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Despite clear evidence that manifest variable path analysis requires highly reliable measures, path
analyses with fallible measures are commonplace even in premier journals. Using fallible measures in
path analysis can cause several serious problems: (a) As measurement error pervades a given data set,
many path coefficients may be either over- or underestimated. (b) Extensive measurement error
diminishes power and can prevent invalid models from being rejected. (c) Even a little measurement error
can cause valid models to appear invalid. (d) Differential measurement error in various parts of a model
can change the substantive conclusions that derive from path analysis. (e) All of these problems become
increasingly serious and intractable as models become more complex. Methods to prevent and correct
these problems are reviewed. The conclusion is that researchers should use more reliable measures (or
correct for measurement error in the measures they do use), obtain multiple measures for use in latent
variable modeling, and test simpler models containing fewer variables.
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Using path analysis to model relations among manifest (not
latent) variables carries the assumption that the measures are
reliable manifestations of the constructs they represent (Bollen,
1989). Methodologists have described a variety of problems that
can emerge when this assumption is not met (e.g., Bollen, 1989;
James, Mulaik, & Brett, 1982; Kenny, 1979; Ledgerwood &
Shrout, 2011; Rigdon, 1994; Rubio & Gillespie, 1995; Wansbeek
& Meijer, 2000). Nevertheless, our review of the literature reveals
that the publication of path analyses with fallible variables remains
quite common, even in premier journal outlets (we elaborate on
this point in the following section). In the current article, we
demonstrate that even modest amounts of measurement error1 can
lead to substantial overestimation of some path coefficients, sub-
stantial underestimation of other path coefficients, and significant
evidence of model misspecification even when the model perfectly
represents the true relations among the underlying constructs.2 We
demonstrate that these problems exist in very simple models but
become more serious, more numerous, and less tractable as models
become more complex.

This article has six parts. First, we conduct a brief literature
review showing the prevalence of manifest variable path analysis
across our discipline. Second, using a concept we call the “fallible
triangle,” we provide an intuitive explanation of the reasons why
measurement error affects manifest variable path analyses so pro-
foundly. Third, we develop a general method for understanding

over- and underestimation in complex models. Fourth, we examine
the effect of measurement error on goodness-of-fit. Fifth, we
highlight these points with an example. Finally, we review some of
the methods available for coping with such problems.

The Prevalence of Path Analyses: Literature Review

Path analyses with fallible variables are relatively common in
the behavioral sciences. To document the extent to which path
analyses are used across a wide range of psychological subdisci-
plines, we reviewed the recent issues of seven major American
Psychological Association journals: Developmental Psychology,
Health Psychology, Journal of Abnormal Psychology, Journal of
Applied Psychology, Journal of Educational Psychology, Journal
of Family Psychology, and Journal of Personality and Social
Psychology. Across 44 issues published in 2011, we found 91
articles that reported results of at least one path analysis; that is,
11.7% of the publications in these journals included path analysis,
for an average of more than two manifest variable path analytic
articles per issue (see Table 1). In this review, we excluded articles
that used multiple regression analyses that were not embedded in
a larger path analytic framework (even though multiple regression
is itself a special case of path analysis); consequently, our numbers
underestimate the actual prevalence of path analysis with fallible
measures.

1 Throughout this article, we use the term measurement error to refer to
random and normal measurement error, not systematic or nonnormal
measurement error (which may have different implications that are also
worthy of study).

2 Throughout, we assume that all path coefficients are non-negative. In
this context, the words attenuation and underestimation refer to the shrink-
age toward zero of path coefficient estimates due to measurement error.
The words inflation and overestimation refer to the expansion away from
zero of path coefficient estimates.
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Calculating the effects of measurement error in these articles is
difficult because approximately 64% of the articles were missing
reliability information for at least one of the modeled variables. Of
the 535 modeled variables for which reliabilities were reported, the
median reliability was 0.84; however, 33.6% had reliabilities less
than 0.80, and 8.3% had reliabilities less than 0.70. Although many
of these values may not seem particularly low, our later analyses
show that reliabilities as large as 0.80 and even 0.90 can be cause
for concern. In no case did authors attempt to utilize any procedure
to correct for measurement error (Bollen, 1989; Coffman & Mac-
Callum, 2005; Kishton & Widaman, 1994; Little, Cunningham,
Shahar, & Widaman, 2002; Stephenson & Holbert, 2003). In
approximately 13% of the articles, a path analysis contained a mix
of manifest and latent variables, creating the potential for large
reliability differences in various parts of the model. (Models in
which all manifest variables loaded onto latent variables were not
included in this review.) The number of manifest variables per
model was highly variable, ranging from as few as two or three to
as many as 16 or 18 in some journals (see Table 1). The overall
mean was 6.1 manifest variables per model (SD � 3.4). In general,
articles that had more variables in their most complex model
included measures with lower reliabilities (r � –.31, p � .005,
n � 91 studies). In a nutshell, manifest variable path analyses are
very common and typically are conducted without correction for
measurement error (and often without all of the necessary infor-
mation to conduct such corrections after the fact).

Why Measurement Error Affects Path Analyses

In this section, we explain how measurement error can simul-
taneously inflate and attenuate estimates of certain path coeffi-
cients in manifest variable path analyses and why this problem gets
worse as models become more complex. In this section and
throughout the article, we focus primarily on standardized path
coefficients. We made this decision in large part because virtually
all of the published applications of path analysis that we reviewed
focused on the interpretation of standardized path coefficients,
often to the complete exclusion of unstandardized coefficients.
Although much of what we say in this article generalizes to the
unstandardized case, some things do not (see Blalock, 1964; Dun-
can, 1975; Kenny, 1979). Broader arguments about the advantages
and disadvantages of focusing on standardized versus unstandard-
ized coefficients have been well articulated elsewhere (Baguley,
2009; Greenland, Schlesselman, & Criqui, 1986; Kim & Ferree,

1981; G. King, 1986). Our choice to concentrate primarily on the
standardized case is based upon current practices and should not be
taken as an endorsement of one method over the other.

The Fallible Triangle Problem

Measurement error can lead to the spurious underestimation of
some paths and to the spurious overestimation of others.3 To show
this, let us begin with Model 1a, in which F is a function of D and
E, and E is a function of D (as shown in Figure 1). If D, E, and F
were measured perfectly (i.e., if they were error-free latent vari-
ables), their correlations would be rDE � 0.40, rDF �
0.40, and rEF � 0.58. From these, the standardized path coeffi-
cients between the latent variables can be calculated:

�ED � rDE � 0.40, (1)

�FE·D � (rEF � rDFrDE) / (1 � rDE
2 ) � 0.50, and (2)

�FD·E � (rDF � rEFrDE) / (1 � rDE
2 ) � 0.20. (3)

For the purposes of this article, we refer to the relations among D,
E, and F as a triangle (for obvious reasons). Actually, this is an
“infallible” triangle because D, E, and F are measured without
error (i.e., D, E, and F may be considered latent variables).

If any or all of these three variables were not perfectly mea-
sured, then we would refer to the model as a fallible triangle. In
fallible triangles with at least one dependent variable, measure-
ment error in one of the independent variables can spuriously
inflate the path connecting the other two variables. This fact is well
documented, albeit rarely mentioned in empirical articles involv-
ing such analyses (Hoyle & Kenny, 1999; Kenny, 1979; Rigdon,
1994; Wansbeek & Meijer, 2000; Wolfle, 1979, 1980). A classic
example of path coefficient inflation occurs in mediation models
(Hoyle & Kenny, 1999; Ledgerwood & Shrout, 2011). To see this,
let us imagine that any one of the three latent variables (D, E, or
F) might be represented by a fallible version of itself (D=, E=, or F=,
respectively). Let us further imagine that each fallible measure
correlated 0.7 with (or loaded 0.7 onto) its corresponding latent
variable. When the mediator is measured with error but the other

3 Throughout this article (unless explicitly stated otherwise), we assume
unidimensional, reflective indicators (i.e., each indicator taps only one
underlying construct) such that the reliability of each measure represents its
proportion of true-score variance.

