definitions, including the O(H2) terms

in (3.32), the operators satisfy

d
(3,0)
i+1 ◦ d

(3,0)
i = 0, i = 1, 2, · · · . (3.35)
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As above, we proceed under the assumption that the sequence (3.31) is exact. Then, (3.30)

becomes d
(3,0)
3 K = 0 which implies that we can write K as an exact form as in (3.33) with

some symmetric rank-3 tensor `,10

Kµ1µ2,α1α2 = 2∇[µ1`µ2]α1α2
. (3.36)

The identity d
(3,0)
2 ◦d

(3,0)
1 = 0 then tells us that this curvature tensor is invariant under the

gauge symmetry

δ`µ1µ2µ3 =
(
∇(µ1∇µ2∇µ3) + 4H2g(µ1µ2∇µ3)

)
ξ , (3.37)

for some scalar gauge parameter ξ.

Field equations. Next we consider the field equations (2.19). The first, algebraic, equa-

tion is trK = 0, which in components reads

K ρ
µρ α ∝ ∇µ` ρ

αρ −∇ρ`ρµα = 0, (3.38)

while the second, differential, equation d ∗ K = 0 becomes, upon using (3.36),

∇νKνµ,α1α2 = 0 =⇒ (�−H2(D+1))`µα1α2−∇µ∇ν`ν α1α2
+2H2gµ(α1

` ν
α2)ν

= 0 . (3.39)

Taking the antisymmetric part of (3.38), we find

∇[µ`
ν

α]ν = 0 , (3.40)

which, using the complex (3.7) in the case s = 1 (which is nothing but the ordinary de

Rham complex), tells us that ` ν
µν can be written as the gradient of a scalar χ:

` ν
µν = ∇µχ . (3.41)

This is enough to see that we can choose a gauge where ` ν
µν = 0; to fix this gauge we

see from the form of the gauge symmetry (3.37) that we need to find a gauge param-

eter ξ such that ` ν
µν + ∇µ(�ξ + 2H2(D + 1)ξ) = 0, which upon using (3.41) becomes

∇µ
(
�ξ + 2H2(D + 1)ξ + χ

)
= 0. Again using the trivial cohomology of our complex (3.7)

in the case s = 1, the only solution to this is �ξ + 2H2(D + 1)ξ + χ = 0, which is solved

by a particular solution for ξ, leaving a homogeneous solution which becomes a residual

gauge invariance satisfying [� + 2H2(D + 1)]ξ = 0.

In this traceless gauge, (3.38) tells us that ` is also transverse, and then the equations

of motion (3.39) become(
�− (D + 1)H2

)
`µ1µ2µ3 = 0 , ∇ν`νµ1µ2 = 0 , ` ν

µν = 0 , (3.42)

10Note that the spin-3 field that appears in (3.36) is not the same PM field that appears in the action (A.1),

but is rather a trace-shifted version of it. The field here may be written in terms of that field as

`µνρ = bµνρ +
3

2(D − 1)
g(µνb

α
ρ)α .

Ultimately, the trace is constrained to vanish on-shell, so both fields satisfy the same equations of motion

at the end of the day.
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which has the residual gauge freedom

δ`µ1µ2µ3 =
(
∇(µ1∇µ2∇µ3) + 4H2g(µ1µ2∇µ3)

)
ξ , where

(
� + 2(D + 1)H2

)
ξ = 0. (3.43)

These are precisely the same equations as (A.37), (A.38), which describe an on-shell depth

t = 0 PM spin-3.

4 Depth t = 1

The next simplest case to consider is depth t = 1. We construct the gauge-invariant

curvature tensor for spin-s > 2, t = 1 and show how it reproduces the equations of motion.11

The depth t = 1 case will have a curvature tensor construction similar to that of a massless

graviton, just as the t = 0 case behaved as a suitably generalized massless photon.

For t = 1, the fundamental object is an (s + 2)-index tensor which has the symme-

try type

Kµ1ν1|µ2ν2,α1···αs−2
∈ ⊗ s− 1

. (4.1)

It is manifestly antisymmetric in the first pair of indices, and the remaining s indices have

the symmetry of a tableau with rows of length s− 1 and 1, with no additional symmetries

or trace conditions.

4.1 Bianchi identities

We begin by considering the restrictions that the Bianchi identities (2.18) place on the

tensor (4.1). The tensor representation (4.1) breaks up into the following GL(D) irreducible

pieces,

⊗ s− 1
=

s− 1

⊕
s− 1

⊕
s

⊕ s
. (4.2)

The first equation of (2.18), the algebraic Bianchi identity tr ∗ K = 0, gives

ε βρσ
µ1β1···βD−2

Kρσ|βν2,α1···αs−2
= 0 =⇒ K[µ1ν1|µ2]ν2,α1···αs−2

= 0. (4.3)

This equation implies that K vanishes if we try to antisymmetrize 3 indices, which means

that the components on the right hand side of (4.2) with 3 or more rows vanish. This

restricts the symmetry type of K to be

Kµ1ν1,µ2ν2,α1···αs−2 ∈
s

. (4.4)

11The construction for the massless flat space spin-2 (t = 1) case is nicely reviewed in [46], and the curved

space generalization in [40, 43]. It proceeds slightly differently from the general case we consider in this

section, so we omit it from the analysis and consider s > 2 in the following.
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From this we will see that the two pairs of antisymmetric indices are actually equivalent,

i.e., K is symmetric under permuting one pair with the other.12

The second equation of (2.18), the differential Bianchi identity dK = 0, reads

∇[ρKµ1ν1],µ2ν2,α1···αs−2
= 0 . (4.5)

This equation fits into the t = 1 case of the complex (2.8),

d
(s,1)
1−−−→ s

d
(s,1)
2−−−→ s d

(s,1)
3−−−→

s− 1

−−−→ · · · (4.6)

where the operators act as

(d
(s,1)
1 ξ)µ1···µs = ∇(µ1 · · · ∇µs−1ξµs) + · · · (4.7)

=



Ps

(∏ s−1
2

n=1

[
∇µn∇µn+ s−1

2

+ (2n− 1)2H2gµnµn+ s−1
2

])
ξµs

for s odd

Ps

(∏ s−2
2

n=1

[
∇µn∇µn+ s−2

2

+ (2n)2H2gµnµn+ s−2
2

])
∇µs−1ξµs

for s even

,

(d
(s,1)
2 `)µ1ν1,µ2ν2,ν3···νs = Ps,2

(
∇µ1∇µ2 +H2gµ1µ2

)
`ν1···νs , (4.8)

(d
(s,1)
3 K)µ1ν1ρ,µ2ν2,ν3···νs = 3∇[ρKµ1ν1]µ2ν2ν3···νs , (4.9)

...

The operators defined in this way satisfy

d
(s,1)
i+1 ◦ d

(s,1)
i = 0, i = 1, 2, · · · , (4.10)

and as before, we will assume that the cohomology of this complex is trivial. With this, the

Bianchi identity (4.5) implies that K can be written as d of an s-index symmetric tensor

`µ1···µs ,

Kµ1ν1,µ2ν2,ν3···νs = Ps,2
(
∇µ1∇µ2 +H2gµ1µ2

)
`ν1···νs =

(
d
(s,1)
2 `

)
µ1ν1,µ2ν2,ν3···νs

, (4.11)

and is invariant under the gauge transformation

δ`µ1µ2···µs =
(

d
(s,1)
1 ξ

)
µ1···µs

= ∇(µ1 · · · ∇µs−1ξµs) + · · · . (4.12)

12We can now see that it is unnecessary to introduce a second Hodge star or d operator acting on the

antisymmetric indices in the s− 1 factor in (4.1). The second operator would be equivalent to permuting

the indices and then using the first operator.
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4.2 Field equations

Having constrained the form of the tensor K in terms of ` by employing the Bianchi

identities (2.18), we now want to show that the evolution equations for the PM field `

are reproduced by (2.19). We will see that only the equation trK = 0 is necessary. This

equation is already second order in derivatives of `. The other equation, d ∗ K = 0, is

third order in `, and will become an identity which vanishes by virtue of the second order

equations of motion.

