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Abstract

The spin orbit interaction (SOI) of light has been the focus of recent research due

to the fundamental consequences and potential applications in diverse systems,

ranging from inhomogeneous anisotropic media to engineered plasmonics and

metamaterial strutures. Here, we demonstrate perhaps one of the simplest means

to study SOI and the spin Hall shift (SHS) using a standard Gaussian TEM00

beam in an optical trap. Our system exploits the versatility and interference

generated in a stratified medium to control and manipulate SOI and transfer the

resulting angular momentum to optically trapped microparticles. We show that

even such a simple setup can lead to an order of magnitude enhancement in the

SHS compared to the subwavelength shifts typically obtained. Importantly, this

leads to the generation of doughnut-like mode structures from a fundamental

Gaussian beam, as well as controlled rotation of mesoscopic particles using a

linearly polarized Gaussian beam that lacks intrinsic angular momentum. The

local optical torque leading to rotation of the particles is a direct measure of the

local spin angular momentum (SAM) density of the field. Our measurement is

the first experimental demonstration of using a probe particle to measure the

SAM density for nonparaxial fields.
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Spin orbit interaction (SOI)—which couples the spin and orbital degrees of freedom of massive

and massless particles—can be associated with several fundamental consequences in physics,

including the fine and hyperfine structure in atoms [1] and the spin Hall effect (SHE) in

electrons [2]. In the case of light, SOI and the accompanying geometric phases cause an

interdependence of trajectory and polarization (spin). Thus, a change in the orbital degrees of

freedom affects the polarization state of light and vice versa. The latter leads to the well-known

SHE of light [3–9], whereas the former can lead to interconversion between the spin angular

momentum (SAM) and the orbital angular momentum (OAM) of photons (spin–vortex

coupling), polarization controlled vortices, and other intriguing effects of geometric phases in

scattering and tight focusing [6, 10–15]. It is also pertinent to note that SHE and the spin–vortex

coupling are interlinked, because the former is a consequence of total AM conservation [6]. In

addition, experimental measurements of effects induced by SOI of light have helped aid in

understanding quantum and condensed matter systems that have similar underlying physics.

Although a few practical applications, such as nanodisplacement probes [9] and the generation

of optical vortices [15], have been developed, in several cases, the effects of SOI have been

rather small, with the magnitude of trajectory shifts reported due to the SHE of light typically

being in subwavelength regimes [4–6]. However, in [9, 16], the SHE due to the scattering of

nanoparticles was magnified using a focusing–imaging system with high numerical aperture

(NA) microscope objectives so the extent of the SHE covered the exit pupil of the microscope.

Optical tweezers, which employ a tightly focused beam to trap and manipulate mesoscopic

particles [17–21], have interesting consequences for SOI because tight focusing couples the

trajectory and polarization of the propagating light. Indeed, the geometrical SHE of light has

been experimentally studied by focusing through a truncated lens [22]. However, the only

report of SOI in optical tweezers found in the literature is [10], where SOI-mediated angular

momentum conservation was shown to affect the angular velocity of rotating birefringent

particles for higher-order Gaussian beams. In this paper, we show that the strength of the SOI

can be significantly magnified in a stratified medium used in the light path of the optical

tweezers system. Note that tight focusing in a stratified medium has been theoretically studied

previously [23]. However, these studies primarily addressed the effect of the stratified medium

on the resulting intensity distribution of light. In addition, the results shown were for lenses with

relatively low NA (around 0.9), and consequently, the focusing was not tight enough to produce

any SOI effects. Thus, there could be no significant dependence of the intensity near the focus

on the input polarization, which was therefore not considered in these studies. As we

demonstrate in this paper, the situation is drastically modified for the use of high NA (1.4)

microscope objectives in a stratified medium. This gives rise to enhanced SOI, which causes a

large anisotropic linear diattenuation effect (differential attenuation of orthogonal polarizations)

near the focal plane. Interestingly, we observe that, for a particular choice of layers for the

stratified medium, a tightly focused linearly polarized Gaussian beam loses its azimuthal

symmetry in the focal plane while side lobes are formed in the direction of the polarization.