Table 1
Papers Using Manifest Variable Path Analyses, Published in Seven 2011 Journals

Journal
No. of journal

issues reviewed
No. of articles

reviewed
No. of articles with

path analyses
Average no. of manifest

variables per model
Range of manifest
variables per model

Developmental Psychology 6 155 10 6.75 2–13
Health Psychology 6 93 11 4.43 2–16
Journal of Abnormal Psychology 4 93 9 7.17 2–18
Journal of Applied Psychology 6 93 14 6.04 3–11
Journal of Educational Psychology 4 63 7 7.60 3–18
Journal of Family Psychology 6 108 14 7.95 2–14
Journal of Personality and Social

Psychology 12 174 26 5.51 3–13
Total 44 779 91
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two variables (D and F) are not, the coefficient representing the
direct effect of D¡F is inflated. For example in our Model 1a,
using only E= to represent E will attenuate two out of three

correlations, rDE�
and rE'F, such that rDE' � rDE�rE'E' � �0.40�

�0.70� � 0.28 and rE'F � rEF�rE'E' � �0.58��0.70� � 0.406.
When rDE' and rE'F replace rDE and rEF in Equation 3, �FD·E' is
estimated to be �0.40 � 0.406 * 0.28� / �1 � 0.282�, or 0.311
instead of 0.20. In analogous fashion, using only D= to measure D
will inflate the E¡F path estimate from 0.50 to 0.54. Depending
upon the sample size, increasing measurement error could inflate
estimates from nonsignificant to statistically significant levels.

More often acknowledged in empirical articles is the fact that
estimates of correlations and path coefficients can also be attenu-
ated by measurement error (e.g., Blalock, 1965; Hoyle & Kenny,
1999; Ledgerwood & Shrout, 2011). In our Model 1a, if D were
measured only by D= (but E and F remained error-free), both
rD'F and rD'E would underestimate rDF and rDE, respectively (i.e.,
both correlations would be 0.28 not 0.40). Consequently, the D¡E
path estimate would drop from �ED � 0.40 to �ED' � 0.28,
and the D¡F path estimate would drop from �FD·E � 0.20 to
�FD'·E � �0.28 � 0.58 * 0.28� / �1 � 0.282� � 0.13. Alternatively,
if E were measured only by E= (but D and F were error-free),
rDE and rEF would be underestimated by rDE' � 0.40 * 0.70�0.28
and rE'F � 0.58 * 0.70�0.406, respectively, which would then at-
tenuate the D¡E path from �ED � 0.40 to �E'D �
0.40 * 0.70� 0.28 and the E¡F path from �FE � 0.50 to
�FE'·D � �0.406 � 0.40 * 0.28� / �1 � 0.282� � 0.319. Finally, if F
were measured by only F= (but D and E were error-free), then
rEF�0.58 would drop to rEF'�0.58 * 0.70�0.406 and rDF �
0.40 would drop to rDF'�0.40 * 0.70�0.28, which would then
attenuate the E¡F path from �FE·D � 0.50 to �F'E·D � 0.50
�0.406 � 0.28 * 0.40� / �1 � 0.402� � 0.35 and the D¡F path
from �FD·E � 0.20 to �F'D·E � 0.20�0.28 � 0.406 * 0.40� / �1 �
0.402� � 0.14. Depending upon sample size, increasing measure-
ment error could attenuate some of these estimates from significant
to nonsignificant levels.

We can think of unreliability in any single variable as applying
“pressure” on the estimation method to inflate or attenuate certain
path coefficients in the model. When multiple variables in the

model are fallible, multiple inflationary and/or attenuating pres-
sures can simultaneously affect some path coefficients. Graphi-
cally, we depict each of these pressures with small upward and
downward arrows adjacent to each of the paths in Model 2 (see
Figure 2). The arrows are subscripted to indicate which pressure is
driven by unreliability in which variable. (Similar things happen in
models where fallible indicators of D and E are only correlated and
not connected by a directional path.)

Implicit Fallible Triangles

Fixing certain path coefficients to zero does not eliminate fal-
lible triangles; it just makes their effects more insidious. We call
triangles in which one or more paths are fixed to zero “implicit
fallible triangles” (to distinguish them from “explicit triangles” in
which all three paths are free). Although fixing a path to zero
(obviously) eliminates the possibility of its being overestimated, it
does not eliminate the pressure to do so. Let us imagine Model 1b
in Figure 1 in which the mediator E completely explains the
relation between D and F when all variables are latent. For exam-
ple, rDF � �ED�FE � 0.50 * 0.60 � 0.30 and �FD � 0. Anticipat-
ing this, the investigator fixes the D¡F path to zero. As shown
above, measuring the mediator with a single fallible measure (E=)
will attenuate estimates of the standardized path coefficients that
represent the indirect effect of D on F through E (�E'D � 0.35 and

�FE'·D �
0.42��0.35��0.30�

1�0.352 � 0.39886), so that their product

(0.35 * 0.39886 � 0.1396) will no longer explain the 0.30 corre-
lation between latent D and latent F. The difference between
0.1396 and 0.30 cannot be resolved by inflating the direct effect of
D on F, as that path is fixed to zero. Instead, the discrepancy
generates evidence of specification error and model misfit. Post
hoc diagnostics must point to the fixed D¡F path as the source of
the problem, as it is the only constrained path. If the investigator
were to relax this constraint, the path coefficient would then be
inflated relative to its original (and proper) value of zero. Conse-
quently, the investigator will end up with either a free but inflated
path coefficient or a model that fits poorly. Under some circum-
stances, estimates of truly zero path coefficients can be inflated
sufficiently to become statistically significant.

Generalizations About Complex Models

In this section, we first describe how the pressures to inflate or
attenuate paths proliferate when models contain more variables

A 
0.20

0.40 0.50

FD

E

B 
0

0.50 0.60

FD

E

Figure 1. A. Model 1a: Path diagram with standardized path coefficients
that assume D, E, and F are measured without error. B. Model 1b: Path
diagram where E completely explains the correlation between D and F.

D1 F1

E1

a

b c

a:  �E1  �D1  �F1

b:  �D1  �E1 

c:  �D1  �E1  �F1

Figure 2. Model 2: An explicit fallible triangle, where the up and down
arrows signify the susceptibility of standardized path coefficients to over-
and underestimation, respectively, due to measurement error in the variable
designated in the subscript.
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and more paths. Second, we present a collection of principles that
highlight how problems of parameter over- and underestimation
become more numerous and more severe as models become in-
creasingly complex.

Model Complexity Makes Matters Worse

In this section, we show that the pressures exerted by mea-
surement error to over- and/or underestimate path coefficients
can become more numerous, more serious, and less tractable as
models become more complex. This happens in part because the
paths in more complex models are likely to be part of a larger
number of fallible triangles, each of which represents a vehicle
for its over- and/or underestimation. In Figure 3, consider
several increasingly complex examples, culled from recently
published articles. Model 3a has four variables with four falli-
ble triangles (three of which are implicit).4 Model 3b has five
variables with 10 fallible triangles (six of which are implicit).
Model 3c represents a six-variable model with 20 fallible tri-
angles (19 of which are implicit). The maximum number of
fallible triangles among p variables can be calculated as the
number of ways p things can be grouped r-at-a time, where
r � 3 (for the three variables in a triangle), using the formula
for combinations: C�p,r� � p! / �r!�p � r�!� � p! / �3!�p �

3�!�, in general. Examining the small over- and underestimation
arrows in Figure 3 reveals that increasing the complexity of a
model renders more paths susceptible to more inflation and
attenuation effects.

Parameter Estimation

In this section, we unpack several principles that are generally
true about the effect of model complexity on the inflation and
attenuation of path coefficients. The first pertains to models that
contain correlational paths between two or more exogenous man-
ifest variables. For such correlational path coefficients, only un-
derestimation is possible. When two manifest exogenous variables
are simply correlated with each other, no other variable affects the
path that connects them; consequently, their correlation cannot be
affected by measurement error in any other variable in the model.
Nevertheless, these correlational paths will be underestimated as a
result of measurement error in either or both of these variables.
One way that models can become increasingly complex is by
inclusion of a larger number of purely exogenous variables,
thereby increasing the number of correlational paths that are sub-
ject to underestimation. If we think of these correlations as two-
variable combinations of k exogenous variables, then the number
of potentially underestimated correlations equals the number of
ways k variables can be grouped two-at-a-time: C�k,2� � k! / �2!
�k � 2�!� � k�k � 1� / 2.

