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Manifestations of Alzheimer’s 
disease genetic risk in the blood 
are evident in a multiomic analysis 
in healthy adults aged 18 to 90
Laura Heath1,2*, John C. Earls1,3, Andrew T. Magis1, Sergey A. Kornilov1, Jennifer C. Lovejoy1, 
Cory C. Funk1, Noa Rappaport1, Benjamin A. Logsdon2, Lara M. Mangravite2, 
Brian W. Kunkle4,5, Eden R. Martin4,5, Adam C. Naj6,7, Nilüfer Ertekin‑Taner8,9, 
Todd E. Golde10, Leroy Hood1,11, Nathan D. Price1,3* & Alzheimer’s Disease Genetics 
Consortium*

Genetics play an important role in late-onset Alzheimer’s Disease (AD) etiology and dozens of genetic 
variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the 
precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped 
cohort data can reveal physiological changes associated with genetic risk for AD across an age 
spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality 
quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a 
consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing 
data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and 
metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker 
data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting 
for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP 
interactions were also assessed. We observed statistically significant SNP-analyte associations for 
five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, 
and APOE), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 
encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel 
proteins were associated with the e2 allele. The most statistically significant finding was between the 
NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in 
the identification of a putative causal variant within the PILRA gene. We did not observe associations 
between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple 
interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, 
sex-stratified GWAS results from an independent AD case–control meta-analysis supported sex-
specific disease effects of the PICALM variant, highlighting the importance of sex as a biological 
variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a 
population of non-AD individuals, with associations observed from early adulthood onward. Further 
research is needed to determine whether and how these effects are implicated in early-stage biological 
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pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of 
AD-associated genetic variants.

The rapidly decreasing cost of genomics paired with technological advances in the generation of multi-omic 
data has resulted in multiple datasets of deeply phenotyped individuals with a variety of health outcomes1–3. The 
data collected in these studies have the potential to yield important insights into potential molecular drivers of 
health observable in the blood periphery. The present study seeks to leverage a unique and relatively large set of 
multi-omic, deep-phenotyping data to shed light on genetic pathways to late-onset Alzheimer’s disease (AD) by 
assessing differences in ~ 2000 analytes in the blood that show association with known genetic risk variants for 
AD. Coupled with high-dimensional data sets, this approach has the potential to yield clues into gene pleiotropy, 
disease processes, and possible early-intervention strategies, which are critically important given the essentially 
untreatable nature of late-stage Alzheimer’s disease once significant brain deterioration has occurred.

Genetic variation plays a substantial role in AD risk, with twin studies estimating AD heritability at 58–79%4. 
While the emergence of recent large-scale consortia efforts has facilitated well-powered meta-analyses of genome-
wide association studies (GWAS) to identify multiple common variants with small effect sizes5,6, the research 
community is still untangling exactly how this genetic variation influences disease risk. Functional genomics 
studies are beginning to identify likely genetic pathways to disease with the aid of transcriptomic, epigenomic, 
and endophenotypic data7–10. So far, genetic and multi-omic studies of AD studies have largely focused on older 
individuals with either clinically diagnosed AD or milder symptoms of cognitive decline, despite research point-
ing to highly variable AD pathobiology that occurs on a spectrum, and begins decades before clinical symptoms 
onset11.

In this study, we leveraged the results from a large-scale GWAS meta-analysis5 alongside data from a deeply 
phenotyped wellness cohort to investigate the physiological periphery effects of genetic risk for AD in individuals 
without known cognitive impairment, at all ages. We undertook an agnostic approach by adopting a phenome-
wide association study (PheWAS) design12. By examining how genetic variation impacts 2008 analytes in the 
blood of 2831 individuals, we sought to complement previous functional genomics studies as well as potentially 
reveal new testable hypotheses for future studies. In addition, we tested for associations between a polygenic risk 
score (PGRS) for AD and blood analytes to determine if a relative burden of genetic risk might impact observable 
changes in the blood, and we assessed for effect modification of genetic risk by sex.

Results
Summary of population and study design.  Sixty-one percent of Arivale participants were female, 22% 
were of non-white self-reported ethnicity, and 28% were obese (Table  1). The mean age at blood draw was 
47 years, with a range of 18 to 89+. In general, individuals who joined Arivale had somewhat higher levels of 
cardiovascular risk markers compared to the US population, and slightly lower rates of obesity and pre-diabetes3 
(these rates were consistent with rates in the geographies and ethnicities of the population, mostly from the west 
coast region of the United States).

Phenome‑wide association study results.  We observed 33 SNP-analyte associations that were statis-
tically significant at FDR-adjusted p-value < 0.05, with most of the associations observed for the APOE SNPs 
(rs7412, or the e2-defining allele, and rs429358, or the e4-defining allele). The other SNPs showing signifi-
cant associations with at least one clinical chemistry, protein, or metabolite were rs10933431, rs12539172, and 
rs3752246 (Fig. 1, Table S2). Complete PheWAS results, including beta coefficients, sample sizes, minor allele 
frequencies, Hardy–Weinberg Equilibrium p-values, and raw and adjusted p-values for each SNP are in Sup-
plementary Excel File 1. Sample sizes varied among analytes collected (particularly among protein analytes, as a 
small subset of the population (N = 354) had samples submitted for the full range of protein panels, as described 
in “Methods” section).

