Progress of Theoretical Physics, Vol. 61, No. 1, January 1979
Manifestly Covariant Canonical Formulation

of Yang-Mills Field Theories. II $^{\text {² }}$

Higgs-Kibble Model with Spontaneous Symmetry Breaking_-_
Taichiro Kugo*) and Izumi Ojima*

Department of Physics, Kyoto University, Kyoto 606**)
and Max-Planck-Institut für Physik und Astrophysik, München
*Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606

* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606

(Received September 11, 1978)
 The proporties of asymptotic fields are fully analysed for the $S U$ (2) Higgs-Kibble model

 and Q_{c} are obtained. and Q_{c} are obtained.

§ 1. Introduction

 $\mathcal{L}=\mathcal{L}_{s}(A, F)-i \partial^{\mu} \bar{c}^{a} D_{\mu}^{a b} c^{b}-\partial^{\mu} B^{a} \cdot A_{\mu}^{a}+\alpha_{0} B^{a} B^{a} / 2$, $\mathcal{L}_{s}(A, \Psi)=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}{ }^{a} \cdots \partial_{\nu} A_{\mu}^{a}+g \varepsilon^{a b c} A_{\mu}^{b} A_{\nu}{ }^{c}\right)^{2}$

$$
{ }^{\prime}\left(\Phi_{1}+A\right) A-{ }_{a}\left|J_{n}{ }^{\prime \prime} V_{p^{2}} B 2 \frac{Z}{\mathrm{~L}}-A^{\prime \prime} Q\right|+
$$

where Ψ is a complex isospinor scalar field and, needless to say,

$$
D_{\mu}^{a b} c^{b} \equiv\left(\partial_{\mu} \delta^{a b}+g \varepsilon^{a c b} A_{\mu}^{c}\right) c^{b} \equiv\left(\partial_{\mu} c+g A_{\mu} \times c\right)^{a}
$$

jo anjen	山olqeqoedxa	
		$\cdot{ }_{v}\left(3 \times{ }^{n}\right.$
	' ABS	Of ssalpara
$(I \cdot I)$		' $($ Lt +) 1

 ψ, called Higgs scalar, and $\chi^{a}(a=1,2,3)$, called Goldstone bosons:
*) Fellow of the Japan Society for Promotion of Science (until Oct. 1977)
ssauppe quәsadd **

Manifestly Covariant Canonical Formulation of YM Field Theories 295

$$
(\mathfrak{F} \cdot \mathrm{L}) \quad ،[\rho \times \chi+\rho(\phi+a)](\tau / \sigma) \times g=\chi_{g}
$$

 conserved charge Q_{c} : $(1.2 \cdot 34)$ and $(1.2 \cdot 35))$:

$$
\delta B=0
$$

$$
(1 \cdot 3)
$$

and the source terms $K^{\prime} s$ and L are present in the (extended) action in the

vu!io

L
$\stackrel{6}{6}$

 unctions. We begin with the definitions of 1 PI-2-vertices (i.e., inverse propagators) in the momentum space:

$$
\begin{aligned}
\Gamma_{\mu \nu}^{a b}(k) & \equiv \int d^{4} x e^{i k(x-y)} \overline{\delta A_{a}^{\mu}(x) \delta^{\prime} A_{b}^{\nu}}(\bar{y}) \\
& \equiv \delta_{a b}\left\{\left(g_{\mu \nu}-k_{\mu} k_{\nu} / k^{2}\right) A\left(k^{2}\right)+B\left(k^{2}\right) k_{\mu} k_{\nu} / k^{2}\right\}, \\
\Gamma_{A_{\mu} \chi}^{a b}(k) & \equiv i \delta_{a b} k_{\mu} C\left(k^{2}\right), \\
\Gamma_{\chi x}^{a b}(k) & \equiv \delta_{a b} k^{2} F\left(k^{2}\right), \\
\Gamma_{\bar{c} c}^{a b}(k) & \equiv-i \delta_{a b} k^{2}\left(1+\gamma\left(k^{2}\right)\right) .
\end{aligned}
$$