Second, directional paths potentially are subject to both under-
and overestimation, depending on the model. Directional paths
connect upstream variables to downstream variables. As models
become more complex, the number of such directional paths is
likely to increase. If m is the number of downstream variables and
k is the number of purely upstream variables, then the total number
of such directional paths in recursive models will equal km (the
number of possible paths from the k upstream variables to the m
downstream variables) plus C(m,2), the number of two-variable
connections among m downstream variables, for a total of km �

m�m � 1� / 2 directional paths. In the interest of parsimony and
theoretical relevance, actual models may not include all such
paths; however, the potential for a larger number of directional
paths clearly grows as either k or m increases.

Third, underestimation of any directional path coefficient occurs
only because of unreliability in the two variables that are con-
nected by the path in question (e.g., Bedeian, Day, & Kelloway,
1997). In general, let Ti represent one of q tracings between a
particular pair of variables in a given model. For example, in
Model 3c, five tracings connect variable G to variable J: T1 �

g, T2 � cbf, T3 � deh, T4 � caeh, and T5 � dabf. In general, the
correlation between two variables like G and J will equal the sum
of these tracings, �GJ � �i�1

q Ti. Here, we partition out the direct
effect g from the rest of the q � 1 tracings:

4 We make several assumptions in our structural model path diagrams:
(a) variables that are vertically aligned are contemporaneous; (b) left-to-
right movement assumes passage of time; (c) relations among contempo-
raneous variables are correlational; and (d) directional relations require the
passage of time. These strictures dictate the kind of implicit or explicit path
that can exist between any two variables.

A

B

C

G

D

F

J

E

H

a

b

c

d

e

f

h

g

Implicit
paths
βHD: �E

βFE: �D

β JD: �F �G �E �H

β JE: �D  �F �G  �H

σFG:  �D

σFH:  �D  �E

σGH: �E

Explicit
paths
a: �D  �E

b: � D �F

c: �E  �D  �G

d:  �D  �E �G

e: �E  �H

f: �D  �E �G �H �F � J

g:  �D  �E �F �H �G � J

h: �D  �E �F �G �H �J

a:  �D   �E

b:  �E   �D   �F

c:  �D   �E  �F

d:  �F

e:  �F  �G

f:   �F

F

D

E

Ga

b

c

d

e

f

G

D

F

HE

a

b

d

c

e

f

i

g

h

j

a:  �D  �E

b:  �D �F

c:  �E �F

d:  �E  �F  �D �G

e:  �D �F  �G �E

f:  �D  �E �F  �G

g: �G

h: �G �H

i: �G

j: �G

Figure 3. Increasingly complex models containing multiple fallible tri-
angles and increasingly complicated patterns of over- and underestimation
(represented by up and down arrows, respectively). Arrows pertain only to
standardized path coefficients, as effects on unstandardized paths are more
complex and vary with the magnitudes of certain covariances. A. Model 3a.
B. Model 3b. C. Model 3c (the seven implicit paths are not depicted to
avoid visual clutter).
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�GJ � g � �
i�1

q�1

Ti. (4)

If G and J are represented by fallible measures (G= and J=), then
their correlation underestimates �GJ according to the classic atten-

uation formula, �G'J' � �GJ��G'G'�J'J', where �G'G' and �J'J' are the
reliabilities of G= and J=, respectively. Substituting Equation 4 into
the attenuation formula yields

�G'J' � (g � �
i�1

q�1

Ti)��G'G'�J'J' (5)

or

�G'J' � g��G'G'�J'J' � �
i�1

q�1

Ti��G'G'�J'J'. (6)

Clearly, the attenuating effects of unreliability in G= and J= are
conveyed directly to path g (as well as the sum of the rest of the
tracings between G= and J=).

Fourth, the overestimation of any directional path is due to the
underestimation of the sum of all valid tracings responsible for the
covariation between the two variables of interest (other than
the tracing that consists of the target path). For example, in Model
3c, overestimation of path g derives from underestimation of the
other four tracings (cbf, deh, caeh, and dabf), the sum of which is

�i�1
q�1 Ti. Let g= and �i�1

q�1 Ti� represent the expected values of g
and �i�1

q�1 Ti when any of the intermediate variables (i.e., D, E, F,
and H but not G or J) in these tracings is measured with error.
Therefore,

�GJ � g' � �
i�1

q�1

Ti
'. (7)

Substituting Equation 4 into Equation 7 gives us

g � �
i�1

q�1

Ti � g' � �
i�1

q�1

Ti
' (8)

and

g' � g � �
i�1

q�1

Ti � �
i�1

q�1

Ti
'.

In other words, path g= will overestimate path g to the exact but
opposite degree that unreliability in D, E, F, and H attenuates the
sum of the other tracings that connect G to J (i.e., the degree to
which �i�1

q�1 Ti� � �i�1
q�1 Ti).

Effect of Measurement Error on Goodness-of-Fit

One might ask whether estimating path coefficients while test-
ing a relatively parsimonious model via structural equation mod-
eling (SEM) would provide clues as to the existence of these
problems and hints as to their resolution. In one small way, the
answer is “yes,” but in two large ways, the answer is “no.” To
explain, we first provide a verbal description of the diverse effects
of measurement error on goodness-of-fit. Then we follow this with
an example (coupled with Monte Carlo simulations) that supports
these claims about the effect of measurement error.

The answer is a small “yes” in that increased measurement error
exerts pressure to incorporate previously “missing” paths into the
model, as demonstrated in our discussion of the inflationary effect

above. When the coefficients for these paths are fixed at zero, this
pressure is manifested in poor fit. The first big “no,” however,
derives from the somewhat disturbing fact that this pressure often
derives from measurement unreliability, not necessarily from the
existence of or need for paths connecting the underlying variables.
For example, in Model 3c, pressure to include the D¡J path
derives from unreliability in E, F, G, and H, not necessarily from
the existence of an effect of true D on true J. Inclusion of such
paths may be necessary to achieve a good fit; however, if they are
significant, these paths will likely be misinterpreted as support for
a true D ¡ true J effect, not as an accommodation of measurement
unreliability in other intermediary variables. Even if researchers
were aware of this possibility, they cannot easily know which
paths are driven by measurement error and which are driven by
substantive connections between the underlying variables. So, the
better answer is “no,” in that the degradation of model fit likely
will be misinterpreted.

A second big “no” derives from the fact that pervasive mea-
surement error can actually improve goodness-of-fit, making mat-
ters even more complicated. As measurement error increases, the
total observed variance for each of the affected measures also
rises; however, the covariances are unaffected. This attenuates the
observed correlations among these variables (Duncan, 1975). As
the observed correlations approach zero and discrepancies between
the model and the data diminish, the implicit paths will be under
less pressure to change; hence, conventional fit indices will pro-
vide evidence of improved fit. In other words, the model appears
to provide a better fit to the data, not because the model explains
more information but because the covariance matrix contains less
information that has to be explained. When measurement error is
pervasive, even serious model misspecification can go undetected.
This problem pertains not only to manifest variable path analysis
but to latent variable models as well, even when measurement
error is accommodated by including unique factors in the mea-
surement model (Hancock & Mueller, 2011; Heene et al., 2011;
Lomax, 1986; Shevlin & Miles, 1998). Thus measurement error
simultaneously results in both the increase and decrease in
goodness-of-fit. The net result of these opposing forces is a func-
tion of model-specific characteristics and the degree of measure-
ment error.

An Example

These general points become clearer with an example. Further,
we can use this example to highlight how differential reliabilities
in various parts of a model can lead to very different conclusions.
Imagine a three-wave, longitudinal study designed to test two
competing theories. Theory I stipulates that X affects Y and that
this relation is partially mediated by A. Theory II also stipulates
that X affects Y, but posits that B partially mediates the relation.
Let us also consider Theory III, which stipulates that Theories I
and II are both true. Based on this, a longitudinal study of medi-
ation is conceived and analyses are planned as depicted in Model
4a (see Figure 4), in which subscripts for the variables denote the
waves or time points in a longitudinal design. At a conceptual
level, this is a good model. Following Cole and Maxwell’s (2003)
recommendations for longitudinal tests of mediation, each predic-
tion of a dependent variable (A2, B2, and Y3) included the
statistical control for prior levels of the same variable (A1, B1, and
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Y1, respectively). Regarding Theory I, the model allows estima-
tion and testing of (a) the direct effect of X1 on A2 controlling for
prior A1, (b) the direct effect of A2 on Y3 controlling for prior Y1

and B2, and (c) the indirect effect of X1 on Y3 via the Time 2
mediator, A2. Likewise for Theory II, the model can be used to
estimate and test (a) the direct effect of X1 on B2 controlling for
prior B1, (b) the direct effect of B2 on Y3 controlling for prior Y1

and A2, and (c) the indirect effect of X1 on Y3 via the Time 2
mediator, B2. Let us further imagine that Theory I and Theory II
are equally valid and that population, standardized path coeffi-
cients would be those represented in the Figure 4 depiction of
Model 4a, if all variables were measured perfectly. The indirect
effect of X1¡A2¡Y3 � .4 � .3 � .12 is equal to the indirect effect
of X1¡B2¡Y3 � .3 � .4 � .12. Furthermore, taken together the
two mediators completely explain that part of the X1¡Y3 relation
not explained by Y1 such that the X1¡Y3 direct effect goes to zero
when true A2 and true B2 are statistically controlled.