We therefore first consider the algebraic equation, trK = 0, which in components reads

Kρ ν1,ρν2,α1···αs−2
= 0. (4.13)

Using (4.11), this can be written as

Kνµ1,νµ2,µ3···µs ∝ �`µ1···µs + (D − 2)H2`µ1···µs −∇ν∇µ2` ν
µ1 µ3µ4···µs −∇µ1∇ν`

ν
µ2µ3µ4···µs

+∇µ1∇µ2` ν
µ3···µsν +H2gµ1µ2`

ν
µ3···µsν = 0 . (4.14)

This equation has components of two different symmetry types: a completely symmetric

part, and a part with the symmetry of the Young diagram13 s− 2 (with the indices µ1, µ2

in the bottom two boxes). If we project (4.14) onto this latter symmetry structure, we find

that the first line vanishes, and the second line becomes the expression for the curvature

tensor of the spin-(s− 2), t = 1 field which is the trace (tr `)µ3···µs ≡ `ννµ3···µs ,

d
(s−2,1)
2 (tr `) = 0, (4.15)

where the d
(s−2,1)
2 is as in (4.8) with s 7→ s− 2. Therefore, using the complex (4.6) in the

case s 7→ s− 2, tells us that tr ` is pure gauge, and thus can be written as d of some vector

χµ, as in (4.7) with the replacement s 7→ s− 2,

` ρ
µ1···µs−2ρ = (d

(s−2,1)
1 χ)µ1···µs−2 = ∇(µ1 · · · ∇µs−1χµs−2) + · · · . (4.16)

We next calculate the change in the trace of ` under a gauge transformation (4.12),

and we find two terms,

δ` ρ
µ1···µs−2ρ =

s− 2

s

(
d
(s−2,1)
1 (� +H2[(s− 1)(D + s− 2)− 1])ξ

)
µ1···µs−2

+
2

s

(
d
(s−2,1)
1 [∇∇ · ξ]

)
µ1···µs−2

, (4.17)

The first term looks like a spin s−2, t = 1 gauge transformation where the gauge parameter

is a the operator � + · · · acting on ξµ, while in the second term the gauge parameter is

∇µ∇ · ξ. Comparing to (4.16), and invoking the trivial cohomology of the complex (4.6)

in the case s 7→ s− 2, we see that we can gauge fix the trace of ` to zero if and only if we

choose ξµ to satisfy

s− 2

s
(� +H2[(s− 1)(D + s− 2)− 1])ξµ +

2

s
∇µ∇ · ξ + χµ = 0 . (4.18)

13With the exception of s = 3, where it becomes a hook. See section 4.4.

– 17 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
1

This leaves a residual gauge invariance with ξµ satisfying

(s− 2)(� +H2[(s− 1)(D + s− 2)− 1])ξµ + 2∇µ∇ · ξ = 0. (4.19)

Inserting the tracelessness condition back into (4.14) and then anti-symmetrizing over

µ1 and µ3 we obtain

∇[µ1∇
ν`µ3]µ2µ4···µs−1ν = 0 . (4.20)

This implies, using the complex (3.7) in the case s 7→ s − 1, that the divergence of ` can

be written in terms of a scalar ψ as

∇ν`νµ1µ2···µs−1
=
(

d
(s−1,0)
1 ψ

)
µ1µ2···µs−1

. (4.21)

Now, under a gauge transformation (4.12), the divergence of ` transforms as a depth-0 field

of spin-(s− 1) with gauge parameter ∇ · ξ:

δ
(
∇ν`νµ1µ2···µs−1

)
∝
(

d
(s−1,0)
1 ∇ · ξ

)
µ1µ2···µs−1

, (4.22)

where we have kept in mind that the gauge transformations are now restricted to satisfy

the residual equation (4.19) and used it to eliminate �ξµ in favor of ∇µ∇ · ξ. Comparing

with (4.21), we see that we can use the residual gauge freedom that remains after gauge

fixing tr ` = 0 to gauge-fix the divergence of ` to be zero as well, by solving ∇· ξ ∝ ψ. This

leaves a residual gauge symmetry where the gauge parameter is divergenceless, ∇ · ξ = 0,

in addition to satisfying (4.19).

Using the fact that ∇ν∇µ2` ν
µ1 µ3µ4···µs = ∇µ2∇ν` ν

µ1 µ3µ4···µs + (D+ (s− 2))H2`µ1···µs +

trace terms as well as the divergenceless gauge condition ∇ν`νµ2···µs = 0, we obtain(
�− sH2

)
`µ1···µs = 0 from (4.14) so that the equations of motion become

(
�− sH2

)
`µ1···µs = 0 , ∇ν`νµ2···µs = 0 , `ννµ3···µs = 0 . (4.23)

where there is a residual gauge invariance of the form (4.7) with the gauge parameter

satisfying

(� +H2[(s− 1)(D + s− 2)− 1])ξµ = 0 ∇µξµ = 0 . (4.24)

These equations agree with (2.4), (2.6) for t = 1.

There is also the second equation of motion in (2.19), d ∗K = 0, which in components

becomes

∇µ1Kµ1ν1,µ2ν2,α1···αs−2 = 0 . (4.25)

Upon inserting (4.11), this turns out to be identically satisfied given the equations (4.23).

Finally, we note that the field strength K is totally traceless once the equations of motion

are satisfied.
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4.3 d+ 1 decomposition

As we did with the t = 0 case in section 3.3, we can understand the presence of duality

by breaking up the field strength into space and time components, analogous to breaking

up the Maxwell field strength into electric and magnetic fields. Upon reducing D → d+ 1,

the traceless on-shell field strength tensor breaks up as

s
T

−−−−→
D→d+1

s
T

⊕ s− 1
T

⊕ · · · ⊕
T

⊕ s
T

⊕ s− 1
T

⊕ · · · ⊕
T

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ T
. (4.26)

In general D we now have three kinds of spatial field in (4.26), not just electric and

magnetic fields. In D = 4, however, the representations in the first line of the right

hand side of (4.26) carry no independent components and thus are not present, and the

representations in the second line can be dualized by contracting the anti-symmetric index

pair with the spatial epsilon symbol εijk, after which they become ordinary symmetric

tensors. This leaves

s
T

−−→
4→3

s
T ⊕ s− 1

T ⊕ · · · ⊕ T
(4.27)

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ T
, D = 4.

The two lines now carry the same representation, and the action of duality is to rotate them

into each other. One can think of these fields as carrying the physical helicity components

and canonical momenta for the helicities s, s− 1, · · · , 2 of the depth t = 1 PM field.

4.4 Example: s = 3, t = 1

It may be helpful to see the construction of the previous section worked out in an explicit

example. The simplest field which admits a depth t = 1 partially massless point is a spin-3.

We will work out this case in this section. We have worked out the off-shell Lagrangian

approach in appendix A for comparison.