NYAP1.  The most robust SNP-analyte associations we observed were between rs12539712 in the 3’ region 
of NYAP1 (Neuronal Tyrosine Phosphorylated Phosphoinositide-3-Kinase Adaptor 1), and two co-regulated 
proteins, paired immunoglobulin-like type 2 receptors beta and alpha (PILRB and PILRA) (Fig. 2). Carriage 
of the minor allele (AD risk odds ratio (OR) = 0.92) was associated with significant reduction in normalized 
protein expression (NPX) of PILRB and PILRA compared to individuals homozygous for the major allele (FDR-
adjusted p-values = 2.2 × 10–33 and 2.3 × 10–17, respectively), while the overall level of NPX increased with age 
among all genotypes. The reduction in protein levels appears roughly dose-dependent with the number of minor 
alleles and was observed in all but the oldest and youngest age groups (likely due to small numbers of the minor 
allele in these groups (Table S3A). These observations led us to previous studies pointing to variation in PILRA 
as the causal gene at this locus, with a missense SNP as a leading candidate (G78R, rs1859788)13–16. In post-
hoc analysis, we repeated the PheWAS with this putative causal SNP (which was in LD with our index SNP 
rs12539172, R2 = 0.77), and the associations became stronger (FDR-adjusted p-value for PILRB = 3.6 × 10–52; for 
PILRA = 1.4 × 10–22) (Fig. 2), with genotype differences observed in all age groups (Table S3A).

APOE4.  We observed significant associations between rs429358 (which encodes the e4 allele) and multiple 
related clinical measures of cholesterol (Fig. S1). Differences by genotype were less pronounced in older age 
groups likely due to statin use (Table S3B); exploratory analyses visualizing only individuals who did not report 
use of statin-lowering medications showed more consistent genotype-dependent differences between rs429358 
and the top cholesterol marker, low-density lipoprotein (LDL) particle number (Fig. S2, Table S3B). The con-
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centration of two proteins in the blood were associated with the e4 allele: PLA2G7 (Platelet Activating Fac-
tor Acetylhydrolase) and CD28 (T-Cell-Specific Surface Glycoprotein CD28). Selected lipid metabolites in the 
blood were positively associated with e4: two diacylglycerol (DG) metabolites (one of which was measured twice 
in the Metabolon panel) were higher in e4 carriers compared to non-carriers.

APOE2.  We observed significantly lower levels of multiple clinical measures of LDL cholesterol associated with 
carriage of the e2 allele (Fig. S3). As the unadjusted plots show, e2 homozygotes are dramatically different than 
other genotypes, though it should be noted that few e2 homozygotes were present in the population (n = 16) and 
were within a limited age range (30–59 years). Selected lipid metabolites in the blood were positively associated 
with e2: a monoglyceride (MG) and four diacylglycerol (DG) metabolites (one of which was a replicate) were 
higher in e2 carriers compared to non-carriers. We observed six e2-protein associations (Fig. 3), such that each 
of the following proteins were observed at higher levels in e2 carriers: low density lipoprotein receptor (LDLR), 
heme oxygenase-1 (HMOX-1), SLAM family member 8 (SLAMF8), ring finger protein 31 (RNF31), contactin 
associated protein 2 (CNTNAP2), and signal recognition particle 14 (SRP14).

ABCA7.  The ABCA7 (ATP Binding Cassette Subfamily A Member 7) variant (rs3752246), which has been 
associated with increased risk of AD (OR 1.15, Table S1), was associated with lower levels of two lactosylcera-
mide (LC) metabolites in the sphingolipid family. These differences were evident starting in the youngest age 
groups (Fig.  S4, Table  S3A). The minor allele of rs3752246 was also associated with higher levels of DEFA1 
(Defensin Alpha 1), an antimicrobial peptide.

INPP5D.  An intronic SNP in INPP5D (Inositol Polyphosphate-5-Phosphatase D) (rs10933431), which was 
associated with a lowered risk of AD in meta-analyses, was associated with lower levels of the protein IDUA 
(alpha-l-iduronidase) (Fig. S4).

Table 1.   Baseline self-reported characteristics of Arivale participants with available whole-genome sequences. 
a For categories with missing data, total non-missing N is reported in parentheses. b Race/ethnicity categories 
presented to participants in Arivale questionnaire. c Obese defined as BMI ≥ 30.