The Effects of Pervasive Unreliability on Model Fit

In this section we consider two broad circumstances under
which pervasive unreliability affects model fit. The first is when
the model is correctly specified. The second is when the model
contains modest specification error. We use Model 4a as the basis
for both circumstances.

A correctly specified model. First, we assume that the fixed
and free parameters in Model 4a represent true relations among the
underlying variables. That is, all fixed paths are truly zero in the
population. Admittedly this represents an idealized (and unrealis-

tic) situation, as all models are misspecified to some degree (Mac-
Callum, 2003); however, witnessing the effect of measurement
error on such an idealized model is informative.

As described above, we anticipated that the effects of measure-
ment error on model fit would be complex. On one hand, fixing
path coefficients to zero even when they truly are zero will create
evidence of model misfit as measurement error pervades a set of
variables, as this measurement error can put pressure on fixed
paths to deviate from zero. On the other hand, pervasive measure-
ment error will also diminish the observed correlations, therefore
limiting the size of the discrepancies between the observed corre-
lations and those implied by the model.5 As these discrepancies lie
at the core of almost all goodness-of-fit indices, their reduction
will enable the model (really any model) to fit the data well. To
observe the net results of these opposing effects, we conducted a
Monte Carlo simulation examining the effects of pervasive mea-
surement error on goodness-of-fit in Model 4a at 11 different
levels of reliability, ranging from 1.00 down to 0.00.

For the first level (where reliabilities for all measures were
1.00), we computed a population covariance matrix based on the
path coefficients in Model 4a (see the first seven variables in Table
2). Using Mplus 6.12, we generated 1,000 multivariate normal
samples, each with 200 observations, to which we then fit Model
4a. For each test, we recorded the p value associated with the
chi-square statistic. Across these 1,000 repetitions, we calculated
the probability that the p value was less than .05 (i.e., the proba-
bility that the model generated a statistically poor fit). The result
was a value of .054, very close to the nominal alpha. This value is
plotted in Figure 5 above the x-axis category for reliability � 1.0.
The next 10 simulations were identical to the first except that the
population variances and correlations were changed to reflect
diminishing levels of reliability (i.e., .90, .80, .70, . . . .00). Within
each simulation, we assumed equal reliabilities: �A1'A1' �

�B1'B1' � �X1'X1' � �Y1'Y1' � �A2'A2' � �B2'B2' � �Y3'Y3' � �... The
results are plotted in Figure 5.

The findings are striking. Evidence of two competing trends
emerged. First, as reliability dropped from 1.0 to .50, the likeli-
hood of rejecting Model 4a rose from .054 to .931, despite the fact
that Model 4a is the true model when there is no measurement
error. Even with reliabilities of .90, the likelihood of rejecting the
model was quite high (.391). Second, as reliability continued to
drop from .50 to zero, a second trend predominated; the likelihood
of rejecting Model 4a dropped from .931 down to .074. We
interpret this curve as evidence of two competing processes. At
relatively high levels of reliability, anything less than perfect
reliability requires the inflation of various path coefficients; how-
ever, when these path coefficients are fixed to zero, this inflation-
ary pressure translates into model misfit. At lower levels of reli-
ability, a second process prevails: the overall diminution of the
observed correlations makes the detection of misfit less and less
possible. Our overarching conclusion is that goodness-of-fit infor-
mation will be misleading (in one way or another), as even modest

5 This pertains to models in which overidentification is achieved by
fixing some path coefficients to zero or by imposing various equality
constraints. This may not pertain in the relatively rare case where a model
is overidentified by fixing some path coefficients to values that are not
zero.
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Figure 4. A. Model 4a reflects population path coefficients among true
variables, with subscripts indicating waves or time points in a longitudinal
design. B. Model 4b is a saturated version of Model 4a after adding all
other plausible paths (i.e., the broken arrows), even though the population
coefficients for these paths are zero when all variables are measured
without error.
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amounts of measurement error permeate a properly specified man-
ifest variable path analysis.

A misspecified model. Second, we assumed that the model
does not precisely reflect the actual relations among the underlying
variables; that is, the model is misspecified. Specifically, at least
one fixed path is not truly zero in the population. Under this more
realistic scenario (Cudeck & Browne, 1992; Tucker, Koopman, &
Linn, 1969), we would expect to discover statistical evidence of
poor fit, assuming that we have a large enough sample size. The
effects of measurement error on the power to detect such specifi-
cation error are illuminating.

To demonstrate, we retained the same data-generating model;
however, we modified the fitted Model 4a so that the Y1¡Y3 path
was constrained to zero. We again constructed a set of 11 covari-
ance matrices based on the original Model 4a, each reflecting a
different amount of measurement error. As before, we assumed
�A1'A1' � �B1'B1' � �X1'X1' � �Y1'Y1' � �A2'A2' � �B2'B2' � �Y3'Y3' �
�... We applied the same Monte Carlo methods described above
and obtained the results depicted in Figure 5b. For higher levels
of reliability (�0.40), the power to detect the specification error
was quite good. As reliability diminished, however, the power
to detect the model misspecification dropped precipitously.

The Effect of Pervasive Measurement Error on Power
to Detect Parameter Coefficients

Based on the results in Figure 5a, we would anticipate that
researchers who use measures that contain modest amounts of
error are likely to be faced with evidence of model misfit. Rightly
or wrongly, let us assume that such evidence would lead research-
ers to add theoretically justifiable paths in order to achieve an
acceptable model. Instead of considering all combinations of the-
oretically justifiable model modifications, we elected to add direc-
tional paths from all upstream variables to all downstream vari-
ables, as depicted in Model 4b in Figure 4. (To be clear, we do not
advocate this data analytic strategy but implement it here to
witness key effects in the context of a well-fitting model.) These
additional paths (plus the correlation between the disturbances for

A2 and B2) saturate the model, making goodness-of-fit irrelevant
and providing us the opportunity to examine the coefficients not
only for all of the original paths but also for the plausible post hoc
paths as well. Following the methods described above, we con-
ducted 11 Monte Carlo simulations, one for each of 11 levels of
reliability (assuming �A1'A1' � �B1'B1' � �X1'X1' � �Y1'Y1' �

�A2'A2' � �B2'B2' � �Y3'Y3' � �..). In each, we drew 1,000 multivariate
normal samples, each with N � 200.

Let us consider Theory III to be represented by the seven solid
arrows in Model 4b. Within the constraints of this model, one
could argue that support accrues to Theory III as more and more of
the key seven paths prove to be statistically significant. To witness
the effect of measurement error on this approach, we set alpha to
.05 for each path coefficient and estimated the joint probability that
all seven paths would be statistically significant under conditions
of diminishing measurement reliability. These results are repre-
sented by Line 7 in the power plot of Figure 6. When �.. � 1.0,
power to detect all seven paths was very high (.974); however,
power diminished appreciably with reliability. For reliabilities of
.9, .8, and .7, power was .859, .715, and .589, respectively (as we
slide down Line 7 from right to left), diminishing as reliability was
reduced. We also calculated power to detect partial support for the
theory. Specifically, we calculated the joint probabilities to detect
at least six out of seven paths, at least five out of seven paths, etc.,
down to at least one path. Those results are plotted in Lines 1–6 to
the left of Line 7 in Figure 6. Of course, power for these scenarios
was greater, but all evinced the same basic pattern shown for
Line 7.