The starting point is to consider the tensor

Kµ1ν1|µ2ν2,α ∈ ⊗ , (4.28)

which has the following GL(D) decomposition

⊗ = ⊕ ⊕ . (4.29)
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Bianchi identities. We first consider the constraints that the Bianchi identities place

on the form of the tensor (4.28). The algebraic Bianchi identity tr ∗ K = 0 implies (after

stripping of an epsilon) that K vanishes if we try to antisymmetrize over the first three of

its indices,

K[µ1ν1|µ2]ν2,α = 0. (4.30)

Therefore the components of the decomposition (4.29) with more than two rows vanish, so

that the tensor K has the symmetry type

Kµ1ν1|µ2ν2,α ∈ . (4.31)

Next, we consider the differential Bianchi identity dK = 0, which in components reads

∇[ρKµ1ν1],µ2ν2,α = 0 . (4.32)

This identity fits into the complex

d
(3,1)
1−−−→

d
(3,1)
2−−−→

d
(3,1)
3−−−→ −−−→ · · · (4.33)

where the differential operators act as

(d
(3,1)
1 ξ)µ1µ2µ3 = ∇(µ1∇µ2ξµ3) +H2g(µ1µ2ξµ3) , (4.34)

(d
(3,1)
2 `)µ1ν1,µ2ν2,µ3 = P3,2

(
∇ν1∇ν2 +H2gν1ν2

)
`µ1µ2µ3 , (4.35)

(d
(3,1)
3 K)µ1ν1ρ,µ2ν2,µ3 = 3∇[ρKν1µ1],ν2µ2,µ3 , (4.36)

...

It is straightforward to check that with these definitions we have

d
(3,1)
i+1 ◦ d

(3,1)
i = 0, i = 1, 2, · · · . (4.37)

Using this complex and the assumption of trivial cohomology, the Bianchi identity (4.32),

which is d
(3,1)
3 K = 0, implies that we can write K in terms of a potential as

Kµ1ν1,µ2ν2,µ3 = (d
(3,1)
2 `)µ1ν1,µ2ν2,µ3 = P3,2

(
∇ν1∇ν2 +H2gν1ν2

)
`µ1µ2µ3 , (4.38)

which, by virtue of d
(3,1)
2 ◦ d

(3,1)
1 = 0, is gauge invariant under the gauge transformation of

the form (4.34),

δ`µ1µ2µ3 = ∇(µ1∇µ2ξµ3) +H2g(µ1µ2ξµ3) . (4.39)
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Equations of motion. The trace equation tr ∗ K = 0 becomes, upon using (4.38),

K ρ
µ1 ,ρµ2,µ3 ∝

(
�− 3H2

)
`µ1µ2µ3 − 2∇(µ1∇|ρ|`

ρ
µ2)µ3

+∇µ2∇µ1` ρ
µ3ρ

+2H2gµ1µ2`
ρ

µ3ρ +H2gµ1µ3`
ρ

µ2ρ = 0 . (4.40)

This equation has two parts, a totally symmetric part and a part with the symmetry .

Projecting (4.40) onto the hook tableau (which amounts to antisymmetrizing over µ1, µ3),

we obtain the equation

2H2gµ2[µ1`
ρ

µ3]ρ
−∇[µ1∇|ρ|`

ρ
µ3]µ2

+∇µ2∇[µ1`
ρ

µ3]ρ
= 0 . (4.41)

Under a gauge transformation, the trace of ` transforms into

` ρ
µρ 7→ ` ρ

µρ +
1

3

(
�ξµ + (1 + 2D)H2

)
ξµ +

2

3
∇µ∇ · ξ . (4.42)

We may fix the traceless gauge ` ρ
µρ = 0 by setting the above to zero and solving the

resulting differential equation for ξ.14 This leaves a residual gauge symmetry given by the

homogeneous solution, (
� + (1 + 2D)H2

)
ξµ + 2∇µ∇ · ξ = 0. (4.43)

Using this gauge choice in (4.41) tells us that

∇[µ1∇|ρ|`
ρ
µ3]µ2

= 0. (4.44)

We recognize this as the operator d
(2,0)
2 in the complex (3.7), annihilating the symmetric

tensor∇ρ`ρ µ1µ2 . Using the trivial cohomology assumption, this implies that the divergence

of ` can be written as d
(2,0)
1 of some scalar, χ,

∇λ`λµ1µ2 = (d
(2,0)
1 χ)µ1µ2 = (∇µ1∇µ2 +H2gµ1µ2)χ. (4.45)

Next we examine how the divergence of ` transforms under a gauge transformation,

δ∇λ`λµ1µ2 =
2

3
∇(µ1

(
� +H2(1 + 2D)

)
ξµ2) +

1

3

(
∇µ1∇µ2 − 3H2gµ1µ2

)
∇ · ξ. (4.46)

We would like to fix the divergence to be zero using only the residual gauge symmetry

satisfying (4.43). Using (4.43) in (4.46), we find that the divergence of ` transforms as

∇λ`λµ1µ2 7→ ∇λ`
λ
µ1µ2 −

(
∇µ1∇µ2 +H2gµ1µ2

)
∇ · ξ, (4.47)

under this residual gauge symmetry. Therefore, using (4.45), and the trivial cohomology

assumption of the complex (3.7), we see that we can also gauge-fix ∇λ`λµ1µ2 = 0 if and

14Note that this is somewhat simpler than the general case, where there would be another projection

of (4.40) which would tell us that we have enough gauge freedom to fix tr ` = 0. In this case, no such

argument is needed because the trace is a vector, which can directly be fixed to zero with our vector gauge

symmetry.
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only if ∇ · ξ = χ. Once we have fixed this gauge, there is still a residual gauge freedom,

where ξ is divergenceless ∇ · ξ = 0, and satisfies the equation
(
� +H2(1 + 2D)

)
ξµ = 0.

After inserting the two conditions ∇λ`λµ1µ2 = 0 and ` ρ
µρ = 0 into (4.40) we obtain

the wave equation
(
�− 3H2

)
`µ1µ2µ3 = 0. Thus the equations of motion following from

trK = 0 are (
�− 3H2

)
`µ1µ2µ3 = 0 ` ρ

µρ = 0 ∇λ`λµν = 0 , (4.48)

which are invariant under the residual gauge symmetry

δ`µ1µ2µ3 = ∇(µ1∇µ2ξµ3) +H2g(µ1µ2ξµ3) , where
(
� +H2(1 + 2D)

)
ξµ = 0 , ∇ · ξ = 0 .(4.49)

These is precisely the s = 3, t = 1 case of the partially massless on-shell equations (2.4)

and on-shell gauge symmetries (2.6).

One can check directly that the remaining equation d ∗K = 0 =⇒ ∇µ1Kµ1µ1,µ2µ2,µ3 =

0 does not provide any new information, but is satisfied identically once (4.40) is satisfied

(this is true even without fixing a gauge, as can be seen by using the trace of (4.41) to

eliminate �` ρ
µρ in ∇ · K, after which the result is proportional to (4.40)). Finally, it can

be checked that the field strength is fully traceless once (4.48) are satisfied.

5 Depth t ≥ 2

We have seen that for higher spins, the depth t = 0 case is reminiscent of the structure of a

massless spin-1 field in the sense that the field strength tensor K is first order in derivatives

and the second order equations of motion follow from the one-derivative equation d∗K = 0.

The depth t = 1 case shares many of the features of a massless spin-2 field, in which the

field strength tensor K is second order in derivatives and the second order equations of

motion follow from the zero-derivative equation trK = 0. We therefore suspect that a

depth-t PM theory will behave similarly to a massless spin-(t + 1) field. But in this case,

the curvature tensor has ≥ 3 derivatives and it naively seems impossible for the second

order equations to arise from either of the dynamical equations (2.19). They do in fact

arise, but the equations of motion will be implemented via gauge fixing, similar to the way

in which the equations for a massless spin-s appear in [34–36, 77] (reviewed in [58, 59]).