Characteristica N = 2831

Age, mean (sd) 47.0 (12.0)

Female, n (%) 1719 (60.7)

Nonwhiteb, n (%) (n = 2725) 597 (21.9)

Afro-Caribbean 1 (< 0.1)

American Indian or Alaska Native 5 (0.2)

Ashkenazi Jewish 49 (1.8)

Asian 84 (3.1)

Black or African American 64 (2.3)

East Asian 91 (3.3)

Hispanic Latino or Spanish origin 120 (4.4)

Middle Eastern or North African 18 (0.7)

Native Hawaiian or other Pacific Islander 17 (0.6)

Sephardic Jewish 4 (0.1)

South Asian 79 (2.9)

White 2128 (78.1)

Other 65 (2.4)

BMI, mean (sd) (n = 2750) 27.9 (6.4)

Obesec, n (%) (n = 2750) 802 (29.2)

Moderate activity ≥ 3×/week, n (%) (n = 2275) 1460 (64.2)

Vigorous activity ≥ 3×/week, n (%) (n = 2271) 697 (30.7)

Ever smoke, n (%) (n = 2207) 565 (25.6)

Current meds for cholesterol, n (%) (n = 2378) 287 (12.1)

Past and/or current self-report of

Migraine, n (%) (n = 2229) 558 (25.0)

High cholesterol, n (%) (n = 2301) 558 (24.2)

Depression, n (%) (n = 2278) 521 (22.9)

GERD, n (%) (n = 2220) 464 (20.9)

Hypertension, n (%) (n = 2316) 434 (18.7)

Asthma, n (%) (n = 2361) 376 (15.9)
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Polygenic risk score.  No associations were observed between the APOE-free PGRS and any analyte after FDR 
correction for multiple testing, either in primary analyses or in analyses adjusted for e4 status, or among non-e4 
individuals only. No effect modification by sex or APOE4 status was observed.

Sex‑specific findings.  We observed a SNP × sex interaction involving the AD-protective PICALM variant, 
such that the minor allele was associated with higher levels of 30 proteins in men and lower levels of the proteins 
in women (Fig. 4, Fig. S5, Table S4). These proteins were highly correlated with one another (mean pairwise 
spearman’s rho = 0.49); thus, it is unclear whether the associations are independently biologically meaningful, 
or whether there is a passenger effect, in which one or a few proteins are driving the sex-differential association 

Figure 1.   Statistically significant SNP-analyte associations after correcting for multiple testing (threshold 
FDR-adjusted p-value = 0.05), by SNP. Top panel: log-transformed beta-coefficient from the linear regression 
model adjusted for sex, age, and genetic principal components 1–4; markers above the zero line (orange) 
indicate analytes that increased in value with the minor allele, while markers below the line indicate markers 
that decreased in value. Second panel: FDR-adjusted − log10 p-value; orange line at FDR-p = 0.05. Proteins = red, 
metabolites = blue, clinical chemistries = purple. Metabolite codes: DG diacylglycerol, LC lactosylceramide, o 
oleoyl; a arachidonoyl, g glycerol, l linoleoyl, p palmitoyl. Third panel: minor allele frequency (MAF). Bottom 
panel: Total sample size for each analyte-SNP regression.
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with genotype observed in the data. In addition, the PICALM variant is associated with a sex-specific effect 
on five highly correlated long-chain fatty acid (LCFA) metabolites and one polyunsaturated fatty acid (PFA) 
metabolite (Docosahexaenoic acid) (Fig. 4). To investigate further, we conducted a post-hoc analysis examining 
the impact of this variant on AD risk stratified by sex, in a meta-analysis of clinically diagnosed late-onset AD 
(18,812 individuals, Table S5). While AD risk was reduced in both men and women among carriers of the minor 
allele, the effect was stronger among men (Table 2, Table S6), which was consistent with the sex-stratified SNP-
analyte analyses (data not shown).

Other observed sex-specific effects were more modest. The SNP near CD2AP (CD2 Associated Protein) 
interacted with sex to affect three highly correlated sphingomyelins and three plasmologens, while the SNP 
in SPI1 (Transcription Factor PU.1) interacted with sex to affect SPARC related modular calcium binding 2 
(SMOC2). Lastly, the missense ABCA7 SNP interacted with sex to affect levels of Ubiquitin conjugating enzyme 
E2f (UBE2F).

Stratification by self‑identified race/ethnicity.  Unfortunately, due to vanishingly small numbers in 
individual self-identified groups (Table 1), we were not able to assess genetic risk effects in individual groups 
with statistical rigor. As expected, analyses restricted to white individuals recapitulated results of the overall 
analysis (Fig. S6). In the nonwhite group overall, we observed effect sizes that were consistent with the overall 
results and white-only results (Fig. S7).