Let us now regard the seven broken directional arrows as
representing relations that are contrary to Theory III. In the context
of Model 4b, one might argue that support for Theory III dimin-
ishes as more and more of these seven broken arrows proves to be
significant. In this example, these seven path coefficients truly
would be zero if all variables were measured without error. For
example, if the truly zero X1¡Y3 path were significant, the
theoretical tenet that A2 and B2 completely mediated the X1¡Y3

relation would be spuriously rejected. To examine the effect of

Table 2
Population Correlations Among Variables With and Without Measurement Error for Models 4a and 4b

Variable

Variables without measurement error Variables with measurement error

A1 X1 B1 Y1 A2 B2 Y3 A1= X1= B1= Y1= A2= B2= Y3=

A1 1.000
X1 .600 1.000
B1 .500 .600 1.000
Y1 .500 .500 .500 1.000
A2 .840 .760 .540 .500 1.000
B2 .480 .660 .780 .450 .552 1.000
Y3 .644 .692 .674 .730 .721 .746 1.000

A1= .700 .420 .350 .350 .588 .336 .451 1.000
X1= .420 .700 .420 .350 .532 .462 .484 .294 1.000
B1= .350 .420 .700 .350 .378 .546 .472 .245 .294 1.000
Y1= .350 .350 .350 .700 .350 .315 .511 .245 .245 .245 1.000
A2= .588 .532 .378 .350 .700 .386 .505 .412 .372 .265 .245 1.000
B2= .336 .462 .546 .315 .386 .700 .522 .235 .323 .382 .221 .270 1.000
Y3= .451 .484 .472 .511 .505 .522 .700 .316 .339 .330 .358 .353 .365 1.000

Note. Population variances for A1–Y3 are 1.0; population variances for A1=–Y3= are �2.04.
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measurement error on this aspect of the theory, we assessed the
probability that any of the seven truly nonzero paths would be
erroneously detected as significant under conditions of diminish-
ing measurement reliability. For each level of reliability, we plot-
ted the joint probability that at least one of the seven truly zero
paths was significant (see Line 1 in the Type I error plot in Figure
6). Interestingly, this line mirrors the goodness-of-fit curve in
Figure 5. As reliability drops from 1.0 to around .5, the familywise
Type I error rate increases, reflecting the effect of measurement
error on the overestimation of some truly zero path coefficients. As
reliability drops from .5 to 0, the familywise Type I error rate
decreases, reflecting the generic attenuation effect of measurement

error on the observed correlations. We also calculated the family-
wise Type I error rates for at least two paths, at least three paths,
etc., up to all seven paths. Those lines appear beneath the first one
in the Figure 6 Type I error plot.

The conclusion to be drawn from the two graphs in Figure 6 is
twofold. First, even modest amounts of measurement error (e.g.,
reliabilities of 0.8) can generate nontrivial levels of Type II error,
resulting in a failure to support all aspects of a completely valid
theory. Second, it takes even less measurement error (e.g., reli-
abilities of 0.9) to generate high levels of Type I error, leading to
the spurious “discovery” of relations that do not truly exist when
the variables are measured without error. Following the guidelines
recommended by Nunnally and Bernstein (1994), many research-
ers conduct path analysis (and multiple regression) when reliabili-
ties are only as large as 0.80. We contend that such “high”
reliabilities may actually be too low.

The Effects of Differential Reliability on
Parameter Estimation

In the previous demonstrations, we assumed that measurement
error was evenly distributed throughout the model. Continuing
with our Model 4a example, we now demonstrate how differential
reliability in various parts of a model can lead to very different
conclusions in ways that are not easily anticipated (James et al.,
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Figure 6. A. The probabilities of showing significance for truly nonzero
paths (power). B. The probabilities of showing significance for truly zero
paths (Type I error) in Model 4b.
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significant chi-square statistic) for Model 4a tested against 7 � 7 covari-
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for a modified Model 4a in which the Y1¡Y3 path was constrained to zero.
Thus, A represents Type I error, and B represents power.T
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1982; Kenny, 1979). We begin by assuming again that Model 4a
is the true model and that the path coefficients in Figure 4 repre-
sent the population parameters when all variables are measured
without error. The population correlations among the error-free
variables, A1, X1, B1, Y1, A2, B2, and Y3, are represented in Table
2. If one tested the model using these measures, the model would
fit perfectly and the path coefficients in Model 4a would be
completely recovered. Alternatively, if one had an imperfect mea-
sure of every construct in the model (such that each measure
correlated 0.7 with its construct), then the expected correlations
would be those displayed in Table 2 for the variables A1

= , X1
= , B1

= ,
Y1
= , A2

= , B2
= , and Y3

= .6

First, we examined the effects of measurement error in only one
variable at a time. That is, we calculated the expected values for all
parameter estimates when six variables were measured perfectly
and only one variable was measured with error. As in the previous
section, we based these calculations on analyses of the fully
saturated Model 4b to prevent bias due to model misspecification.
These results appear in Table 3. Boldface values are over- or
underestimates relative to what the standardized coefficients
would have been had the variables been measured perfectly. Sev-
eral key findings emerged.

1. Measurement error in any single variable caused inflation
or attenuation of multiple parameters. Depending on
which variable contained measurement error, the number
of affected parameters ranged from three to 12 (including
the correlation between the disturbance terms for A2 and
B2).

2. Measurement error in any particular variable always re-
sulted in the attenuation of paths that involved that vari-
able, unless the true coefficient for that path was already
zero.

3. In almost every case, fallibility in even one variable
resulted in the inflation of a path coefficient that was
truly zero, a condition that would have suggested the
spurious addition of at least one path to the original
model. (The exception was when Y3 was the fallible
variable because a purely endogenous variable cannot
explain correlations among exogenous variables.)

4. The absolute sizes of the over- and underestimations
were often quite large, depending on the fallible variable
and the target path. In Table 3, relatively large deviations
(e.g., � 0.15) occurred 25 times.

5. For some of the directional paths, the direction of bias
switched depending on which variable was fallible (e.g.,
the X1¡A2 and the X1¡B2 paths).

6. Depending on which variable was fallible, erroneous
estimation of the indirect effects led to very different
theoretical conclusions: (a) Support for Theory I could be
either spuriously enhanced or spuriously diminished by
over- or underestimating the indirect effect through A2,
while leaving the indirect effect through B2 untouched.
(b) Support for Theory II could be either spuriously
enhanced or diminished by over- or underestimating the

indirect effect through B2, while leaving the indirect
effect through A2 unaffected. (c) Support for both theo-
ries could be diminished by underestimation of the indi-
rect effects through both A2 and B2. Only when Y1 was
the fallible variable was support for both indirect effects
unbiased (because in this model Y1 has no direct effect
on either the A2 or B2 mediator).

7. Saturating the model with all theoretically defensible
paths failed to eliminate problems of over- and
underestimation.

Second, we examined the over- and underestimation that re-
sulted when two variables contained measurement error. We fo-
cused on six two-variable combinations (A2 and B2, X1 and Y3, A1

and Y1, B1 and Y1, A1 and B2, B1 and A2) instead of testing all 21
combinations. The results were again dramatic (see Table 4).

1. Altogether more parameters were misestimated than
when only one variable was fallible. Across the seven
examples, the number of affected parameters ranged
from three to 15 (including the correlation between the
disturbance terms for A2 and B2).

2. Among the affected parameters, instances of underesti-
mation were greater in Table 4 than in Table 3 (where
only one variable was fallible).

3. Nevertheless, every case resulted in multiple instances in
which a truly zero path coefficient was overestimated.

4. The magnitude of the distortion was often quite large. In
Table 4, relatively large distortions (e.g., 	 �.15 or �
.15) occurred 39 times.

5. Impact on the indirect effects was profound. In the first
two cases, both indirect effects were substantially under-
estimated, virtually eliminating any support for either
Theory I or Theory II. In the next two cases, one indirect
effect was substantially overestimated while the other
remained unaffected. In the last two cases, one indirect
effect was overestimated while the other was underesti-
mated, generating spurious support for one theory over
the other, purely as a function of which variables con-
tained error.

Finally, we considered cases where three or more variables
contained measurement error. We focused on four possibilities: all
endogenous variables (A2, B2, Y3) were fallible, all exogenous
variables (A1, B1, X1, Y1) were fallible, a mix of exogenous and
endogenous variables (X1, A2, B2, Y3) were fallible, and all
variables were fallible. The results appear in Table 5.

6 The points made in this section do not require that the correspondence
of manifest variables to their underlying constructs literally be as high as
1.0 or as low as .7; however, both scenarios occur in many published
models. Variables such as grade, age, sex, and group membership have
near perfect reliabilities and are often included in path analyses as perfect
measures (e.g., D. W. King, King, & Foy, 1996; Taasoobshirazi & Carr,
2009). Conversely, manifest variables often have factor loadings that are .7
or less (e.g., Bentler & Speckart, 1981; South, Krueger, & Iacono, 2011).
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1. Misleading results pervaded all examples. Between 10
and 21 parameters were distorted in any given example.
In two examples, every path was affected. In Table 5,
large distortions occurred 33 times.