These side lobes become stronger as the beam propagates, so that at the region of caustics, the
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beam splits into two with a definite azimuthal pattern. Further spatial evolution in the axial

direction recovers the original Gaussian structure. Such polarization-dependent intensity

distribution can be understood as a direct manifestation of the spin redirectional toplogical

phase [8]. In addition, distinct regions of opposite ellipticity are produced at the edges of the

intensity lobes as a manifestation of giant SHEs of light (more than λ2 in magnitude). We

perform a rigorous three-dimensional (3D) analysis of the polarization evolution to calculate the

spin Hall shifts (SHS) near the focal plane and exploit the giant SHE to demonstrate

experimentally the controllable rotation of asymmetric microparticles in the trap using only a

fundamental Gaussian beam with no intrinsic angular momentum. In fact, the rotation of the

particles corresponds to a direct measurement of the local SAM density of the field [24, 25].

Further, we believe this is the first instance this has been experimentally demonstrated for

nonparaxial fields—measurements having been performed previously that consider the paraxial

approximation of the field [26, 27].

1. Theory and simulations

It is now well understood that tight focusing of light leads to a longitudinal component that can

be appropriately described using the framework of the Debye–Wolf theory [9, 16, 28, 29],

which uses the plane wave (spatial harmonic) decomposition of the Gaussian beam. The

evolution of each spatial harmonic can be represented by geometric rotations in the azimuthal

(ϕ) and polar (θ) directions with respect to the laboratory frame. A transfer function is given

ϕ θ ϕ= −A R R TR( ) ( ) ( )z y z , where α =R x y z( ) and i , ,i represents the SO(3) rotation matrix

around the i-axis by an angle α (for details, see supplementary information, available from

stacks.iop.org/njp/16/083037/mmedia). The effects of the stratified medium for different

polarizations of light are incorporated through the complex Fresnel transmission and reflection

coefficients T R( )s s and T R( )p p , respectively. Note that, due to low index contrast, the total field

in the stratified medium is dominated by the forward propagating waves. The final field inside

the medium can be written as [35]
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where the superscripts i and o denote the input and output fields, respectively, I I,0 1, and I2
are the well-known diffraction integrals [35], and C is a constant. The effect of SOI is

strongly manifested in the case of input linearly x-polarized light represented by a Jones

vector [1 0 0]T . Because linear polarization can be written as the sum of orthogonal circular

polarizations, one would obtain right and left circularly polarized components that have OAM

= −l 2 and =l 2, respectively, as well as linearly polarized longitudinal components with

topological charge = ±l 1, with each component satisfying total angular momentum

conservation (see supplementary information). The generation of such circular polarization

states from a linear input is a manifestation of the SHE. We will subsequently show that the

effect of the stratified medium is to cause a giant SHE—or a transverse spatial shift of these

individual polarization components so they have definite effects on trapped microparticles. It

is also evident from equation (1) that the total intensity for incident linearly polarized light

3

New J. Phys. 16 (2014) 083037 B Roy et al

http://stacks.iop.org/njp/16/083037/mmedia


would be given by

ρ ψ ψ= + ± + ±
⋆( )I I I I I IRe( ) 2 cos 2 2 (1 cos 2 ). (2)0

2
2
2

0 2 1
2

Here, we introduce a quantity D where = + | |
⋆D I I IRe ( ) )0 2 1

2 . D is known as the linear

diattenuation parameter and is a measure of the polarization dependence of intensity, where the

quantity ψ±D (1 cos 2 ) gives the intensity distribution as a function of the input polarization

angle ψ . Note that ψ±D (1 cos 2 ) is essentially a geometric phase term that is picked up due to

the SOI of the tightly focused light as it propagates through the stratified medium and its

magnitude can be used to quantify the strength of SOI in the system.