Figure 2.   Unadjusted box plots of normalized protein expression (NPX) levels of PILRA and PILRB 
by genotype and age group. White boxplots = individuals who are homozygous for the major allele, gray 
boxplots = heterozygotes, black boxplots = minor allele homozygotes. Box plot midline = median value, lower/
upper hinges = 25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends no further than 
1.5× interquartile range from the hinge. Data beyond whiskers are outlying points. Top panel: NPX of PILRA 
and PILRB by rs12539172 (NYAP1) genotype; Bottom panel: NPX of PILRA and PILRB by rs1859788 genotype.
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Discussion
Our study examines associations between known genetic risk factors for AD and blood markers (clinical labs, 
proteins, and metabolites). It provides insight into the manifestation of AD-related genetic risk in blood-borne 
analytes from cognitively normal individuals and demonstrated how AD-related genetic variation manifests in 
the blood across adulthood. Our results contribute to the growing literature highlighting a potential causal variant 
(missense SNP in PILRA), point to potential new mechanisms of protection among APOE2 carriers, and suggest 
a role for infectious diseases as AD risk factors, alongside lipid metabolism, immune response, and endocytosis. 
We also uncovered intriguing differences between men and women in how genetic risk manifests in the blood. 
These analyses not only add to the existing literature on functional genomics in AD, but also offer up multiple 
potential new hypotheses to catalyze future studies.

The strongest associations in the study were between the NYAP1 SNP (rs12539172) and the PILRB/PILRA 
proteins. This locus was originally identified by rs1476679 near ZCWCP16. NYAP1 and ZCWPW1 are located near 
PILRA and PILRB on chromosome 7, within a linkage disequilibrium (LD) block. In previous gene expression 
studies, the initial index SNP for ZWCWP1 has been associated with expression of multiple PILRB and PILRA 
transcripts in brain9,17. PILRA and PILRB are paired, co-regulated inhibiting/activating receptors, respectively, 
that are expressed on innate immune cells, recognize certain O-glycosylated proteins, and have an important 
role in regulating acute inflammatory reactions18. The R78 substitution in PILRA (rs1859788) has been shown 
to reduce the binding capacity of endogenous ligands and thereby potentially increase microglial activity16. In 
addition, while controversial, work from our group and others19–21 has suggested a potential viral role in AD risk. 
Notably, the R78 variant has been implicated in HSV-1 (Herpes Simplex Virus type 1) infectivity16 and differences 
in HSV-1 antibody titer levels13. While previous studies have hypothesized that reduced activity of PILRA was 
due to steric conformational changes in the protein leading to reduced binding of key ligands (including HSV-1 
glycoprotein B), our results suggest that reduced levels of circulating PILRA protein in R78 carriers could also 
be a factor in the overall protective effect of this genetic variant.

Statistically significant associations were observed between multiple lipid analytes and the SNPs encoding 
both APOE4 (rs429358) and APOE2 (rs7412). APOE normally plays a key role in lipid transport, including 
shuttling cholesterol to neurons in healthy brains. Notably, APOE has a role in beta-amyloid (Aβ) metabolism, 

Figure 3.   Unadjusted box plots of normalized protein expression levels (NPX) of six proteins significantly 
associated with APOE2 genotype, by age group. White boxplots = individuals who are homozygous for the major 
allele, gray boxplots = heterozygotes, black boxplots = minor allele homozygotes. Box plot midline = median 
value, lower/upper hinges = 25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends 
no further than 1.5× interquartile range from the hinge. Data beyond whiskers are outlying points. LDLR 
low-density lipoprotein receptor, HMOX1 heme oxygenase-1, SLAMF8 SLAM family member 8, RNF31 E3 
ubiquitin-protein ligase RNF31, CNTNAP2 contactin-associated protein-like 2, SRP14 signal recognition 
particle 14 kDa protein.
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Figure 4.   Heatmap of statistically significant genotype × sex interaction terms at FDR-adjusted p-value < 0.1. 
Beta coefficients obtained from sex-stratified analyses, middle-column p-values from interaction term in the full 
model. SL sphingolipid, LCFA long-chain fatty acid, PFA polyunsaturated fatty acid.

Table 2.   Results of sex-specific analysis and sex-SNP interaction analysis of PICALM variant rs3851179 in 
the ADGC. N = 9135 cases (60% female), 9,677 controls (60% female). a Model 1: adjusted for age, sex, and 
PCs; Model 2: adjusted for age, sex, PCs, and APOE genotype. b Model 1: adjusted for age and PCs; Model 2: 
adjusted for age, PCs, and APOE.

Sex-stratified resultsa Beta Std error p-value MAF

Male model 1  − 0.206 0.035 5.62E−09 0.358

Male model 2  − 0.176 0.038 4.08E−06 0.359

Female model 1  − 0.083 0.029 4.37E−03 0.354

Female model 2  − 0.087 0.031 5.60E−03 0.352

Interaction resultsb Interaction beta Std error p-value MAF

Model 1 0.116 0.044 8.05E−03 0.354

Model 2 0.372 0.048 7.84E−02 0.354
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and while the exact mechanism is unknown, the e4 variant appears to accelerate neurotoxic Aβ accumulation, 
aggregation, and deposition in the brain22. The associations we observed between the e4 variant and increased 
levels of total cholesterol and LDL cholesterol, along with lower levels of high-density lipoprotein (HDL), were 
consistent with previous cardiovascular disease cohort studies that included young, middle-aged, and older 
adults23–26. The e4 allele was associated with increased NPX of two inflammatory proteins. PLA2G7 is a known 
cardiovascular risk marker with pro-inflammatory and oxidative activities27 which has previously been associated 
with APOE genotypes28 and implicated in AD and cognitive decline27,29. To our knowledge, CD28 protein levels 
have not previously been associated with e4 status, though this relatively weak association may be a downstream 
result of APOE isoform-specific effects on inflammation30.