$(\varepsilon \cdot z)$ $(z \cdot z)$ $(I \cdot z)$
 $(\nabla \cdot \square)$

At the tree level, these functions A, \cdots, F, γ reduce to
$A\left(k^{2}\right)=M^{2}-k^{2}, \quad B\left(k^{2}\right)=M^{2}$,

$C\left(k^{2}\right)=M, \quad F\left(k^{2}\right)=1, \quad \gamma\left(k^{2}\right)=0$,

 ing 2-vertices:

```
(2.
```

(2.

Manifestly Covariant Canonical Formulation of YM Field Theories 297

${ }^{*)}\langle 0| T(\cdots)|0\rangle^{-1}$ represents the inverse of $\langle 0| T(\cdots)|0\rangle$ in the sense of functionals, j.e., $\int d z$
$\times\langle 0| T(c(x) \bar{c}(z))|0\rangle^{-1}\langle 0| T(c(z) \bar{c}(y))|0\rangle=\delta^{4}(x-y)$, and $\langle 0| T\left(c_{a}(x) \bar{c}_{b}(y)|0\rangle^{-1}=-i\left(\delta^{2} \Gamma / \delta \bar{c}_{a}(x) \delta c_{b}(y)\right)\right.$.

Manifestly Covariant Canonical Formulation of YM Field Theories 299

Manifestly Covariant Canonical Formulation of YM Field Theories 301
$\left\{\begin{array}{l}Z_{x} \equiv F^{-1}(0), \\ \widetilde{M}_{2}=\frac{d}{d s}\left(\operatorname{Re} \frac{B(s)}{F(s)}\right)_{s=0}, \\ \sigma_{x x}(s)=-(\pi s)^{-1} \operatorname{Im}\left(F^{-1}(s)\right)+\alpha_{0}\left(\pi s^{2}\right)^{-1} \operatorname{Im}(B(s) / F(s)),\end{array}\right.$
$\left\{\begin{array}{l}\widetilde{Z}_{3} \equiv(1+\gamma(0))^{-1}, \\ \widetilde{\sigma}(s) \equiv-(\pi s)^{-1} \operatorname{Im}\left((1+\gamma(s))^{-1}\right) \text {. }\end{array}\right.$
As stated in the Introduction, we assume that the LSZ asymptotic conditions hold,

where $f_{i}(x)$ is a positive frequency solution of the free equation of motion and 'ex'

 the commutation relations:
$\stackrel{\text { ® }}{\substack{4 \\ ~}}$

$(\mp Z \cdot Z)$
$\overparen{10}$
$\stackrel{y}{9}$
$\stackrel{y}{3}$
$(2 \cdot 26)$
$(2 \cdot 27)$

$(87 \cdot \boldsymbol{\sigma})$

302 T.Kugo and I. Ojima
$\left[\psi^{\mathrm{ex}}(x), \psi^{\mathrm{ex}}(y)\right]=i \Delta\left(x-y ; m_{\psi}^{2}\right)$,
and, c^{ex} and \bar{c}^{ex} commute with $A_{\mu}^{\mathrm{ex}}, B^{\mathrm{ex}}, \chi^{\mathrm{ex}}$ and ψ^{ex}, while ψ^{ex} does with A_{μ}^{ex},
$B^{\mathrm{ex}}, \chi^{\mathrm{ex}}, c^{\text {ex }}$ and $\bar{c}^{\text {ex }}$. We have defined, in the above,
and, c^{ex} and \bar{c}^{ex} commute with $A_{\mu}^{\mathrm{ex}}, B^{\mathrm{ex}}, \chi^{\mathrm{ex}}$ and ψ^{ex}, while ψ^{ex} does with A_{μ}^{ex},