It is important to note that the SHS originates because of the finite longitudinal

component of the field that leads to transverse energy flows. This is manifested as transverse

separation of the two constituent opposite circular polarization modes of the input linearly

polarized state. The separation of the modes can be understood as the shift of the beamʼs

center of gravity for the two opposite circular polarization states. Thus, the SHS can be

determined from the longitudinal (Pz) and the transverse (Px y, ) components of the Poynting

vector [12, 30, 31], so that a 3D treatment of polarization is warranted. Therefore, we proceed

to build the 3D coherency matrix of the system [32, 33], from which we define the ×9 1

Stokes vectors Λ =i i, 1,9 to include the longitudinal polarization component. Then, the total

degree of polarization (DP) is defined as

ΣΛ

Λ
=DP

1

3
, (3)

i

o

2

2

so the degree of linear polarization (DLP) and degree of circular polarization (DCP) can be

obtained from the corresponding linear and circular descriptor Stokes parameters. The helicity

of the polarization is not apparent from the DP; thus, it is necessary to determine the two-

dimensional (2D) DCP from the 2D Stokes vectors that are obtained by neglecting the

z-components of the electric field in the 3D coherency matrix. This gives us the

=

+ +

V

Q U V
DCP , (4)

2 2 2

where Q U, , and V are the well-known 2D Stokes vector elements (see supplementary

information). Finally, the SHS for circularly polarized light is given by

Δ
Σ

Σ
= ±

+( )
y

y P P

P
, (5)

x y

i

with the positive and negative signs corresponding to left and right circularly polarized light,

respectively, and =i x y z, , . Now, for linearly polarized tightly focused light, the constituent

circular polarization components evolve in different trajectories, which results in a net spatial

shift of the individual components to create spatially separated regions of opposite circular

polarization near the focal plane. We continue to show that this spatial separation, or SHS, is

considerably amplified in the presence of a stratified medium leading to controlled rotation of

asymmetric microparticles. It is also interesting to note that the torque on the particle resulting

in its spinning motion is a direct measure of the SAM density of the field. The SAM density is

given in Gaussian units by [24]
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⎡⎣ ⎤⎦
πω

= × + ×⋆ ⋆S E E H H
1

16
Im , (6)

which leads to a torque α=
πω

T S[Im ( ) ]
1

8
, where ω is the frequency of the interacting light and

α is the polarizability of the particle [24]. However, because α α≫e m usually (αe and αm are

the electric and magnetic polarizabilities, respectively) it is the electric component of S that

interacts with the particle, which implies that the torque-producing rotation of the particle

essentially measures the electric component of the SAM density. More specifically, any rotation

in the radial direction is due to the z-component of the torque, which is proportional to

S( )e z—the z-component of the electric SAM density—which, in turn, is proportional to DCP

(equation (4)) modulated by the total intensity ρI ( ) [24].

Using the preceding theoretical approach, we performed simulations for a stratified

medium consisting of four layers that matched our experimental conditions. A schematic of our

system is shown in figure 1(a). The optical tweezers are built around an inverted microscope

(Zeiss Axiovert.A1) with a high NA objective (NA = 1.4) that tightly focuses the beam into the

sample chamber, as shown in figure 1(b). The sample system consists of the following layers:

(1) immersion oil, (2) cover slip, (3) sample aqueous solution and (4) glass slide. For the

simulation, we selected two different RI values for layer 2 (cover slip). Simulations were

completed for two specific cases, namely, (a) a perfectly polarizing cover slip ( = ≠T T0, 0p s ,

RI = 1.575), which would lead to complete conversion of spin to OAM, and (b) partially

polarizing cover slips ( ≠T T, 0p s ) of different RI.