Blood cholesterol levels among APOE2 carriers were also largely consistent with a body of existing data24; 
the e2 variant was associated with lower levels of multiple measures of LDL cholesterol. It should be noted that 
while 5–10% of e2 homozygotes develop type III hyperlipoproteinemia (typically in the presence of an existing 
metabolic disorder31) resulting in elevated cholesterol levels, all e2 homozygotes in the study had significantly 
decreased levels of LDL cholesterol compared to other genotypes. In contrast, the e2 variant was associated with 
higher levels of six lipid metabolites in the diacylglycerol and monoacylglycerol family; interestingly, both the e4 
variant and e2 variants were associated with increased levels of the same two lipid metabolites in the diacylglyc-
erol family, despite the opposite effects of these two variants on circulating blood cholesterol. Diacylglycerol is 
a precursor to triacylglyceride (TG), which is typically higher in APOE2 carriers26. The effects of high DGs and 
TGs remains unclear. DG-rich diets fed to diabetic APOE-knockout mice had reduced atherosclerosis and lower 
plasma cholesterol than mice fed TG-rich or western diets32,33; however, non-targeted metabolomics studies have 
shown elevated levels of DGs and MGs in AD and mild cognitive impairment (MCI) patient brains and blood 
compared to cognitively intact individuals34,35.

We observed six proteins that were significantly upregulated in APOE2 carriers (Fig. 3). The LDLR protein had 
higher levels of NPX in e2 carriers, particularly in e2 homozygotes. Though APOE2 is known to bind poorly to 
LDLR (~ 2% of e3 or e4 binding activity)36, APOE2 was associated with lower levels of LDL cholesterol across age 
groups as noted previously, perhaps due to compensatory up-regulation of LDLR26. Greater understanding of the 
compensatory mechanism leading to upregulated LDLR and lower circulating LDL cholesterol is needed. The e2 
variant was associated with increased levels of the highly inducible HMOX-1, which has antioxidant properties 
and has been associated with both neuroprotection and neurodegeneration37. SLAMF8 may be another link to an 
antioxidant effect of APOE2, as it has been implicated in modulation of reactive oxygen species and inflammation 
via negative regulation of NOX activity38. APOE2 carriers displayed higher levels of RNF31 protein (aka HOIP). 
HOIP is the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), which was shown to 
have a role in the recognition and degradation of misfolded proteins39. Variation in CNTNAP2, a member of the 
neurexin superfamily of proteins involved in cell–cell interactions in the nervous system, has been associated 
with neurodevelopmental disorders40, and has been implicated in AD-related dementia41. Lastly, SRP14, which 
has a role in targeting secretory proteins to the rough endoplasmic reticulum (ER) membrane, has been identified 
as one of many tau-associated ER proteins in AD brains42. To our knowledge, the APOE2-protein associations 
described here are novel and may help point to the mechanisms of protection associated with the e2 variant.

ABCA7 is involved in lipid efflux from cells into lipoprotein particles, plays a role in lipid homeostasis43, and 
has also been implicated in Aβ processing and deposition in the brain44. Our results support ABCA7’s lipid-
related function by showing lower levels of two LC metabolites among individuals carrying the AD-risk allele 
of rs3752246. In contrast, we observed higher NPX of DEFA1 protein in carriers of the ABCA7 variant, which 
is consistent with previous studies showing higher levels of this protein in cerebral spinal fluid (CSF) and sera 
of AD patients compared to controls45,46, potentially linking ABCA7 with an inflammatory response pathway to 
AD. Lastly, lower NPX of IDUA was associated with the INPP5D SNP. INPP5D, which encodes the lipid phos-
phatase SHIP1, is a negative regulator of immune signaling and is expressed in microglia47. To our knowledge, 
this association has not been previously observed.

Genetic variation likely affects men and women differentially, pointing to mechanisms that contribute to 
known differences in AD pathology between the sexes48. The set of proteins that were differentially affected by sex 
and PICALM genotype are primarily implicated in immune processes, cell adhesion, and regulatory processes, 
with widely overlapping functions (Fig. S8). Our results highlight an interaction between the AD-risk variant in 
PICALM and multiple proteins implicated in immune response in a sex-specific manner, and support emerg-
ing research showing sex differences in the neuroimmune response that impact microglia function49. We also 
observed a sex-differential effect of the variant on multiple LCFA metabolites and one PFA metabolite (DHA). 
A potential link between PICALM function, lipids, and AD is feasible: fatty acids, and DHA in particular, have 
long been known to have a role in maintaining brain health and cognition50, while PICALM expression has been 
shown to influence cholesterol homeostasis through multiple mechanisms51. This multi-analyte interaction was 
supported by results from sex stratified GWAS meta-analyses, which showed differing effect sizes of the variant 
on men vs. women.