$K=L / Z_{3}=\left(Z_{3} Z_{B}\right)^{-1}$,
$\alpha=\alpha_{0} / Z_{3}$,
$N=\left(Z_{3} / Z_{\chi}\right)^{1 / 2} \widetilde{M}_{1}=\left(\sqrt{K} Z_{3} / Z_{\chi}\right) \widetilde{M}_{2} / 2$,

and have used the WT relation (2.12) for $\left.k^{2}=0, B 0 \mathrm{~B}\right)$
equalities,

$$
\begin{aligned}
& (2 \cdot 31 \mathrm{a}) \\
& (2 \cdot 31 \mathrm{~b})
\end{aligned}
$$

equalities
 sure of the one-particle irreducibility of $\Gamma_{\mu \nu}(k)$.*) Equation (2.31b) can be de-

 last equality in $(2 \cdot 30 c)$ is a consequence of $(2 \cdot 31 b)$.

 asymptotic fields by help of their irreducibility:

$$
\begin{aligned}
& (q Z \varepsilon \cdot \sigma) \\
& (v Z \varepsilon \cdot \sigma)
\end{aligned}
$$

 [eotsíqdun mouf κ [əךə[duoo səpou [eots ones, we introduce a field $U_{\mu}^{e x}$ in the following manner:

$$
\text { Then, we obtain, from }(2 \cdot 23) \sim(2 \cdot 27) \text {, }
$$

$$
(\varepsilon \varepsilon \cdot \zeta)
$$

Manifestly Covariant Canonical Formulation of YM Field Theories 303
$\left(\square+m^{2}\right) U_{\mu}^{\mathrm{ex}}(x)=0$ and $\partial^{\mu} U_{\mu}^{\mathrm{ex}}(x)=0$,
$\left[U_{\mu}^{\mathrm{ex}}(x), U_{\nu}^{\mathrm{ex}}(y)\right]=-i\left(g_{\mu \nu}+m^{-2} \partial_{\mu} \partial_{\nu}\right) \Delta\left(x-y ; m^{2}\right)$,
using $(2 \cdot 22),(2 \cdot 23),(2 \cdot 26)$ and $(2 \cdot 32) \sim(2 \cdot 34) . \quad$ Thus, U_{μ} ex is the Proca field
with mass m and, as a consequence, $A_{\mu}{ }^{\text {ex }}$ satisfies the following equation of motion: $\left(\square+m^{2}\right) A_{\mu}^{\mathrm{ex}}=\left[(\sqrt{K}-\alpha N) m^{2}-\alpha \sqrt{K^{-1}}\right] \partial_{\mu} B^{\mathrm{ex}}+\sqrt{K} m^{2} \partial_{\mu} \chi^{\mathrm{ex}}$,
э! fields, which is identified with the total state vector space $C()$ on the assumption of asymptotic completeness. For the fields other than $\chi^{e x}$, since they are simple pole fields, the creation and annihilation operators are defined in the usual manner:

$$
\phi_{k}{ }^{(i)} \equiv i \int d^{3} x f_{k}^{(i) *}(x) \overleftrightarrow{\partial}_{0} \phi_{i}^{\mathrm{ex}}(x) \equiv\left(f_{k}{ }^{(i)}, \phi_{i}{ }^{\mathrm{ex}}\right),
$$

$$
(2 \varepsilon \cdot Z)
$$

 the following complete sets of wave packets:
$\left\{g_{k}(x)\right\}$ for $B^{\mathrm{ex}}, c^{\mathrm{ex}}, \bar{c}^{\mathrm{ex}}\left(\right.$ and $\left.\chi^{\mathrm{ex}}\right)$:
$\square g_{k}(x)=0, \quad\left(g_{k}, g_{l}\right)=\delta_{k l}$,
$\sum_{k} g_{k}(x) g_{k}^{*}(y)=D_{+}(x-y) ;$