0
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Figure 1. (a) Stratified medium (not to scale) formed in our experimental system with a
Gaussian beam (direction shown) focused inside the sample solution. The various layers
are (1) objective immersion oil (refractive index (RI) 1.516), (2) cover slip (RI 1.575),
(aqueous solution of microparticles (RI) 1.33), and (4) top glass slide (RI 1.516). For
conventional tweezers, the RI of (1) and (2) are matched. (b) A cartoon of the actual
experimental setup with the different layers of stratified medium shown physically. The
radial distribution of the electric field intensity near the focus (region shown using red
dashed lines) is also shown. The intensity distribution is modified from a Gaussian
structure into a ring-like pattern due to SOI.
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It is observed that the enhanced SOI breaks down the azimuthal symmetry in the intensity

profile so side lobes are formed even at the focus of the beam for a perfectly polarizing cover

slip (figure 2(a)). These become stronger as the beam propagates axially so a doughnut profile is

formed from an input Gaussian intensity distribution (figure 2(b)). For partially polarized cover

slips (figures 2(c) and (d)), the side lobes appear in the background of an intensity ring, with the

number of rings increasing with RI of the cover slip (figures 2(e) and (f)). Most importantly, the

enhanced SOI results in a large SHS, manifested as spatially separated regions that have

opposite circular polarization at the edges of the intensity lobes (figures 3(a)–(e)). Figure 3(f)

shows the z-component of the electronic component of the SAM density ( S( )e z) for a polarized

cover slip, whereas figure 3(g) shows the same for our experimental configuration (cover slip of

RI 1.575) calculated from equation (6). An absorbing particle (shown as a white oval in

figure 3(g)) trapped at such a region of high SAM density can experience a torque that may lead

Figure 2. Intensity distributions inside sample chamber (layer 3 of figure 1) of trapping
system for different RI and polarization properties of the cover slip (layer 2) for an x-
polarized input beam. (a) Intensity distribution for polarized cover slip ( = ≠T T0, 0p s )
with RI of 1.575, at the focus (z = 0). Intensity side lobes, separated radially by around
2 μm, with strength about 40% of that of the central lobe are seen. (b) Intensity
distribution for same cover slip as in (a) at an axial distance 2 μm away from the focus
(z = 2). The maximum intensity is now concentrated in two discrete side lobes formed
opposite to each other in the direction of polarization of the input beam, and separated
radially by around 4 μm. (c) Intensity distribution at the focus for unpolarized
( ≠ ≠T T0, 0p s ) cover slip of RI 1.575 at the focus. Side lobes are absent. (d) Intensity
distribution of same cover slip as in (c) at μ=z m2 . The side lobes in the polarization
direction are present as in (b), but in the background of a continuous intensity ring of
diameter about 4 μm around the focus. (e) Intensity distribution for cover slip of RI 1.65
at μ=z m2 . Multiple rings are now visible within the diameter of 3 μm that have higher
intensity compared to (d). This implies a higher axial trapping depth as well as larger
ring diameters for trapping of particles. (f) Intensity distribution for same cover slip of
RI as in (e) at μ=z m3 . The ring diameter is now around 5 μm with the intensity levels
similar to (d).
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Figure 3. Study of polarization distributions inside sample chamber (layer 3 of figure 1) of
trapping system for different RI and polarization properties of the cover slip (layer 2) for an
x-polarized input beam. All data are for an axial plane 2 μm away from the focus. (a) DP for
polarized cover slip ( = ≠T T0, 0p s ) with RI of 1.575. (b) DCP for (a). The helicities of the

polarization lobes are now apparent. (c) DP for unpolarized cover slip with RI of 1.575. (d)
DCP for (c). (e) DCP for RI=1.65. (f) S( )e z (equation (6)) for polarized cover slip. Note that