Here we sketch how the construction works for depth-t PM theories,15 with t ≥ 2,

t < s− 1. The starting point is an (s+ t+ 1)-index tensor K with the symmetry type:

Kµ1ν1|µ2ν2,··· ,µt+1νt+1,α1···αs−t−1
∈ ⊗ s− 1

t
. (5.1)

The Hodge dual and exterior d operations are again defined with respect to the antisym-

metric pair of indices in the first factor on the right hand side of (5.1),16 as described in

15We restrict to s < s − 1 because t = s − 1 is the massless case, for which the details are somewhat

different and which is a straightforward curved space generalization of what has been done before in the

flat case.
16As mentioned in a previous footnote, there are in principle multiple ways that we could dualize the

tensor K, but they will all end up being equivalent. Choosing to only dualize along the first antisymmetric

indices makes contact with the frame-like formulation of [10]. Similarly, we could introduce t+1 differential

operators and consider K as a multiform, but this is not necessary for our construction.
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section 2.3. The tensor K is the PM version of the curvature tensors considered in [34–36],

which are based on the higher-spin curvatures constructed in [56, 57].

5.1 Bianchi identities

We first explore the consequences of the Bianchi identities for the structure of the tensor

K. The trace constraint, tr ∗ K = 0, becomes in components

ε βρσ
µ1β1···βD−2

Kρσ|βν2,··· ,µt+1νt+1,α1···αs−t−1
= 0 =⇒ K[µ1ν1|µ2]ν2,··· ,µt+1νt+1,α1···αs−t−1

= 0.

(5.2)

The representation (5.1) decomposes under GL(D) as

⊗ s− 1

t
=

s

t ⊕
s− 1

t+ 1 ⊕
s− 1

t+ 1 ⊕ s

t+ 1
,

(5.3)

and (5.2) implies that all of the components on the right hand side of (5.3) which have 3

or more rows are zero. The only component which survives this projection is the one with

the symmetry type17

Kµ1ν1,··· ,µt+1νt+1,α1···αs−t−1 ∈
s

t+ 1
. (5.4)

We now turn to the differential Bianchi identity, dK = 0, which reads

∇[ρKµ1ν1],µ2ν2,··· ,µt+1νt+1,α1···αs−t−1
= 0 . (5.5)

This differential operator is d
(s,t)
3 , part of the complex (2.8) with the operators defined as

in (2.9)–(2.11). Again assuming that the cohomology of this complex is trivial, the fact

that K is annihilated by d
(s,t)
3 implies that it may be written as d

(s,t)
2 acting on a totally

symmetric rank-s potential ` as

Kµ1···µs,ν1···νt+1 = d
(s,t)
2 `µ1···µs,ν1···νt+1

∝ Ps,t+1∇ν1 · · · ∇νt+1`µ1···µs + · · · . (5.6)

By virtue of d
(s,t)
2 ◦d(s,t)

1 = 0, this curvature tensor is gauge invariant under a transformation

of the form

δ`µ1···µs =
(

d
(s,t)
1 ξ

)
µ1···µs

∝ ∇(µt+1
∇µt+2 · · · ∇µsξµ1···µt) + · · · (5.7)

for a totally symmetric t index gauge parameter ξ. The explicit expressions for the cur-

vatures and gauge transformations, including the sub-leading O(H2) terms are given in

section 2.2.

17Note that this tensor has the same symmetry type as the projected curvature tensor of [10].
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5.2 Field equations

The combined effect of the Bianchi identities is to restrict the tensor (5.1) to be of the

symmetry type (5.4) written in terms of a spin-s potential as in (5.6). What remains is

to show that we can recover the equations of motion from this curvature using the field

equations (2.19). A priori this is impossible, because the equations of motion are manifestly

second order, whereas the curvature tensor (5.6) has t + 1 derivatives, which is ≥ 3 since

t ≥ 2. However, we will see that similar to [34–36], the equation trK = 0, plus appropriate

gauge fixings, does indeed imply the correct partially massless equations of motion.

We begin by considering the algebraic equation of motion trK = 0,

Kρν1,ρν2,··· ,µt+1νt+1,α1···αs−1−t = 0. (5.8)

This equation contains three distinct symmetry components

trK ⊃ s

t− 1
⊕ s− 2

t+ 1
⊕ s− 1

t
, (5.9)

and we will get various equations by projecting onto each of these three components (the

second component is absent in the case t = s− 2).

We first consider the projection onto the Young diagram s

t− 1
. As it turns out,

the result can be written as d
(s,t−2)
2 of a totally symmetric rank s tensor Fα1···αs , so that

we have

d
(s,t−2)
2 F = 0 . (5.10)

The tensor F is the PM analogue of the Fronsdal tensor, and contains only up to second

derivatives of `. The additional t − 1 derivatives needed to obtain the t + 1 derivative

field strength are all present in the operator d
(s,t−2)
2 in (5.10). The relation (5.10) is a

generalization of a similar identity noted in the massless spin-3 case [57].

The goal is to show that F is zero, from which the standard on-shell equations will

follow after appropriate gauge-fixings. Eq. (5.10) implies, using the complex (2.8) with

t 7→ t − 2, that we can write F as d
(s,t−2)
1 of some rank t − 2 totally symmetric tensor

Λα1···αt−2 ,

F = d
(s,t−2)
1 Λ. (5.11)

Next, we note that under a gauge transformation (5.6), F transforms as

δF = d
(s,t−2)
1 tr ξ. (5.12)

Comparing with (5.11), we see that we can use the trace of the gauge symmetry to gauge fix

F = 0 . (5.13)

This is the same mechanism by which the Fronsdal equations of motion are recovered in the

flat-space massless case in [34–36]. This leaves a residual gauge symmetry with a traceless

gauge parameter,

tr ξ = 0. (5.14)

– 24 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
1

(Note that the tensor F is invariant under the gauge symmetry (5.6) with a traceless gauge

parameter, just as in the standard Fronsdal formulation of the massless case.)

We next consider the projection of (5.8) onto the Young diagram s− 1

t
. The result can

be written as d
(s−1,t−1)
2 acting on a de Donder-like linear combination of the divergence

(∇ · `)µ1···µs−1
≡ ∇ρ`ρµ1···µs−1 and the symmetrized derivative of the trace (∇tr`)µ1···µs−1

≡
∇(µ1tr `µ2···µs−1),

d
(s−1,t−1)
2

(
∇ · `− s− 1

s− 1− t
∇tr `

)
= 0. (5.15)

The fact that this linear combination is annihilated by d
(s−1,t−1)
2 implies that we can write

is as d
(s−1,t−1)
1 of some rank t− 1 fully symmetric tensor ψ(

∇ · `− s− 1

s− 1− t
∇ tr `

)
= d

(s−1,t−1)
1 ψ. (5.16)

Under a gauge transformation, this same linear combination transforms as

δ

(
∇ · `− s− 1

s− 1− t
∇ tr `

)
= d

(s−1,t−1)
1 ∇ · ξ, (5.17)

so we see that we can use the divergence of the gauge parameter to fix the de Donder type

gauge where

∇ · `− s− 1

s− 1− t
∇tr ` = 0. (5.18)

This leaves residual gauge transformations where the gauge parameter is transverse

∇ · ξ = 0.