$\left.f_{\alpha}^{\prime \prime}(x)\right\}$ for $U_{\mu}^{\mathrm{ex}}:$

$(2 \cdot 38)$

$\quad \operatorname{xid}^{d}$ IOJ $\left\{(x)^{d} b\right\}$
$\left(\square+m_{\psi}{ }^{2}\right) q_{\rho}(x)=0, \quad\left(q_{\rho}, q_{\sigma}\right)=\delta_{\rho \sigma}$,
$\sum_{\rho} q_{\rho}(x) q_{\rho}^{*}(y)=\Delta_{+}\left(x-y ; m_{\psi}^{2}\right)$
For the dipole ghost fields $x^{e x}$, we need another wave packet system $\left\{h_{k}(x)\right\}$, besides the above $\left\{g_{k}(x)\right\}$, which satisfies
*) The relation $L=\widetilde{M}^{-2} Z_{x}$ necessary for the derivation of $(2 \cdot 36)$ is guaranteed by the WT
relation $(2 \cdot 12)$ and the equality $(2 \cdot 31 a)$. Note also that the equality stated in $(2 \cdot 30 \mathrm{c})$ plays an mportant role in the consistency of $(2 \cdot 36)$ with $(2 \cdot 33),(2 \cdot 26)$ and $(2 \cdot 27)$.
T.

Manifestly Covariant Canonical Formulation of YM Field Theories 305

the derivation of (2.51), use has been made of (2.45). By (2.51), we finish proof of (I.4.1) which was already utilized in I: In this model, the physical rticles are the massive Proca field U_{α} and the Higgs scalar ψ_{p}. The other des, χ_{k} (Goldstone bosons), B_{k}, c_{k} and \bar{c}_{k}, span the unphysical particle sector. Now, S-matrix is defined as
$S \mid \alpha \text { out }\rangle=\mid \alpha \text { in }\rangle$ dhe relations between $\phi^{\text {in }}$ and $\phi^{\text {out }}$ directly follows from (2.52) and the asymp-

$$
\begin{align*}
& \text { (egc.7) }
\end{align*}
$$

 assignment to the FP ghosts, ${ }^{3)}$ (I.1.5),

' $D=+\underline{\rho}$ рие $\underline{\rho}=+D$

 and/or, e.g., $A_{\mu}{ }^{\text {int }}=\left(S A_{\mu}{ }^{\text {out }} S^{-1}\right)^{\dagger}=S^{-1 \dagger} A_{\mu}{ }^{\text {outt }} S^{\dagger} \neq S A_{\mu}{ }^{\text {outt }} S^{-1}$.

${\Phi_{i}{ }^{r}(x)=Z_{i}{ }^{-1 / 2} \Phi_{i}(x) .}$

$$
(\mp G \cdot \sigma)
$$

$:{ }^{71} \Omega$ pue

$$
\stackrel{\leftrightarrow}{\dot{\infty}}
$$

$$
\dot{C}
$$

Manifestly Covariant Canonical Formulation of YM Field Theories 307
Nanifestly Covariant Canonical Formulation of YM Field Reories 307
T. Kugo and I. Ojima
\ominus_{\odot}^{∞}

Manifestly Covariant Canonical Formulation of YM Field Theories 309
By the replacement $(3 \cdot 12)$, the identities $(3 \cdot 10)$ and $(3 \cdot 11)$ lead to the

$(6[\cdot \mathcal{E})$

In fact the commutator,**)

$$
=: \mathcal{K} \cdot \delta \phi^{T}: \eta^{-1} K\langle 0| T i \Phi \exp i J^{T} \Phi|0\rangle
$$

[^0]
 tion $(3 \cdot 7)$. The commutator of $\partial \theta \cdot Q$ with $S \Phi_{K}{ }^{r}(x)$ of $(3 \cdot 6)$,

 $\left[i \delta \theta \cdot Q, S \Phi_{K}^{r}(x)\right]=: \mathcal{K}:\langle O| T \delta \Phi_{K}^{r}(x) \exp i J^{T} \Phi|0\rangle=S \delta \Phi_{K}^{r}(x)$

[^1] he matrix A have been exchanged. So, if A contains time derivatives, there appear the additional

 by the choice $(3 \cdot 19)$.