the values in the color bar are in units of
πω

1

16
. (g) S( )e z for our experimental case

(RI=1.575). An asymmetric absorbing particle (white oval) trapped in the any of the high
SAM regions would be likely to spin, the sense (clockwise or counterclockwise) dependent
on the sign of the SAM density magnitude. (h) Total Sz (electric and magnetic components)
for the experimental case. (i) Quiver plot showing the azimuth of the electric field vector for
case (b). There are four regions in which the electric field describes a vortex; interspersed
with these are regions of polarization singularity where the electric field does not exist. (j)
Quiver plot showing the azimuth of the electric field vector for case (d). Vortex formation
and polarization singularities are seen again, albeit over smaller regions compared to (g). (k)
Plots of SHS against axial distance from the focus for layer 2 RIs = 1.516 (RI matched case
with only one effective layer in the stratified medium), 1.575 and 1.65.
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to spinning motion. It is also interesting to compare S( )e z with the total Sz (having both electric

and magnetic components). Note that the electric and magnetic SAM densities may indeed be

different for nonparaxial systems [24]. The difference may arise because of the presence of

strong evanescent fields that could be created as a consequence of tight focusing through

stratified media, or because of scattering from resonant Mie particles (selective excitation of

transverse electric/transverse magnetic (TE/TM) scattering modes), excitation of surface

plasmon polaritons, and so forth. However, because we use the conventional Debye–Wolf

theory in our simulations, the inherent symmetry in the electric and magnetic fields leads to

equal magnitudes of S( )e z and S( )m z, which is shown in figure 3(h). Here, we plot Sz for the

experimental case and it is apparent that the radial distribution of the z-component of the total

SAM remains unaltered with respect to that of the electric component (figure 3(g)), except for

the magnitude, which is exactly doubled, thus implying that =S S( ) ( )e z m z. Note also that while

S( )e z is proportional to the DCP, as is apparent from figures 3(c)–(g), there is a greater number

of lobes in S( )e z because of the presence of the ρI ( ) factor in S( )e z. As shown in figure 2, the

distribution of ρI ( ) coupled with that of the DCP produces the final radial profile of S( )e z, which

shows more features than the DCP alone. In addition, tight focusing of input linearly polarized

light also leads to the generation of phase vortices, which in turn creates polarization

singularities close to the focus, as shown in figures 3(i) and (j). The azimuth of the electric field

vector is calculated from γ = ( )arctan
U

Q

1

2
, where U and Q are the well-known Stokes

parameters. The magnitude of SHS (equation (5)) as a function of the axial distance also shows

a definite tendency to increase with increasing RI of the cover slip, as observed from figure 3(k).

Shifts of more than λ2 obtained at an axial distance around 2.5 μm from the focus.

2. Experiment

We experimentally demonstrate the results of the effect of such large SOI and SHS on the

mechanical motion of microparticles through a number of controlled experiments. A schematic

of our setup is shown in figure 4(a). Images of the intensity distribution near the focal region

confirm the results shown in figure 2(d) with a ring-like transverse pattern, which can lead to

trapping of particles [34] and their movement along it [35]. We now exploit the large SHS

produced in our system to induce a spinning motion in an individual trapped peapod-shaped

soft oxometalate [36] or quartz microparticles (in accordance with the scheme displayed in

figure 3(f)). The choice of asymmetric particles was driven by the fact that such particles exhibit

form birefringence [37]. In the presence of elliptically polarized light, birefringent particles

experience two types of torque—an alignment torque that aligns the fast axis of the particle

along the electric field and a spinning torque proportional to the degree of ellipticity, light

intensity, and thickness of the particle [38]. For purely circularly polarized light, the alignment

torque vanishes and the particle exhibits pure rotation. We use two types of particles—peapod

shaped soft oxometalates (ammonium phosphomolybdate, NH PMo O( ) [ ]4 3 12 40 )) [36] of average

dimension μ×1.5 0.5 m and quartz microparticles of generally arbitrary shape (obtained by

crushing a large quartz crystal) but of dimensions between 1–3 μm. The experimental setup has

been described in detail in [35]. The polarization of the beam can be controlled by a half-wave