2. The great majority of the original (nonzero) paths were
underestimated.

3. Almost all of the truly zero paths were overestimated, a
situation that could mislead investigators into adding
theoretically spurious paths to the original model.

4. Including these paths did not even begin to eliminate the
distortions of the original path coefficients.

Discussion, Recommendations, and Conclusions

This article demonstrates that five potentially serious problems
can arise from the use of fallible measures in manifest variable
path analysis. First, as measurement error pervades a given data
set, virtually all path coefficients will be under- or overestimated.
Second, even a little measurement error can cause valid models to
appear invalid. Third, when large amounts of measurement error
pervade a model, power diminishes, reducing the chance of reject-
ing an invalid model. Fourth, differential measurement error in
various parts of a model can change the substantive conclusions
that derive from path analysis. Fifth, all of these problems become
increasingly serious and intractable as models become more com-

plex. In this section, we briefly elaborate each of these problems
and then discuss a series of approaches for coping with them.

The first issue is that measurement error can result in the over-
or underestimation of path coefficients almost anywhere in a
manifest variable path analysis. The direction of bias depends on
the location of measurement error in the model. Unreliability
among exogenous variables will attenuate their correlation, reduc-
ing power. Unreliability in either an upstream or downstream
variable will attenuate the standardized coefficient for the direc-
tional path between them, also reducing power and increasing the
possibility of Type II error. Unreliability in either a predictor or
mediator that is part of a fallible triangle will inflate the path
between the other two variables. Depending upon the model and
sample size, truly negligible and nonsignificant path coefficients
can become substantial and statistically significant. A useful ave-
nue for future research will involve investigating the magnitudes
of these effects in simple and complex models.

The second issue is that relatively small amounts of measure-
ment error can cause valid models to appear invalid. This happens
when a path that is truly zero is fixed to zero, but unreliability in
a “third” variable elsewhere in the model requires the inflation of
this path coefficient. The third variable is essentially a control
variable. When measured perfectly, the third variable explains the
relation between the other two variables, but when measured
imperfectly, it does not and fixing the path between the other two
variables to zero then generates evidence of misfit. The magnitude
of this effect can be profound. In one example, we show that a drop

Table 3
Bias in SEM Coefficients for Model 4b When Reliability Is Diminished One Variable at a Time

Parameter Parameter value

Bias when these variables are measured with error

Only A1 Only B1 Only X1 Only Y1 Only A2 Only B2 Only Y3

Original paths
cov A1,X1 .60 �.18 .00 �.18 .00 .00 .00 .00
cov A1,B1 .50 �.15 �.15 .00 .00 .00 .00 .00
cov A1,Y1 .50 �.15 .00 .00 �.15 .00 .00 .00
cov X1,B1 .60 .00 �.18 �.18 .00 .00 .00 .00
cov X1,Y1 .50 .00 .00 �.15 �.15 .00 .00 .00
cov B1,Y1 .50 .00 �.15 .00 �.15 .00 .00 .00
X1¡A2 .40 .15 .00 �.21 .00 �.12 .00 .00
A1¡A2 .60 �.30 .00 .09 .00 �.18 .00 .00
B1¡B2 .60 .00 �.30 .07 .00 .00 �.18 .00
X1¡B2 .30 .00 .15 �.16 .00 .00 �.09 .00
Y1¡Y3 .40 .00 .00 .00 �.18 .00 .00 �.12
A2¡Y3 .30 .00 .00 .00 .00 �.23 .00 �.09
B2¡Y3 .40 .00 .00 .00 .00 .00 �.26 �.12

Added paths
A1¡B2 .00 .00 .06 .07 .00 .00 .00 .00
A1¡Y3 .00 .00 .00 .00 .06 .15 .00 .00
B1¡A2 .00 .06 .00 .09 .00 .00 .00 .00
B1¡Y3 .00 .00 .00 .00 .06 .00 .18 .00
X1¡Y3 .00 .00 .00 .00 .05 .10 .09 .00
Y1¡A2 .00 .09 .00 .04 .00 .00 .00 .00
Y1¡B2 .00 .00 .09 .03 .00 .00 .00 .00
cov dA2,dB2 .00 .00 .00 .04 .00 .00 .00 .00

Indirect effects
X1¡A2¡Y3 .12 .05 .00 �.06 .00 �.10 .00 �.04
X1¡B2¡Y3 .12 .00 .06 �.06 .00 .00 �.09 �.04

Note. SEM � structural equation modeling. Boldface signifies nonzero bias from the parameter values shown in Figure 4a.
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in reliability from 1.0 to .8 increases the chances of model rejec-
tion from 5% to 75%. Future research is needed to examine the
severity of these effects in a wider variety of models.

Conversely, the third issue is that pervasive measurement error
can also reduce power to reject a truly misspecified model. Mea-
surement error generally has the effect of attenuating the observed
correlations. When observed correlations are small, the discrepan-
cies between them and the model-implied correlations also will be
small, making it difficult to reject almost any model. In the current
example, this effect was strong at only very low levels of reliabil-
ity. Another direction for future research will be exploration of the
extent to which small, medium, and large specification errors may
go undetected at various levels of measurement error.

The fourth issue is that different degrees of measurement error
in different parts of a model can change the substantive conclu-
sions that derive from manifest variable path analysis. We found
that measurement unreliability in even one or two variables can
bias relatively few path coefficients or a majority of path coeffi-
cients, depending on where in the model the fallible variables
reside. The direction of this bias can vary considerably, either
overestimating or underestimating specific path coefficients, de-
pending on which variables are fallible. Furthermore, different
patterns of reliability can even generate spurious evidence of one
theory over another.

The fifth issue is that these problems become more likely, more
serious, and less predictable as models become more complex. As
more variables are added to a model, more paths must be either

constrained or estimated, actions that increase the opportunity for
measurement error to bias path coefficients and affect model fit.
As models become more complex, the number of affected paths
increases, the magnitude of the bias grows, and the net result of
these effects becomes harder to anticipate.

Recommendations

Given that the problems described above can be quite serious
(depending on the model and the degree of measurement error), we
briefly present three broad recommendations of methods to reduce
the impact of measurement error on manifest variable path anal-
yses: using error reduction strategies, utilizing model-based error
correction methods, and focusing on simpler models. Some of
these approaches take multiple forms, and all carry with them their
own shortcomings.

Error reduction strategies. Methods for reducing measure-
ment error are well documented. One general strategy is to use
longer assessments. Assuming parallel units, measures with more
items tend to have higher reliabilities (Brown, 1910; Spearman,
1910). This logic pertains to the addition of items to tests, sam-
pling behavior over a longer period of time, pooling across more
observers, observing participants across multiple situations, and
extending longitudinal studies across more time points. In practice,
however, several practical limitations may curtail the theoretical
advantages of these methods: (a) the best questionnaire items may
already be part of the original measure, such that new items may

Table 4
Bias in SEM Coefficients for Model 4b When Reliability Is Diminished Two Variables at a Time

Parameter Parameter value

Bias when these variables are measured with error

A2, B2 X1, Y3 A1, Y1 B1, Y1 A1, B2 B1, A2

Original paths
cov A1,X1 .60 .00 �.18 �.18 .00 �.18 .00
cov A1,B1 .50 .00 .00 �.15 �.15 �.15 �.15
cov A1,Y1 .50 .00 .00 �.25 �.15 �.15 .00
cov X1,B1 .60 .00 �.18 .00 �.18 .00 �.18
cov X1,Y1 .50 .00 �.15 �.15 �.15 .00 .00
cov B1,Y1 .50 .00 .00 �.15 �.25 .00 �.15
X1¡A2 .40 �.12 �.21 .17 .00 .15 .00
A1¡A2 .60 �.18 .09 �.29 .00 �.30 .00
B1¡B2 .60 �.18 .07 .00 �.29 �.18 .00
X1¡B2 .30 �.09 �.16 .00 .17 �.09 .00
Y1¡Y3 .40 .00 �.12 �.18 �.18 .00 .00
A2¡Y3 .30 �.23 �.09 .04 .00 .00 .00
B2¡Y3 .40 �.26 �.12 .00 .03 �.26 .00