In addition to these sex-specific PICALM effects, the SNP near CD2AP, a scaffolding protein, interacted with 
sex to affect three highly correlated sphingomyelins and three plasmologens, while the SNP in SPI1, a transcrip-
tion factor associated with microglial activation52, interacted with sex to affect SMOC2, a protein involved in 
microgliosis that has been previously associated with Aβ positivity in CSF53.

We also examined an AD-specific polygenic risk score. While the PGRS is predictive of disease in case/control 
studies54, it was not associated with any blood analytes in the all-ages AD-free Arivale cohort. Combining genetic 
effects into a single score for AD likely served to dilute any individual genetic effect on the manifestation of 
genetic risk in the blood. In addition, the relative youth and cognitive health of this cohort should be considered. 
The PGRS may be more likely to detect perturbation in analytes that are markers of systemic inflammation or 
immune dysfunction in later life and among cohorts experiencing cognitive impairment.
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The results presented here are novel and we believe will be of interest to the AD-related functional genomics 
community, though several limitations should be noted. The study population was not a random sample but 
was self-selected. The population is largely self-identified non-hispanic white, was mostly located on the west 
coast, and likely has higher than average socio-economic status (though these data were not captured). Thus, 
results may not be generalizable to a broader population. At this time, we were not aware of a suitable replica-
tion cohort that would contain parallel-omics panels in an all-ages health-heterogeneous cohort. Future studies 
will be needed to assess generality of the findings to other populations, not only for the sake of replicability of 
the findings, but due to the relative ancestral homogeneity of this data set. Previous studies have shown genetic 
heterogeneity between white and non-white individuals, particularly with regard to African Americans and 
risk of cognitive outcomes among carriers of APOE and ABCA7 variants55,56. Given known wide-ranging racial/
ethnic disparities in dementia incidence57, it is imperative that future deep-phenotyping studies are far more 
inclusive than the study presented here.

Another limitation to the interpretation of results concerns the issue of pleiotropy; we cannot discern pleio-
tropic, non-AD-related effects from true causal effects that are implicated in AD pathogenesis. However, even 
if the associations described here are purely the result of pleiotropy and are unrelated to causal mechanisms of 
AD, the novel associations we described may provide clues to the function of several genes that are highly inter-
esting to the AD community. Related, we only obtained peripheral plasma, and are unable to examine effects in 
AD-relevant compartments such as brain or CSF. We had high-coverage WGS available and did not interrogate 
other types of genetic variation such as copy number variants, indels, and short tandem repeats. Lastly, data 
harmonization with other studies will be a challenge. For instance, most previous metabolomics studies used 
metabolomics data that lacked complete speciation, and more work is needed with newer technologies that yield 
high fidelity data to determine the biological effects of specific serum metabolites.

This study also has multiple strengths. While most studies focused on AD-related genetic variation consist of 
case/control cohorts in older adults, the Arivale data offered an unprecedented look into how genetic variation 
perturbs physiological pathways in the blood long before disease onset, in health-heterogeneous individuals of 
all ages. This feature allowed us to observe subtle changes in blood associated with genetic variation, due to the 
relatively large sample size (2831 individuals with WGS) and the high quality of the blood analytes collected. 
Our results are from a “real-world” cohort, which promises to be an increasing source of large-scale data in the 
community going forward, with its accompanying advantages and disadvantages. Some results were previously 
unobserved and need to be replicated (such as the associations between APOE2 and multiple proteins), while 
other results agree with previous findings and serve to reinforce confidence that the results are reasonably rep-
resentative and not simply spurious.

Conclusions
Due to a unified world-wide effort, dozens of genetic variants have been robustly implicated in the development 
of AD, though we are still in the early stages of understanding exactly how genetic variation contributes to dis-
ease. Our study showed that AD-related genetic variation manifests in the blood, from early adulthood onward, 
and highlights known targets for prevention in early and mid-life, such as cholesterol monitoring, mitigation of 
inflammation, and possibly, HSV-1 prevention and/or viral load management. Importantly, as well as yielding 
new insight into the pathobiology of AD through adulthood, these results may provide a significant number 
of new drug targets that are highly novel and biologically plausible or may serve as biomarkers if confirmed 
to have a consistent influence on AD pathophysiology. Lastly, these results highlight the need to assess for sex 
differences in future studies. Taken together, these results not only illustrate previously unobserved biological 
phenomenon as a result of AD-associated genetic variation, but also serve as an important resource for the 
generation of hypotheses for future functional genomics studies and emphasize the potential insight that can be 
gleaned from deeply phenotyped individuals.

Methods
Population.  The Institute for Systems Biology, through partnership with their spin-out company Arivale, 
has access to a wealth of data collected from subscribers in the commercially available (now closed) Arivale 
Scientific Wellness program3,58, from July 2015 to May 2019. In brief, participants in the Arivale program were 
assigned a health coach upon joining the program, who then utilized data from clinical blood assays and detailed 
health-history and behavioral questionnaires to personalize health advice and management of health goals.