retarder placed at the input of the trap. As mentioned previously our cover slip is not index

matched with the objective immersion oil, which is very different from standard optical
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tweezers configurations and results in a stratified medium in the forward direction that enhances

the SOI of the tightly focused trapping light. Note that the index mismatch could, in principle,

be obtained using immersion oil that have different RI than the cover slip. However, previous

studies we have published [35] show there is a crucial dependence of the index mismatched

cover slipʼs thicknessʼs effect in determining the intensity distribution near the trap focus. The

thickness of oil (which is compressed between the microscope objective and cover slip, and is

thus typically not more than 5–10 um), even when it is index mismatched, will never be enough

Figure 4. (a) Schematic of experimental setup—MI: inverted microscope; LA: solid
state laser diode system at 1064 nm; M1-M6: mirrors; L1, L2: plano-convex lenses for
beam size adjustment to overfill microscope back aperture; WP: linear (half-wave)
wave-plate or retarder; CBS1, CBS2: 50–50 beam splitter cubes for 1064 nm. (b) Time
series of a single trapped peapod rotating in the clockwise direction due to elliptical
polarization created near the of f-axis intensity side lobes (see video 1 in the
supplementary data). For trace 4, the IR filter in front of the camera has been removed
and the particle is observed being trapped in the of f-axis intensity ring. (c) Time series
of a singe trapped ellipsoid shaped quartz particle rotating counterclockwise due to the
same effect (see video 2 in the supplementary data). (d) Rotation speed versus trapping
laser power for a representative peapod (red crosses) and quartz particle (red open
circles). (e) Cartoon depicting the experimental design for control of rotation of a
spinning particle. The particle (black transparent oval) spins in one of the ellipticity
regions (σ− in this case) produced due to SHS in the trapping light. A second beam of
the same input polarization is introduced adjacent to the first beam so the ellipticity
region nearest to the particle has opposite helicity of polarization. When the two spots
are brought close together, the torque on the particle is canceled out if the intensities of
the two beams are the same, which causes the particle to stop rotating, or reverses its
direction of rotation if the intensity of the second beam is higher than the first beam,
which produced higher opposite torque.
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to achieve the results that can be obtained using a cover slip that is more than 150 um (250 um

in our case) thick.

In this work, we show the following distinct effects: (a) rotation (spinning) of single

particles using a linearly polarized Gaussian beam and (b) control of the rotation using a

second beam. We show the rotation of a single peapod (clockwise) and quartz particle

(counterclockwise), respectively, in figures 4(b) and (c) (see also videos 1, 2 and 3 in the

supplementary data, which show the clockwise and counterclockwise rotation of a peapod and

counterclockwise rotation of a quartz particle, respectively). To visualize the particles, an IR

filter is required in front of the camera to avoid saturating it. The filter is removed in image 4 in

figure 4(a) where a ring-like intensity structure is evident from the rotating particle located on

the ring at the left of the central maxima. This signifies that it is sampling a region of high

ellipticity that causes it to spin (see video 1). Counterclockwise rotation of a peapod is shown in

video 2, in which the peapod is now located at the right corner of the intensity ring (which is

shown from the fact that the central maxima now appears at the left corner of the video).

Figure 4(d) shows the rotation speed of a representative peapod (crosses) and quartz particle

(open circles) as a function of incident laser power. The rotation frequencies of single trapped

peapods and quartz particles are obtained by detecting the back-scattered intensity from a weak

detection laser at 670 nm that is incident on the trapped particle. The output signal is modulated

at the frequency of rotation. The quartz particles typically rotate faster (few Hz) because they

are, on average, bigger and thicker than the peapods (sub-Hz rotation rate). Note that the torque

particles are subjected to is actually a measurement of the local SAM density of the field.