Added paths
A1¡B2 .00 .00 .07 .00 .07 .00 .00
A1¡Y3 .00 .15 .00 .02 .07 .00 .00
B1¡A2 .00 .00 .09 .07 .00 .06 .00
B1¡Y3 .00 .18 .00 .07 .02 .18 .00
X1¡Y3 .00 .19 .00 .04 .05 .09 .00
Y1¡A2 .00 .00 .04 .05 .00 .09 .00
Y1¡B2 .00 .00 .03 .00 .05 .00 .00
cov dA2,dB2 .00 .00 .04 .00 .00 .00 .00

Indirect effects
X1¡A2¡Y3 .12 �.10 �.08 .08 .00 .05 .00
X1¡B2¡Y3 .12 �.09 �.08 .00 .08 �.09 .00

Note. SEM � structural equation modeling. Boldface signifies nonzero bias from the parameter values shown in Figure 4a.
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not be as reliable as the original ones; (b) lengthening a measure
may introduce new, unwanted variance due to fatigue, resentment,
or loss of vigilance; (c) adding more time points can extend a study
to a point in time when the targeted trend begins to change
qualitatively; (d) changing to a more reliable method of measure-
ment unintentionally changes the nature of the underlying con-
struct. Clearly, lengthening or changing measures should be ac-
companied by sound psychometric support.

Rather than settling for a large number of potentially unreliable
items and risk encountering the limitations noted above, an alter-
native to using longer assessment instruments is to generate better
items. Assessment instruments are often of poor quality, and
frequently do not undergo the multiple rounds of rigorous psycho-
metric evaluation and scale development advocated by psychome-
tricians. When it comes to maximizing parsimony and validity,
using a smaller pool of highly reliable items is clearly preferable to
using a larger pool of questionably reliable items.

Alternatively, when highly reliable measures are simply not
available, the researcher may be able to obtain multiple measures
(of the same or lower reliability) of each construct, which can be
utilized in some type of latent variable analysis (e.g., structural
equation modeling). The benefits of adopting a latent variable
strategy are numerous and well known (Bollen, 1989; Kenny,
1979); however, in such designs, measurement continues to matter.
Research has shown that the researcher is still well advised to
choose the most reliable, valid, and domain-representative mea-
sures possible (Bedeian et al., 1997; Hancock & Mueller, 2011;

Ledgerwood & Shrout, 2011; Tomarken & Waller, 2003). Further-
more, having more indicators per latent variable is better than
having fewer (Kano, 2007; Marsh, Hau, Balla, & Grayson, 1998;
Mulaik, 2009), and retaining relatively unreliable indicators is
often preferable to discarding them (Bollen, 1989, p. 165; McCa-
llum, 1972; Wickens, 1972). Indeed, Mulaik (2009) advocated
including as many indicators as possible for each construct (with at
least four per latent variable) to maximize construct validity and
isolate the desired construct.

Despite the advantages associated with obtaining more mea-
sures, complications and dangers often emerge in practice. First,
having multiple measures of multiple constructs increases the
likelihood that particular pairs of measures will share method
variance. Depending upon the measurement design, statistical con-
trols for such problems may be impossible or (worse yet) highly
misleading (Cole, Ciesla, & Steiger, 2007; Saris & Aalberts,
2003). Second, adding suboptimal measures to a study can lead
inadvertently to construct validity problems. New measures may
cross-load onto unintended latent variables or change qualitatively
the nature of the intended latent variable (Cole et al., 2007). All
things being equal, more is indeed better, but all things are not
always equal.

Error correction strategies. In general, error reduction is
better than error correction; however, sometimes constraints on
time and financial resources can impede implementation of error
reduction methods. In such cases, various post hoc methods to
adjust for measurement error can be implemented. Here we discuss

Table 5
Bias in SEM Coefficients for Model 4b When Reliability Is Diminished 3–7 Variables at a Time

Parameter Parameter value

Bias when these variables are measured with error

A2, B2, Y3 A1, X1, B1, Y1 X1, A2, B2, Y3 All seven

Original paths
cov A1,X1 .60 .00 �.31 �.18 �.31
cov A1,B1 .50 .00 �.25 .00 �.25
cov A1,Y1 .50 .00 �.25 .00 �.25
cov X1,B1 .60 .00 �.31 �.18 �.31
cov X1,Y1 .50 .00 �.25 �.15 �.25
cov B1,Y1 .50 .00 �.25 .00 �.25
X1¡A2 .40 �.12 �.07 �.27 �.17
A1¡A2 .60 �.18 �.18 �.11 �.30
B1¡B2 .60 �.18 �.20 �.13 �.32
X1¡B2 .30 �.09 �.02 �.20 �.11
Y1¡Y3 .40 �.12 �.17 �.11 �.20
A2¡Y3 .30 �.25 .07 �.23 �.16
B2¡Y3 .40 �.30 .04 �.29 �.22

Added paths
A1¡B2 .00 .00 .13 .05 .09
A1¡Y3 .00 .11 .02 .13 .10
B1¡A2 .00 .00 .14 .07 .10
B1¡Y3 .00 .13 .03 .15 .12
X1¡Y3 .00 .13 .02 .06 .12
Y1¡A2 .00 .00 .13 .03 .09
Y1¡B2 .00 .00 .12 .02 .08
cov dA2,dB2 .00 .00 .14 .02 .07

Indirect effects
X1¡A2¡Y3 .12 �.11 .00 �.11 �.09
X1¡B2¡Y3 .12 �.10 .00 �.11 �.09

Note. SEM � structural equation modeling. Boldface signifies nonzero bias from the parameter values shown in Figure 4a.
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four: data-based correction for unreliability, model-based correc-
tion for unreliability, use of items as indicators, and parceling.

First, data-based correction for unreliability is possible when the
researcher has only one indicator per construct but has estimates of
the reliabilities of these indicators. These reliability estimates can
be used to adjust the variance-covariance matrix for unreliability.
Actually, this correction only affects the variances, not the cova-
riances (Blalock, 1964; Duncan, 1975; Kenny, 1979).7 The path
analytic model is then fit to the original covariances and adjusted
variances.

Second, model-based corrections are possible by using a latent
variable structural equation model to conduct the manifest variable
path analysis. In such models, one manifest variable represents
each “latent” variable. For each manifest variable, the factor load-
ing is set to 1.0, and the unique variance is set to a value based on
knowledge about data quality (see Adcock, 1878; Bollen, 1989;
Deming, 1943; Hayduk, 1987; Koopmans, 1937; Kummell, 1879;
Williams & O’Boyle, 2008). Specifically, Hayduk (1987) recom-
mended fixing the unique variance to a value dictated by an
estimate of the reliability: �1 � �̂XX'�
X

2.8 In this way, the unique
factor is interpretable as the unreliable part of the manifest vari-
able, and the latent variable becomes the reliable part, theoretically
rendering the latent variable error-free. Taking this approach fur-
ther, DeShon (1998) advocated first computing a generalizability
coefficient, an estimate of reliability based on multiple sources of
measurement error (e.g., person, rater, item, and occasion). Then
the unique variance and loading of a single, standardized indicator
are fixed to functions of this coefficient, and the factor variance is
fixed to 1.

Interestingly, in many cases, the data-based and model-based
methods are equivalent (Rock, Werts, Linn, & Jöreskog, 1977;
Werts & Linn, 1970). Potential advantages associated with these
approaches are: (a) they allow the inclusion of prior knowledge
about measurement quality; (b) they do not assume that the indi-
cators are perfectly reliable; and (c) they reduce the typical effect
of measurement error on the inflation and attenuation of structural
coefficients. Unfortunately, these methods also bring with them
several shortcomings: (a) Reliability estimates for the measures
may not be available for the sample under investigation, and using
estimates from one population to correct for error in another can
yield spurious results. (b) Even when obtained from the same
sample, reliability estimates are still only estimates. In any given
study, they will over- or underestimate the actual reliability, giving
rise to under- or overcorrections for measurement error. Further,
treating any parameter as known, when it is not, can artificially
bias standard errors of path coefficients toward zero, leading to
increased Type I error rates. (c) Multiple sources of measurement
error exist (e.g., error due to rater, item, occasion). Correcting for
only one source of measurement error limits the generalizability of
results (DeShon, 1998). (d) In the common factor model, the
unique variance associated with an indicator is actually a combi-
nation of reliable, indicator-specific variance and error variance.
Clearly, some contributors to unique variance (e.g., method vari-
ance) should not be considered part of the reliable variance of an
indicator. But if at least some of the unique variance should be
considered reliable, then treating the unique variance as if it
consists entirely of error variance implies that the variable is less
reliable than it really is, which can result in biased structural

coefficients (Coffman & MacCallum, 2005). Although not a short-
coming of error correction strategies per se, it should be borne in
mind that correcting for unreliability does not guarantee validity.
Such corrections yield reliable indicators of whatever it is that the
indicators measure, which is rarely isomorphic with the construct
of interest.