All research was conducted in accordance with regulations and guidelines for observational research in 
human subjects. Informed consent was obtained from all participants for the use of their anonymized data in 
research. The study was reviewed and approved by the Western International Review Board (Study Number 
1178906 at Arivale and Study Number 20170658 at the Institute for Systems Biology, in Seattle, WA).

Blood‑derived clinical laboratory tests and whole genome sequencing.  We identified 2831 indi-
viduals with whole genome sequencing (WGS) and at least one class of blood-derived analyte, described as 
follows. For each participant, fasting clinical blood laboratory tests were measured upon joining the program. 
Blood samples were collected at either local facilities hosted by LabCorp (North Carolina, USA) or Quest Diag-
nostics (New Jersey, USA). Whole genome sequencing was performed on DNA extracted from whole blood 
with library preparation using the Illumina TruSeq Nano Library prep kit and sequenced using Illumina HiSeq 
X, PE-150, target 30× coverage at a single Clinical Laboratory Improvement Amendmnets (CLIA)-approved 
sequencing laboratory. Only values with < 20% missing were included, and no imputation was performed. At the 
baseline blood draw, 2827 of the 2831 individuals with sequenced whole genomes had up to 63 fasting clinical 
blood lab tests. Clinical blood tests included standard markers for cardiometabolic health (lipid levels), diabetes, 
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inflammation, kidney and liver function, nutrition (vitamins and minerals), and blood cell counts. All clinical 
lab tests included, with descriptions and units where available, are in Supplementary Excel File 2.

Proteomics: Frozen plasma samples (aliquots of the initial blood draw) were also sent to Olink (Olink Bio-
science, Sweden) for targeted proteomics assays based on Olink’s proximity extension assay (PEA) technique59, 
which is a dual-recognition, DNA-coupled methodology that is quantified by quantitative real-time PCR and 
enables high multiplex, high throughput proteomics that are both sensitive and specific (for further details, 
see https://​www.​olink.​com/​our-​platf​orm/​our-​pea-​techn​ology/). Full details of normalization and batch effect 
adjustment have been described previously60. For analysis, only proteins with < 20% missing were included and 
no imputation was performed. Up to 2694 of these participants had quantitative proteomic data on 274 pro-
teins from three Olink panels (Cardiovascular II, Cardiovascular III, and Inflammation panels). An additional 
919 proteins (from 10 additional panels available at Olink at the time) were obtained from a subsample of 354 
individuals, in which Apolipoprotein E (APOE) e2/e2 and APOE e4/e4 genotypes were overrepresented. Since 
multiple batches were performed, previously generated pooled control samples were run with each batch and 
used for batch correction and multiple control samples were included on each plate.

Metabolomics.  Aliquots of frozen plasma samples were sent to Metabolon, Inc. (North Carolina) to conduct 
metabolomics assays using the Metabolon HD4 discovery platform. In brief, Metabolon conducted their Global 
Metabolomics high-performance liquid chromatography (HPLC)-mass spectrometry assays on the plasma sam-
ples. Full details of sample handling, quality control, biochemical identification, data curation, and quantifica-
tion and normalization has been described previously60,61. For analysis, only metabolites with < 20% missing (or 
detectable) were included and no imputation was performed. Up to 1909 of the participants had data from 754 
metabolites, though due to technical variability and variation in detection rates of rare metabolites, sample sizes 
ranged from 1539 to 1909 after pruning metabolites with < 20% missing. Relative concentration values were 
reported for each metabolite. Full biochemical annotation for each metabolite (when available), as provided by 
Metabolon at the time of quantification, can be found in Supplementary Excel File 2.

SNP selection.  We selected 25 common and somewhat-rare (> 1% allele frequency) single nucleotide poly-
morphisms (SNPs) that were significantly associated with AD in a large-scale meta-analysis based on updated 
data from the International Genomics of Alzheimer’s Project (IGAP)5. In addition to these variants, we also 
included the SNP coding for APOE e2 (rs7412). The 25 SNPs were linked to 24 genes (two SNPs in APOE), as 
detailed in Table S1.

Polygenic risk score calculation for AD.  PGRS for age-associated AD risk was computed using sum-
mary statistics from the initial IGAP-driven GWAS meta-analysis6. Briefly, the set of SNPs included in the PGS 
was determined as follows. The Benjamini–Hochberg62 procedure was applied to the p-values for all SNPs tested 
in the GWAS to account for multiple testing by controlling the false discovery rate (FDR) at a 5% level. This FDR-
filtered set of SNPs was then further pruned using linkage disequilibrium (LD): pairs of SNPs in close proximity 
capturing highly correlated information (r2 > 0.2) were identified, and the SNP with the smaller p-value in the 
pair was kept; this was repeated until all remaining SNPs were mutually uncorrelated (r2 < 0.2 for all pairs). The 
PGRS for each individual was then calculated by summing up the published effect size for each selected SNP 
multiplied by the number of effect alleles the individual carried for that SNP, across all of the selected SNPs. 
Missing genotypes were mean imputed using the effect allele frequency.