310
T. Kugo and I. Ojima
In the last step in $(3 \cdot 21)$, we have used a formula $(3 \cdot 6)$ for $O=\delta \Phi_{K}^{r}(x)$. Since
S commutes with $\delta \theta \cdot Q,(3 \cdot 21)$ gives the desired transformation $(3 \cdot 7)$.
The induced transformation $(3 \cdot 19)$ of the in-fields can be simplified consider-
bly. Define a matrix B :

$$
\delta \phi=-\left(\eta^{-1} A \eta\right)^{T} \phi \delta \theta \equiv \delta \theta B \phi,
$$

where the position of $\delta \theta$ should be noted because we are including the cases of anti-commuting $\delta \theta$. Note the Jacobi identity:
$-\left[\left[\phi_{I}(x), \phi_{J}(y)\right]_{\mp}, i \delta \theta \cdot Q\right]$

 hand side of $(3 \cdot 23)$ vanishes. So, $(3 \cdot 23)$ with (3.22) leads to
$\cdot \pm\left[(\kappa)^{f} \phi^{\prime}(x)^{Y} \phi^{M I} \mathbb{Z} \theta O\right]==^{ \pm}\left[\theta \rho(\mathcal{N})^{Y} \phi_{Z}^{Y \rho}\left(\ell_{I-} \ell\right)-{ }^{\prime}(x)^{I} \phi\right]-$
($\mathfrak{7} 7 \cdot \varepsilon)$
 $A_{I J}=B_{I J}$ and have proved that

$$
\begin{aligned}
& \left.\qquad 20 \theta \cdot Q, \phi_{i}^{\left(m_{i}\right) 1 \mathrm{n}}\right]=0 \theta \cdot A_{i j}^{\left(m_{i}\right)} \phi_{j}^{\left(m_{j}=m_{i}\right)^{\mathrm{in}}}=0 \phi_{i}^{\left(m_{i}\right) \mathrm{in}} \text {. } \\
& \text { This formula }(3 \cdot 25) \text { is proved for the cases without any multi-pole ghost }
\end{aligned}
$$

$$
{ }^{6}(x)_{\mathrm{u}!} \mathscr{T}\left(\pi / \mathrm{T}-0^{0} x\right)_{\mathrm{I}-}\left({ }_{\sigma} \Delta\right)(Y \bar{\sigma} / x)+(x)_{\mathrm{u}} \chi=(x)_{\mathrm{u}!} \not \approx
$$

 Gelds.

$$
\square \widetilde{\chi}^{\text {in }}(x)=0
$$ $\square \chi^{\text {in }}=-(\alpha / K) B^{\text {in }}$,

by help of (2.43) and (2.50). Further, obviously, this $\tilde{\chi}^{\text {in }}$ feld together with the other simple pole fields, $B^{\text {in }}, c^{\text {in }}, \bar{c}^{\text {in }}$, etc., spans the complete set of asymptotic

$$
\begin{aligned}
& {\left[200 \cdot Q, \phi_{i}\right]=00 \cdot A_{i j}^{i j} \phi_{j}^{\left(m_{j}=m_{i}\right)}=0 \phi_{i}}
\end{aligned}
$$