Finally, we project the equation of motion (5.8) onto the symmetry structure s− 2

t+ 1
,

and we find that the equation becomes

d
(s−2,t)
2 tr ` = 0 , (5.19)

which implies that the trace of ` can be written as d
(s−2,t)
1 of some rank t fully symmetric

tensor χ,

tr ` = d
(s−2,t)
1 χ. (5.20)

(In the case t = s − 2 we do not have this equation, and we do not need this cohomology

argument for tr `, so we define χ ≡ tr ` in this case, see the example in section 5.4.) Under

a gauge transformation, the trace of ` shifts as δ tr ` = tr d
(s,t)
1 ξ , which upon using that

the gauge parameter is transverse and traceless can be cast as

δ tr ` = d
(s−2,t)
1

(
� +H2 [(s− 1)(D + s− 2)− t]

)
ξ. (5.21)

Comparing with (5.20) and using the trivial cohomology assumption, we can reach the

gauge tr ` = 0 if we can solve the equation
(
� +H2 [(s− 1)(D + s− 2)− t]

)
ξ ∝ χ with

a transverse traceless ξ, which would leave a residual gauge transformation satisfying the

homogeneous equation
(
� +H2 [(s− 1)(D + s− 2)− t]

)
ξ = 0.

This will be possible if χ is itself transverse and traceless, so we now turn to arguing

that this is indeed the case. Start by plugging (5.20) into the trace of the de Donder
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condition (5.18). The result can be cast as d
(s−3,t−1)
1 acting on a de Donder-like expression

for χ,

tr

(
∇ · `− s− 1

s− 1− t
∇tr `

)
∝ d

(s−3,t−1)
1

(
∇ · χ+

t− 1

s− 1− t
∇trχ

)
= 0, (5.22)

Thus by the trivial cohomology assumption and (5.18) we have

∇ · χ+
t− 1

s− 1− t
∇trχ = 0. (5.23)

Next consider the trace of the Fronsdal tensor, trF . Using (5.18) to eliminate divergences

of ` and then (5.20) to eliminate traces of `, followed by (5.23) to eliminate divergences of

χ, we find,

trF ∝ d
(s−2,t−2)
1 trχ. (5.24)

Given (5.13) and the trivial cohomology assumption, we thus have tr χ = 0, and hence

from (5.23) ∇ · χ = 0. We can therefore reach the gauge tr ` = 0, and then by (5.18)

∇ · ` = 0.

Finally, inserting the conditions tr ` = 0, ∇ · ` = 0 into the Fronsdal-like tensor

recovers the equations of motion (2.4), which are invariant under a residual gauge invariance

reproducing (2.5), (2.6). It can then be checked that the remaining equation of motion

d ∗ K = 0 does not give any additional information, but is implied by the other equations,

and that the field strength K is fully traceless.

5.3 d+ 1 decomposition

We can also understand the presence of duality in the general case by breaking up the

field strength into space and time components, analogous to breaking up the Maxwell field

strength into electric and magnetic fields. Upon reducing D → d + 1, the fully traceless

on-shell field strength tensor decomposes as

s

t+ 1

T

−−−−→
D→d+1

s

t+ 1

T

⊕ s− 1

t+ 1

T

⊕ · · · ⊕ t+ 1

t+ 1

T

⊕ s

t

T

⊕ s− 1

t

T

⊕ · · · ⊕ t+ 1

t

T

...

⊕ s
T

⊕ s− 1
T

⊕ · · · ⊕ t+ 1
T

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ t+ 1
T

(5.25)

In general D we now have t + 2 kinds of spatial field in the various lines of the right

hand side of (5.25). In D = 4, the representations in all but the final two lines carry no

independent components and hence are not present. The representations in the second to
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last line can be dualized by hitting the anti-symmetric index pair with the spatial epsilon

symbol εijk, after which they become ordinary symmetric tensors. This leaves

s
T

−−→
4→3

s
T ⊕ s− 1

T ⊕ · · · ⊕ t+ 1
T

(5.26)

⊕ s
T ⊕ s− 1

T ⊕ · · · ⊕ t+ 1
T
, D = 4.

The two lines now carry the same representation, and the action of duality is to rotate them

into each other. One can think of these fields as carrying the physical helicity components

and canonical momenta for the helicities s, s− 1, · · · , t+ 1 of the depth t PM field.

5.4 Example: s = 4, t = 2

In order to make the previous discussion more concrete, here we work out the details for

the simplest nontrivial case, depth t = 2 spin-4. In this case, the fundamental object is a

7-index tensor

Kµ1ν1|µ2ν2,µ3ν3,α ∈ ⊗ . (5.27)

Bianchi identities. As usual, we begin by considering the constraints that the Bianchi

identities (2.18) place on the form of the tensor (5.27). Decomposing the representa-

tion (5.27), we obtain the components

⊗ = ⊕ ⊕ ⊕ .

(5.28)

The algebraic Bianchi identity tr ∗ K = 0 gives

ε λρσ
ν1β1β2···βD−2

Kλρ|σν2,µ3ν3,α = 0 ⇒ K[µ1ν1|µ2]ν2,µ3ν3,α = 0 (5.29)

which means that every component in (5.28) vanishes except for the piece with two rows,

Kµ1ν1,µ2ν2,µ3ν3,α ∈ . (5.30)

The differential Bianchi identity dK = 0 fits into the complex (2.8) with s = 4, t = 2,

d
(4,2)
1−−−→

d
(4,2)
2−−−→

d
(4,2)
3−−−→ −−−→ · · · (5.31)

where the differential operators are given explicitly by(
d
(4,2)
1 ξ

)
µ1µ2µ3µ4

= ∇(µ1∇µ2ξµ3µ4) +H2g(µ1µ2ξµ3µ4) (5.32)(
d
(4,2)
2 `

)
µ1ν1,µ2ν2,µ3ν3,α

= P4,3

(
∇ν1∇ν2∇ν3 + 4H2gν1ν2∇ν3

)
`µ1µ2µ3α (5.33)(

d
(4,2)
3 K

)
µ1ν1ρ,µ2ν2,µ3ν3,α

= ∇[ρKµ1ν1],µ2ν2,µ3ν3,α . (5.34)
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and satisfy

d
(4,2)
i+1 ◦ d

(4,2)
i = 0, i = 1, 2, · · · . (5.35)

Using the trivial cohomology assumption, we conclude that the Bianchi identity d
(4,2)
3 K = 0

allows us to write,

Kµ1ν1,µ2ν2,µ3ν3,α =
(

d
(4,2)
2 `

)
µ1ν1,µ2ν2,µ3ν3,α

= P4,3

(
∇ν1∇ν2∇ν3 + 4H2gν1ν2∇ν3

)
`µ1µ2µ3α,

(5.36)

for some rank-4 symmetric tensor `. By virtue of d
(4,2)
2 ◦ d

(4,2)
1 = 0, K is gauge invariant

under the gauge transformation

δ`µ1µ2µ3α1 =
(

d
(4,2)
1 ξ

)
µ1µ2µ3µ4

= ∇(µ1∇µ2ξµ3µ4) +H2g(µ1µ2ξµ3µ4), (5.37)

for some two index fully symmetric gauge parameter ξµ1µ2 .

Field equations. Start with the algebraic equation of motion trK = 0. This trace is a

5-index tensor which contains the symmetry components18

trK ⊃ ⊕ . (5.38)

If we project onto the first tableau, using indices ν1 ν2 µ3 α

ν3
, we find that we can write the

result as d
(4,0)
2 of a 4-index tensor F ,

P4,1Kλ ν1,λν2,µ3ν3,α ∝ d
(4,0)
2 F = 2∂[ν1Fν3]ν2µ3α , (5.39)

where

Fµ1µ2µ3µ4 = �`µ1µ2µ3µ4 + 2∇(µ1∇µ2`
ν

µ3µ4)ν
− 8

3
∇(µ1∇|ν|`

ν
µ2µ3µ4)

+H2(D − 4)`µ1µ2µ3µ4

+6H2g(µ1µ2`
ν

µ3µ4)ν
. (5.40)

The tensor F is totally symmetric and is the PM analogue of the Fronsdal tensor.