Statistical analysis.  Following a phenome-wide association study approach (PheWAS)12,63, the primary 
model for each SNP used linear regression, with genotype (0, 1, or 2, with 0 indicating homozygosity for the 
major allele and 2 indicating homozygosity for the minor allele) as the predictor, and each continuous quan-
titative analyte as the dependent variable. Clinical lab and metabolite values were natural log transformed to 
account for right skewness and outliers, with + 1 added to each natural log transformation to prevent zero values. 
Proteomic quantities were presented as normalized protein expression (NPX), Olink’s arbitrary unit, which is 
in log2 scale. Genetic ancestry was represented by principal components (PCs) 1–4, calculated using previ-
ously described methods64. All SNP models were adjusted for age, sex, genetic ancestry PCs 1–4, and vendor 
identification for the clinical labs. Secondary models tested effect modification by sex by including a gene x sex 
interaction term in the models. We accounted for multiple comparisons by applying the Benjamini–Hochberg 
method62 at alpha = 0.05 on a per-SNP basis and applied to the main effect of genotype in the primary models, 
while we set B-H alpha = 0.1 of the sex-SNP interaction term as the threshold for the gene x sex interaction mod-
els. The FDR rate took into account testing for all 2008 possible analytes, with the understanding that this adjust-
ment was highly conservative given a high degree of correlation among multiple groups of analytes, and the fact 
that some analytes were sampled in only a subset of individuals. Both raw and adjusted p-values are reported.

We also repeated the primary PheWAS approach with participants stratified by self-identified race, due to 
evidence for variable genetic risk for cognitive outcomes between non-Hispanic white (hereafter referred to as 
“white”) and non-white populations55,56. Unfortunately, due to small numbers of individuals in specific non-white 
racial and ethnic groups, which become vanishingly small when accounting for allele frequency and numbers 
of available samples (Table 1), we were not able to assess genetic risk effects in individual groups with statistical 
rigor and had to group all non-white participants into one stratum for analysis. The stratified white and non-white 
group analyses serve as an investigation into whether our primary results reflected the majority-white makeup of 
the Arivale population. PheWAS was applied as described above, with FDR to account for multiple comparisons.

To visualize genotype-analyte associations across adulthood, we created boxplots of the log-transformed 
analyte values by genotype, stratified by age group (by decade, from 18–29 to 70 and over). One-way analysis of 

https://www.olink.com/our-platform/our-pea-technology/
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variance (ANOVA) was used to test whether there was an overall difference between genotypes within each age 
group. All statistical analyses were performed in R v3.5.1 (https://​www.R-​proje​ct.​org/).

In post-hoc exploratory analysis focused on the SNP in the PICALM (Phosphatidylinositol Binding Clathrin 
Assembly Protein) locus (rs3851179), sex-stratified and sex-interaction analyses was performed on 12,324 cases 
(57.7% female) and 11,453 controls (59.9% female) of European ancestry from the Alzheimer’s Disease Genetics 
Consortium (ADGC) (see Supplementary Table 4 for dataset details). Datasets were imputed to the Haplotype 
Reference Consortium (HRC)65 panel using the Michigan Imputation Server (https://​imput​ation​server.​sph.​
umich.​edu/​index.​html#!). Standard pre-imputation quality control was performed on all datasets individually, 
including exclusion of individuals with low call rate, individuals with a high degree of relatedness, and vari-
ants with low call rate66. Individuals with non-European ancestry according to principal components analysis 
of ancestry-informative markers were excluded from the further analysis. Detailed descriptions of individual 
ADGC datasets can be found in Kunkle et al.5 and Table S5. Study-specific logistic regression analyses employed 
Plink67 for sex-interaction analysis and SNPTest68 for sex-stratified analysis. Sex-interaction, which analyzed the 
sex × variant interaction, and sex-stratified analysis of males and females separately, were performed for two 
separate models per analysis, one adjusting for age, sex and PCs (model 1) and a second adjusting for age, sex, 
PCs and APOE (model 2). Results were meta-analyzed with METAL using inverse variance-based analysis69. 
In order to explore the relationships among the proteins associated with the PICALM variant, we input the list 
of sex-interacting proteins into Cytoscape software, utilizing the CLUEGO plug-in70,71, which drew a network 
linking proteins through their known GO Biological processes.

Data availability
The datasets generated and/or analysed during the current study are not publicly available because the data was 
generated by a private investment firm under legal terms that mandate researchers to sign a data access agree-
ment permitting the use of these data for non-proift research purposes. Upon reasonable request, researchers 
can access the Arivale deidentified dataset supporting the findings in this study for research purposes from ISB. 
Requests should be sent to data-access@isbscience.org. The data are available to qualified researchers on submis-
sion and approval of a research plan.

Code availability
Code used for PheWAS statistical analysis is available through the Sage Bionetworks Github (https://​github.​com/​
Sage-​Bione​tworks/​ADsnps_​PheWAS.​git).
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