Control of the rotation is demonstrated by introducing a second beam of the same

polarization (see figure 4(e)), which can either stop the rotation or change the direction of

rotation depending on its intensity with respect to the first beam. Thus, we use a nonpolarizing

beam splitter cube at the input of the microscope to generate two independent trapping beams to

form two traps adjacent to each other. The power levels of the two trapping beams are

controlled by placing neutral density filters in the path of the beam reflected from the cube, as

shown in figure 4(a). Videos 3 and 4 in the supplementary data demonstrate stopping and

changing the direction of rotation of single quartz microparticles using the control beam,

respectively.

3. Discussion

Spinning of particles about their axes has been reported in literature to be a consequence of the

unbalanced torque arising due to the asymmetry in scattering from irregularly shaped particles

[39]. For these cases, the asymmetry in the scattering must be strong enough to exceed the

viscous drag force of the fluid medium that surrounds the particles. However, we have verified

through simulation that such strong asymmetry does not arise for the ellipsoidal shaped particles

that we observe rotating (figure 4(b) and (c)) in our experiments. Indeed, for scattering to cause

rotations, the particles must have large extrusions on them to cause the strong azimuthal

scattering asymmmetry required to produce the necessary torque. Thus, we can safely conclude

that the observed rotations on the particles are a consequence of the enhanced SOI.

It is crucial to note that the observed azimuthal asymmetry in the radial distribution of the

intensity caused by SOI is very different from earlier studies on the axial intensity distribution

near the focal plane of an optical trap due to change of focusing induced by the dielectric
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interfaces encountered by the trapping beam [40–43]. This causes the well-known spherical

aberration must be considered to calibrate the axial trapping force correctly [40]. On the other

hand, the intensity and polarization distributions near the trap focus we have studied could be

successfully exploited for inducing translatory motion [35], and controllable rotation (this work)

in particles, and are unique manifestations of SOI and SHS.

We believe that our findings on the manifestations of the enhanced SOI due to the

propagation of a tightly focused beam in a stratified medium could lead to further explorations

on these systems. While we have experimentally demonstrated interesting applications in

controlled rotation and transportation of microparticles, several other applications can also be

envisaged that may open new research directions for research in optical tweezers. For example,

microparticles can be trapped in multiple radial rings (figure 2(f)) similar to holographic

tweezers, but using a single Gaussian beam. The presence of annular regions of high ellipticity

could also produce multiparticle trapping in combination with rotations in both directions using

a single Gaussian beam—a configuration that could enable the study of optical binding as well

as exchange of angular momentum between birefringent particles. In addition, it may be

interesting to study possible imbalances in the z-component of the electric and magnetic SAM

densities in tight focusing through stratified media due to the effect of strong evansecent fields,

or the presence of Mie scatterers and plasmonic structures interacting with the tightly focused

light.

In conclusion, we investigated many interesting manifestations of SOI due to a tightly

focused Gaussian beam propagating in a stratified optical trap. We studied the effects of both

spin redirectional geometric phase and polarization dependent trajectory (SHE). The effect of

the geometric phase was shown to introduce a large anisotropic diattenuation that modified the

radial intensity distribution near the focal plane. For a cover slip chosen to be a polarizer for

certain spatial harmonics, the structure of a Gaussian beam was modified to the extent of the

formation of discrete of f-axis intensity lobes around the center at the focus. For partially

polarizing cover slips, a high RI value caused the formation of intensity lobes in the background

of a continuous ring that could be used to transport particles [35], as well as multiple intensity

rings that could support the trapping of particles similar to holographic tweezers in the radial

direction. The enhanced SOI also caused a large SHE to break down the incident linearly

polarized Gaussian beam into components of large degree of opposite circular polarization that

are spatially separated due to a large SHS near the trap focal plane. Asymmetric particles

trapped at the epicentres of such regions can be rotated (spun) with full control on their

rotational degree of freedom. The torque experienced by the particles is thus a measure of the

electric component of the local SAM density of the optical field, and we believe this

measurement is the first of its kind in using a microprobe to directly measure the SAM density

of nonparaxial fields.
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