The equation trK = 0 therefore implies that d
(4,0)
2 F = 0. This implies, using the t = 0

complex (3.7) where s = 4, that F can be written as gradients acting on some scalar χ, as

in (3.8),

Fµ1µ2µ3µ4 = d
(4,0)
1 χ =

(
∇(µ1∇µ2∇µ3∇µ4) + 10H2g(µ1µ2∇µ3∇µ4) + 9H4g(µ1µ2gµ3µ4)

)
χ .

(5.41)

Next, we note that under a gauge transformation (5.37), F transforms as

δFµ1µ2µ3µ4 =
(
∇(µ1∇µ2∇µ3∇µ4) + 10H2g(µ1µ2∇µ3∇µ4) + 9H4g(µ1µ2gµ3µ4)

)
ξνν

=
(

d
(4,0)
1 tr ξ

)
µ1µ2µ3µ4

, (5.42)

18Note that here tr K only has two symmetry components as opposed to the general case (5.9).
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which is the depth t = 0 gauge transformation with scalar gauge parameter ξββ , exactly of

the form (5.41). Using the trivial cohomology assumption of the complex (3.7), this implies

that we can gauge-fix F to zero by using the trace of the gauge parameter, tr ξ. After fixing

F = 0 we have a residual gauge freedom given by any traceless gauge parameter, tr ξ = 0.

Next we project the trK = 0 equation onto the second factor of (5.38) using the

tableau ν1 ν2 ν3

µ3 α
. We get (after renaming some indices)

P3,2

(
∇ν1∇ν2 +H2gν1ν2

) [
∇ρ`ρµ1µ2µ3 − 3∇(µ1`

ρ
µ2µ3)ρ

]
= 0 . (5.43)

This equation is nothing but d
(3,1)
2 acting on a de Donder-like condition for the gauge field

`. using the complex (2.8), this implies that we can write

∇ρ`ρµ1µ2µ3 − 3∇(µ1`
ρ

µ2µ3)ρ
=
(

d
(3,1)
1 χ

)
µ1µ2µ3

, (5.44)

with χµ some vector parameter. Under a gauge transformation, the de Donder-like combi-

nation which is the left hand side of (5.44) transforms as

δ
(
∇ρ`ρµ1µ2µ3 − 3∇(µ1`

ρ
µ2µ3)ρ

)
= −3

2

(
∇(µ1∇µ2 +H2g(µ1µ2

)
∇ρξµ3)ρ ∝

(
d
(3,1)
1 ∇ · ξ

)
µ1µ2µ3

.

(5.45)

Comparing this to (5.44), we see that we can fix the de Donder type gauge

∇ρ`ρµ1µ2µ3 − 3∇(µ1`
ρ

µ2µ3)ρ
= 0 , (5.46)

by solving the equation χ ∝ ∇· ξ = 0 for ξ. This leaves a residual gauge freedom satisfying

∇ · ξ = 0.

Consider now the gauge transformation of the trace of `. Using the fact that the gauge

parameter has been fixed to be transverse and traceless, we have

δ` ρ
µ1µ2ρ =

1

6

(
� + (4 + 3D)H2

)
ξµ1µ2 . (5.47)

We want to reach the gauge tr ` = 0, and to do this with a transverse traceless ξµν , we need

to argue that tr ` = 0 is itself transverse and traceless, after which we will be able to reach

tr ` = 0 leaving a residual transverse traceless gauge parameter satisfying the homogeneous

equation
(
� + (4 + 3D)H2

)
ξµ1µ2 = 0.

In fact, the trace of the gauge field is transverse and traceless. Taking a trace of the

de Donder condition (5.46) gives us a de Donder-like condition for tr `,

∇ν`ν ρ
µ ρ = −∇µ`ν ρ

ν ρ = 0. (5.48)

Taking a trace of the Fronsdal tensor (5.40), and then using the de Donder condition (5.46)

and its trace (5.48) to eliminate all divergences, we find that it becomes

F ν
µ1µ2 ν = 3

(
∇µ2∇µ2 +H2gµ1µ2

)
`ν ρ
ν ρ. (5.49)
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The right hand side is nothing but d
(2,0)
1 tr2 `, so the vanishing of the Fronsdal tensor, along

with the trivial cohomology assumption for the complex with s = 2, t = 0 tells us that the

double trace tr2` vanishes,

`ν ρ
ν ρ = 0 , (5.50)

after which (5.48) tells us that tr ` is transverse. We can therefore reach the gauge tr ` = 0,

after which (5.46) tells us that ` is transverse.

Inserting tr ` = 0 and ∇ · ` = 0 into F = 0, we obtain the system of equations(
� + (D − 4)H2

)
`µ1µ2µ3µ4 = 0 , ∇ν`νµ2µ3µ4 = 0 , `ννµ3µ4 = 0 , (5.51)

which are the correct on shell equations (2.4) for a PM spin-4 of depth-2. These equations

have a residual gauge symmetry where

δ`µ1µ2µ3µ4 = ∇(µ1∇µ2ξµ3µ4) +H2g(µ1µ2ξµ3µ4) , ξνν = 0 , ∇νξνµ = 0 ,(
� + (4 + 3D)H2

)
ξµ1µ2 = 0, (5.52)

which are the correct on shell gauge symmetries (2.5) for a PM spin-4 of depth-2. Finally,

it is straightforward to show that upon using (5.51) the remaining equation of motion

d ∗ K = 0 is automatically satisfied, and that the field strength K is fully traceless.

6 Conclusions

We have seen how the equations of motion for integer spin partially massless fields can be

recovered from imposing equations on gauge-invariant curvature tensors. The benefit of

this formulation is that it allows us to see the D = 4 electric-magnetic-like duality of these

theories in a manifestly local and de Sitter covariant form. However, it should be noted

that writing the equations of motion in duality covariant form, though suggestive, does

not by itself establish duality invariance of the action. The 3+1 formulation of [30], on the

other hand, shows invariance of the action, at the unavoidable price of losing manifest de

Sitter invariance.

Writing the equations in duality covariant form complements the 3+1 analysis, and in

particular paves the way for us to introduce magnetic sources, which cannot be introduced

locally into the action. For massless and massive higher spins, monopole solutions were

constructed in [78–81]. It would interesting to see if the electric and magnetic monopole

solutions of the PM spin-2 case [25] generalize to the higher spins.

There are various extensions and generalizations which naturally present themselves. It

would be interesting to construct gauge invariant actions for higher spin and depth partially

massless fields utilizing these metric-like curvature tensors or Fronsdal tensors. Such a

construction is known for the spin-2 case [76], but it is likely that the higher-spin analogues

will require introduction of auxiliary fields, as the known actions for massive higher spins

require such auxiliary fields. In [10], Skvortsov and Vasiliev give a construction of actions

for similar curvature tensors in the frame-like formulation, which from the point of view of

the metric formulation contains many auxiliary and Stückelberg-like fields. More generally,
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it would be interesting to further elucidate the relationship between the curvature tensors

constructed here and those of [10]. In particular, the EM duality should act in a very simple

way in the frame-like formulation, by dualizing the form indices of the curvature tensors.

We have considered here only bosonic higher spin fields. There appears to be no ob-

struction to constructing similar gauge invariant curvatures for fermionic partially massless

fields [1, 2, 5, 6, 8, 31], or for mixed symmetry fields [82] which can also possess partially

massless points [4, 11, 83, 84]. Some technical issues that might be interesting to investigate

include proving curved space versions of the generalized Poincaré lemmas of [46, 72, 74].