A third model-based method is to use items as indicators. Many
times a single measure is an aggregation of smaller units. Under
some circumstances, these smaller units can serve as multiple
indicators of a latent variable. Using disaggregated items as indi-
cators has some advantages: (a) analyses are more likely to con-
verge on proper solutions (Marsh et al., 1998); (b) additional
factors are less likely to be obscured (Hall, Snell, & Foust, 1999);
and (c) models are less likely to contain specification errors
(Mulaik, 2009; Plummer, 2000). Item-level methods also have
noteworthy disadvantages: (a) items are typically less reliable than
are item aggregates (Kishton & Widaman, 1994); (b) using item-
level data increases the rank of the covariance matrix, thereby
increasing the likelihood of a poor fit (Bandalos, 2002; Bandalos
& Finney, 2001); (c) item-level data are rarely multivariate nor-
mal, an important assumption underlying maximum-likelihood
estimation, the most popular estimation method (Hu & Bentler,
1998).

A fourth approach is parceling (Cattell, 1974; Little et al.,
2002) or partial disaggregation (Williams & O’Boyle, 2008).
Parceling involves summing or averaging subsets of indicators
to form aggregates larger than one item but smaller than the
entire scale. Helpful guidelines exist for the use of parcels
under a variety of circumstances (Coffman & MacCallum,
2005; Kishton & Widaman, 1994; Little, Lindenberger, & Nes-
selroade, 1999; Williams & O’Boyle, 2008). Purported advan-
tages of parcels include improved model fit, increased commu-
nalities, enhanced reliability, normalization of indicators,
smaller required sample size, and parsimony. Disadvantages
include the obscuring of more appropriate measurement mod-
els, and potentially serious variability in results depending upon
the allocation of items into parcels (Sterba & MacCallum,
2010). Even under optimal conditions, parceling is still only a
post hoc way to obtain multiple indicators. Like all the model-
based reliability correction methods, and assuming the original
scale is unidimensional and devoid of method effects, parceling
generates an error-corrected version of whatever the original
scale measured: probably the construct of interest plus whatever
other sources of variance permeate the measure.

Both of the last two approaches involve the extraction of true
latent variables from multiple indicators. In latent variable struc-
tural equation modeling, one can distinguish goodness-of-fit due to
the measurement model from goodness-of-fit due to the structural

7 We thank Scott E. Maxwell for pointing this out to us.
8 When a single indicator is used for a latent variable, only one mea-

surement parameter may be estimated, and the others must be constrained
to some value to achieve local identification. The four relevant parameters
are the loading on the common factor, the common factor’s variance, the
loading on the unique factor, and the unique factor’s variance. The loading
on the unique factor is always fixed to 1. If the unique variance is fixed to
a value based on reliability, we are faced with a choice—either estimate the
common factor’s variance and fix the loading (typically to 1) or estimate
the loading and fix the common factor’s variance (typically to 1). The
resulting models are equivalent, so the choice is arbitrary.
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model (O’Boyle & Williams, 2011a, 2011b). This represents a real
advantage relative to the manifest variable path analytic methods
described in the current article, in which these two features are
inextricably conflated.

Test simpler models. In general, error-reduction strategies
during research design and data collection are superior to error-
correction strategies during data analysis. Unfortunately, most
error reduction strategies require more time and money. As
models become increasingly complex, these resources are often
spread more thinly across the assessment of a larger number of
variables, increasing the likelihood that measurement error will
pervade the model. Fearing the underestimation of key theoret-
ical paths, researchers may place greater emphasis on the mea-
surement of variables they deem to be more important. Such
practices will lead to parameter over- and underestimation, not
always in the anticipated direction. Consequently, we recom-
mend conducting simpler studies (at least when the theoretical
context allows it), and spending the extra resources on the
reduction of measurement error. At least three general princi-
ples favor a focus on simple models: (a) although simple
models are still susceptible to measurement error, these effects
often are more easily recognized and corrected in simple mod-
els than in more complex models; (b) simpler models are easier
to specify, estimate, and interpret; and (c) as simple laws tend
to operate under a wider variety of circumstances, more parsi-
monious models are likely to be more replicable and general-
izable (Myung, Pitt, & Kim, 2004; Pitt & Myung, 2002). We
recognize, however, that simple models may not always be
compatible with certain research goals (Roberts & Pashler,
2000).

Conclusions

Uncorrected manifest variable path analyses remain common-
place in premier psychological journals despite numerous meth-
odological articles describing the inherent dangers. We document
at least five major problems. First, measurement error will almost
always lead to the underestimation of some path coefficients and
overestimation of other path coefficients. Second, when moderate
measurement error pervades a model, spurious indications of
model misfit become likely even for models that are perfectly valid
when variables are measured without error. This model misfit will
appear to be due to the absence of structural paths (not to the
presence of measurement error), potentially leading to the addition
of paths that would have been completely unnecessary had the
variables been perfectly reliable. Third, when substantial measure-
ment error pervades a model, finding evidence of model misfit
becomes highly unlikely, even when the model is misspecified.
Fourth, differential measurement error in various parts of a model
can radically change the conclusions derived from the model.
Fifth, many of these problems become larger and less anticipatable
as models become more complex.

Several of these problems are worse (or at least more perva-
sive) than we have implied, as they pertain to manifest variable
statistical methods other than path analysis. In multiple regres-
sion, differential reliability among measures of correlated pre-
dictors can change the apparent relative predictive utility of one
construct over another (Cohen, Cohen, West, & Aiken, 2003).
In analysis of variance (ANOVA) designs, measurement error

in the operationalization of factors (e.g., forming groups artifi-
cially by dichotomizing continuous variables) can diminish
power to detect effects that really do exist and spuriously
increase the likelihood of detecting effects that truly do not
exist (Maxwell & Delaney, 1993). In partial correlation and
analysis of covariance (ANCOVA) designs, measurement error
in the control variable is also a major concern (Keppel, 1991;
Maxwell & Delaney, 2004; Vargha, Rudas, Delaney, & Max-
well, 1996). Although these points have been made previously,
these methods continue to be used with sometimes casual
regard for measurement error. How often these methods are
applied with fallible measures, the magnitude of the resultant
problems, and the generalizability of our recommendations to
these other methodologies all represent important avenues for
continued research.

The first and foremost solution to these problems is to
implement more reliable measurement strategies in studies that
utilize manifest variable path analysis. A second approach is to
engage in any of several model-based error correction methods.
Third is to obtain multiple measures and utilize latent variable
data analytic methods. Ideally, both the error-reduction strategy
and latent variable methods can be implemented, as recent
research has revealed that measurement error can actually affect
the precision of latent variable approaches (e.g., Hancock &
Mueller, 2011; Heene et al., 2011; Ledgerwood & Shrout,
2011). Sometimes error reduction and latent variable strategies
are not possible, in which case our fourth recommendation is to
implement error correction methods, test much simpler models,
and acknowledge that both of these methods have their own
potentially serious liabilities.
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Correction to Cole and Preacher (2013)

The article, “Manifest Variable Path Analysis: Potentially Serious and Misleading Consequences
Due to Uncorrected Measurement Error” by David A. Cole and Kristopher J. Preacher (Psycho-
logical Methods, Advanced online publication, September 30, 2013. doi: 10.1037/a0033805),
contained several errors:

Footnote 2 should have stated, “Throughout, we assume that all path coefficients are non-negative.
In this context, the words attenuation and underestimation refer to the shrinkage toward zero of path
coefficient estimates due to measurement error. The words inflation and overestimation refer to the
expansion away from zero of path coefficient estimates.”

Footnote 4 should have stated, “We make several assumptions in our path diagrams . . .”

The first sentence in the first full paragraph on page 5 should have stated, “Fourth, the overesti-
mation of any directional path is due to the underestimation of the sum of all valid tracings
responsible for the covariation between the two variables of interest (other than the tracing that
consists of the target path).

All versions have been corrected.

http://dx.doi.org/10.1037/a0037174
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