Additionally, we have not provided an explicit construction of the PM Fronsdal-type [54]

tensors for all depths and spins — an explicit expression for these tensors may shed some

light onto the problem of constructing explicit actions from these curvature tensors.

Moving beyond the linear case, one intriguing possible application is to attempt to

construct non-Abelian theories of partially massless fields. Similar to the construction

of Yang-Mills [85] or the Fradkin-Vasiliev procedure [86, 87] (see e.g., [88, 89]), it might

be possible to construct generalizations of these linear field strengths which are invariant

under non-linear symmetries. Some work along these directions appears in [69, 70, 90, 91].

In the spin-2 case, this does not appear to be possible [29], but the question for higher

spins remains open. It would be interesting to understand what becomes of duality in

interacting situations; some work along these lines has been done in [26], who construct

non-linear equations of motion in the depth t = 0 case, using duality invariance as a

guiding principle. The generalization of these arguments to the higher-depth cases might

be of interest.
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A Off shell spin-3

Here we consider the full off-shell Lagrangian for a spin-3 field propagating on a maximally

symmetric space of nonzero curvature, showing how the on-shell equations of motion (2.1)

and the partially massless points (2.3) arise. The equations of motion and gauge invariances

for this case are also studied in [5, 6, 75]. Spin-3 is the simplest example where the field

exhibits multiple partially massless depths in addition to the ordinary massless point. The
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Lagrangian for a massive spin-3 propagating on a maximally-symmetric space is19

L =− 1

2
∇µbναβ∇µbναβ +

3

2
∇µbµαβ∇νb

ναβ − 3∇µb α
να ∇βbβµν +

3

2
∇µb α

να ∇µb
νβ
β

+
3

4
∇µbµαα∇νb

νβ
β −

1

2
m2
(
bµναb

µνα − 3b α
µα b

µβ
β

)
− 3(D − 2)

2D
mh∇µbµνν +

3(D − 2)(D − 1)

2D2
(∇h)2 +

9

4
m2h2

+
(D − 1)H2

2

(
D − 3

D − 1
bµνρb

µνρ − 6b α
µα b

µβ
β − 9h2

)
. (A.1)

The dynamical variables are the symmetric, trace-ful, spin 3 field bµνρ, and a scalar field,

h, which will end up being non-dynamical but is necessary in order to obtain the correct

degrees of freedom for a spin 3.

This Lagrangian possesses 3 special values of the mass, m. The first is m = 0, cor-

responding to a massless spin-3 (t = 2). In this case, the scalar field h decouples and we

acquire the Fronsdal gauge symmetry

δbµνρ = ∇(µΛνρ) , (A.2)

where the gauge parameter is symmetric and traceless: Λ[µν] = Λµµ = 0. This symmetry

removes the helicity-0, helicity-1 and helicity-2 polarizations, leaving only the massless

helicity-3.

The next special mass value is the t = 1 partially massless point,

m2 = DH2 . (A.3)

At this point the field has a vector gauge symmetry20 with gauge parameter ξµ,

δbµνρ = ∇(µ∇νξρ) −
1

D
g(µν∇ρ)∇αξα +H2g(µνξρ) ,

δh = −1

3

√
DH2∇µξµ . (A.4)

This symmetry removes both the helicity-0 and helicity-1 polarizations.

The final special mass value is the t = 0 partially massless point

m2 = 2(D − 1)H2 . (A.5)

At this value of the mass, there is a scalar gauge symmetry with gauge parameter χ, which

acts as

δbµνρ = ∇(µ∇ν∇ρ)χ−
1

D
g(µν∇ρ)�χ+

2(D − 1)H2

D
g(µν∇ρ)χ , (A.6)

δh = −1

3

√
2(D − 1)H2

(
� + 2(D + 1)H2

)
χ , (A.7)

and removes the helicity-0 polarization.

19This Lagrangian can be obtained by performing a radial dimensional reduction of a massless spin-3

field in (D + 1)-dimensions [67, 92].
20Note that in the AdS case where H2 → − 1

L2 (with L the AdS radius) the square roots in (A.4), (A.7)

become imaginary. In this case we must also replace h→ ih, which keeps the Lagrangian real.
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A.1 Stückelberg and decoupling limit

An elegant way to understand the nature of these partially massless points is to employ

the Stückelberg trick. The gauge symmetry (A.2) of the massless theory is broken by

the presence of the mass terms in (A.1), but can be restored by introducing Stückelberg

fields hµν , Aµ, φ (with hµν symmetric and trace-ful), associated to the helicity 2, 1 and 0

components respectively, through the replacement21

h 7−→ mh+
m3

3
φ+m∇µAµ −

m

3
�φ (A.8)

bµνρ 7−→ bµνρ − 3∇(µhνρ) −
3

D
η(µν∇ρ)h+ 3∇(µ∇(νAρ)) (A.9)

− 3

D
η(µν∇ρ)∇αAα −∇(µ∇ν∇ρ)φ−

1

D
η(µν∇ρ)�φ+

m2

D
η(µν∇ρ)φ .

In order to isolate the individual helicity components, we take the decoupling limit

m→ 0 , H → 0 ,
m

H
→ fixed . (A.10)

Additionally, we perform the following two field redefinitions to diagonalize the b, A and

h, φ mixing:

bµνρ 7−→ b′µνρ −
3

D
H2g(µνAρ) , (A.11)

hµν 7−→ h′µν −m2 1 + 2H2

3m2 (D + 1)

(D − 2)
gµνφ , (A.12)

and we keep the canonically normalized fields

b̂ ∼ b, ĥ ∼ mh, Â ∼ m2A, φ̂ ∼ m3φ, (A.13)

fixed as we take the limit. After all of these manipulations, the Lagrangian (A.1) becomes

a flat space Lagrangian and takes the following form

L=− 1

2
∂µb
′
ναβ∂

µb′ναβ+
3

2
∂µb
′µ
αβ∂νb

′ναβ−3∂µb
′ α
να ∂βb

′βµν+
3

2
∂µb
′ α
να ∂

µb′
νβ
β+

3

4
∂µb
′µα
α∂νb

′νβ
β

+ 3m2

(
−1

2
∂λh

′
µν∂

λh′µν + ∂µh
′
νλ∂

νh′µλ − ∂µh′µν∂νh′ +
1

2
∂λh

′∂λh′
)

− 3(D + 1)

4D
m2(m2 −DH2) (∂µAν − ∂νAµ)2

+
(D + 1)

2(D − 2)
m2(m2 −DH2)(m2 − 2(D − 1)H2)φ�φ , (A.14)

and is invariant under the linear gauge symmetries:

δb′µνρ = ∂µλ
T
νρ + ∂νλ

T
ρµ + ∂ρλ

T
µν , (A.15)

δh′µν = ∂µλν + ∂νλµ , (A.16)

δAµ = ∂µλ , (A.17)

where λTµν is a symmetric, traceless gauge parameter.

21In this replacement, the auxiliary scalar field becomes the trace of the Stückelberg field hµν , i.e., what

we are doing is to introduce a traceless symmetric tensor field as a Stückelberg and then package the

original auxiliary field as the trace of this tensor field. This Stückelberg replacement emerges naturally

from dimensional reduction, see e.g., [93].
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Figure 1. Partially massless lines and regions for spin 3. Modes pass between being healthy and

ghostlike as the partially massless lines are crossed.

The action (A.14) is now a flat-space action for massless fields of helicity 3, 2, 1, 0, all

decoupled from each other. We see manifestly the three partially massless points; these are

the points where kinetic terms for the various helicity components vanish. Furthermore,

for any value of m
H we can determine each component’s unitarity/ghostliness from the sign

in front of the kinetic terms. At the depth t = 0 line, m2 = 2(D − 1)H2, the scalar degree

of freedom drops out of the Lagrangian. Similarly, at the t = 1 line m2 = DH2, both the

scalar and vector polarizations are removed, and at m2 = 0 the helicity 0, 1, 2 components

are all removed. These points mark the boundaries between healthy and ghost-like regions

for the various helicity components, see figure 1. In particular, we see immediately that on

dS all components are healthy only for m2 ≥ 2(D − 1)H2 (the Higuchi bound [3] for spin

3), with the exception of the partially massless and massless points, which are also healthy.

On AdS, all components are healthy only for m2 ≥ 0; the massless point is healthy and

the partially massless points are ghost-like. In general, for all spins s ≥ 1, the partially

massless cases, t < s − 1, are healthy on dS and ghostly on AdS, whereas the massless

cases, t = s− 1, are healthy on both dS and AdS.

A.2 Equations of motion

Here we derive the equations of motion from the spin-3 Lagrangian (A.1) and show that

they reproduce the general on-shell equations (2.1). Denoting the Euler-Lagrange derivative

of (A.1) with respect to bµνρ as Eµνρ, it is convenient to work with the trace-reversed
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equations of motion

Gµνρ ≡ Eµνρ −
3

D
η(µνE α

ρ)α (A.18)

=
(
�−m2 + 4DH2

)
bµνρ + 3∇(µ∇νb α

ρ)α − 3∇α∇(µbνρ)α −
3

D
m2g(µνb

α
ρ)α

− 3(D − 2)

D2
mg(µν∇ρ)h = 0 .

The trace-free divergence, which vanishes in the massless theory by the Bianchi identity

associated to the gauge invariance, is proportional to the mass in the massive theory

∇ρEρ(µν)T =m2

(
2∇(µb

α
ν)α −∇

αbαµν−
1

D
gµν∇αbαββ

)
+

(D − 2)

D
m

(
∇µ∇νh−

1

D
gµν�h

)
= 0. (A.19)

We also have the h equation of motion:

H ≡ δL
δh

=
9

2

(
m2 − 2(D − 1)H2

)
h− 3(D − 2)

2D

(
2(D − 1)

D
�h+m∇µbµαα

)
= 0 . (A.20)

Taking the following combination

∇ν∇ρEρ(µν)T −
m2

2
G α
µα +

m

3
∇µH = 0 , (A.21)

yields the following constraint equation,

(D + 1)

D

(
m2 −DH2

)(
m2b ν

µν +
2(D − 1)

D
m∇µh

)
= 0 , (A.22)

which implies that (except when m2 = DH2)

b ν
µν = −2(D − 1)

mD
∇µh . (A.23)

Plugging this back into (A.20) we find

9

2

(
m2 − 2(D − 1)H2

)
h = 0 , (A.24)

from which we deduce that (except when m2 = 2(D − 1)H2)

h = 0 , (A.25)

and therefore, using (A.23),

b ν
µν = 0. (A.26)

Using (A.25) and (A.26) in (A.19) implies that (except when m2 = 0)

∇µbµνρ = 0. (A.27)
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Now, putting this all together in Gµνρ we obtain (note that we have to commute some ∇s

to use the divergence-free condition)(
�−m2 + (D − 3)H2

)
bµνρ = 0. (A.28)

So we see that all together, the equations of motion following from (A.1) are(
�−m2 + (D − 3)H2

)
bµνρ = 0 , ∇µbµνρ = 0 , b ν

µν = 0 , h = 0 . (A.29)

Note that this procedure breaks down at precisely the partially massless and massless

points

m2 = DH2 , m2 = 2(D − 1)H2 , m2 = 0 . (A.30)

We now proceed to treat the partially massless points separately.

A.2.1 t = 0 partially massless point

At the partially massless point m2 = 2(D − 1)H2, the procedure outlined above does

not quite work because (A.24) vanishes identically, which is nothing but the Noether

identity associated with the partially massless gauge symmetry (A.6). We can still com-

bine (A.18), (A.19) and (A.20) as in (A.21) to obtain a relation between b ν
µν and ∇µh:

b ν
µν = −

√
2(D − 1)

DH
∇µh , (A.31)

and plug this constraint back into (A.19) and (A.18) to obtain:

∇ρEρ(µν)T =
(3D − 2)

2(D − 1)
∇(µb

α
ν)α −∇

αbαµν −
1

2(D − 1)
gµν∇αb β

αβ = 0 , (A.32)

Gµνρ =
(
� + 2(D + 1)H2

)
bµνρ + 3∇(µ∇νb α

ρ)α − 3∇α∇(µbνρ)α − 3H2g(µνb
α

ρ)α = 0 .

(A.33)

Now, we can use the PM gauge symmetry (A.7) to gauge fix h = 0, which leaves a residual

gauge symmetry satisfying (
� + 2(D + 1)H2

)
χ = 0 . (A.34)

In this gauge, we then have from (A.31) that b is traceless,

b ν
µν = 0, (A.35)

and (A.32) then tells us that b is divergenceless,

∇ρbρµν = 0, (A.36)

so we arrive at the following equations of motion(
�− (D + 1)H2

)
bµνρ = 0, ∇µbµνρ = 0 , b α

µα = 0 , h = 0 , (A.37)

which are invariant under the residual scalar gauge symmetry

δbµνρ = ∇(µ∇ν∇ρ)χ+ 4H2g(µν∇ρ)χ , with
(
� + 2(D + 1)H2

)
χ = 0. (A.38)

Note that we have used (A.34) in (A.6) to arrive at (A.38). This recovers the on-shell

equations (3.42) and gauge symmetries (3.43).
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A.2.2 t = 1 partially massless point

At the partially massless point m2 = DH2, the theory possess the vector gauge invari-

ance (A.4). We first use this gauge symmetry to gauge fix

h = 0 , (A.39)

by solving the first order equation h + δh = h − 1
3

√
DH2∇µξµ = 0 for ξµ. This leaves a

residual gauge symmetry which consists of any ξµ satisfying the homogeneous part of the

equation, ∇µξµ = 0.

Taking the trace of the bµνρ transformation (A.4), and using the residual gauge condi-

tion ∇µξµ = 0, we learn that the trace transforms as

δb ν
µν =

1

3

(
� + (1 + 2D)H2

)
ξµ. (A.40)

We want to reach a gauge where b ν
µν = 0. To do this, we must solve b ν

µν + δb ν
µν = 0

for ξµ within the space of ξµ satisfying ∇µξµ = 0. This can be done, because taking a

divergence, we find the source ∇µb ν
µν which vanishes by the h equation of motion (A.20)

in the gauge h = 0, and so the equation is consistently transverse. Thus, by solving the

wave equation (A.40) for ξµ, we can reach a gauge where

b ν
µν = 0 , (A.41)

after which there is a residual transverse gauge parameter which satisfies the homogeneous

part of (A.40) (
� + (1 + 2D)H2

)
ξµ = 0. (A.42)

Plugging the gauge choice (A.41) into (A.19) using the gauge (A.39) then tells us

∇ρbρµν = 0. (A.43)

Finally, after plugging (A.41), (A.43) into (A.33), we obtain a Klein-Gordon equation

for bµνρ, and the equations of motion reduce to(
�− 3H2

)
bµνρ = 0 , b ν

µν = 0 , ∇ρbρµν = 0 , h = 0, (A.44)

where there is the residual gauge symmetry

δbµνρ = bµνρ = ∇(µ∇νξρ) +H2g(µνξρ),
(
� + (1 + 2D)H2

)
ξµ = 0 , ∇µξµ = 0, (A.45)

matching (4.48), (4.49).
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