Manifestly Covariant Canonical Formulation of YM Field Theories 311
 $\widetilde{\phi}_{I}^{\text {in }}(\boldsymbol{x}, t)=\int d^{3} \boldsymbol{y} M_{I J}(\boldsymbol{x}, \boldsymbol{y}) \phi_{I}^{\text {in }}(\boldsymbol{y}, t)=M_{I J} \phi_{J}^{\mathrm{in}}(x)$
 as $\phi_{I}^{\text {in }}=M_{I J}^{-1} \widetilde{\phi}_{J}^{\text {in }}$ because the set $\left\{\phi_{I}^{\text {in }}\right\}$ also spans the complete set of asymptotic
 important point to be noted here is that the relation (3.27) is essentially' local' in
 we define the (non-covariant) Heisenberg fields $\widetilde{\Phi}_{I}^{r}$ by the same relation as $(3 \cdot 27)$,

$$
(3 \cdot 28)
$$

we can obtain in this case

 This is rewritten, by help of $(3 \cdot 13)$, as

$\left(\delta \widetilde{\Phi}_{i}^{\left(m_{i}\right)}(x)\right)^{\mathrm{in}}=\langle 0| \delta \widetilde{\Phi}_{i}^{\left(m_{i}\right)}(x)\left|\phi_{j, \alpha}^{\left(m_{j}=m_{i}\right) \mathrm{in}}\right\rangle \eta_{j k}^{\left(m_{i}\right)-1} \widetilde{\phi}_{k}{ }^{\left(m_{k}=m_{i}\right) \mathrm{in}}+$ h.c.,

*) This relation (3.32) trivially follows from $\langle 0| \Phi_{I}^{r}(x)\left|\widetilde{\phi}_{J, a}^{\mathrm{mn}}\right\rangle=\langle 0| \phi_{I}^{\ln }(x)\left|\tilde{\phi}_{J, \alpha}^{\mathrm{in}}\right\rangle$.
312
multi-pole ghost fields. Fortunately, we have a short cut for it as follows. Consider the two point functions $\langle 0| T \delta \mathscr{\Phi}_{T}^{r}(x) \Phi_{J}^{r}(y)|0\rangle$. If we can find the coefficients $A_{J J}$ which satisfy
$\left.\langle 0| T \delta \Phi_{r}^{r}(x) \Phi_{J}^{r}(y)|O\rangle\right|_{1 P \text {-pole at } m_{i}}=\left.\delta \theta \cdot A_{I K}\langle 0| T \Phi_{K}^{r}(x) \Phi_{J}^{r}(y)|0\rangle\right|_{1 P-\text { pole at } m_{i}}$
on the poles* ${ }^{*}$ with mass m_{i} due to single particle intermediate states, then, in view of (3.31) and (3.32), we can conclude that

$$
\begin{aligned}
& \qquad\left(\delta \Phi_{I}^{r}(x)\right)^{\text {in }}=\left[i \delta \theta \cdot Q, \phi_{I}^{\text {in }}(x)\right]=\delta \theta \cdot A_{I J} \phi_{J}^{\text {in }}(x)=\bar{\delta} \phi_{J}^{\text {in }}(x) \text {. } \\
& \text { This is because the equality }(3 \cdot 33) \text { holds if and only if }(3 \cdot 34) \text { is valid, since the } \\
& \text { whole single particle space is connected to the vacuum by the complete set of } \\
& \text { covariant field operators }\left\{\phi_{J}^{r}(y)\right\} \text {. Notice that }(3 \cdot 33) \text { is nothing but the on-shell } \\
& \text { replacement and it gives a generalization of the first equation of (3.13). So we } \\
& \text { can generally find } A_{I J} \text { by the procedure illustrated in Fig. } 3(b) \text {. } \\
& \text { Thus we have proved quite a general formula (3.34) with the coefficient } A \\
& \text { determined by (} 3 \cdot 33) \text {. We should note that this formula itself is Lorentz covariant } \\
& \text { in spite of the use of noncovariant fields } \widetilde{\phi} \text { in the proof. By }(3 \cdot 34) \text {, the explicit } \\
& \text { form of } Q \text { is given as** }
\end{aligned}
$$

$$
Q=\int d^{3} x: A_{I J} \phi_{J}{ }^{\mathrm{in}}(x) \pi_{I}^{\mathrm{in}}(x): .
$$

$$
Q=\int d^{3} x: A_{I J} \phi_{J}{ }^{\text {in }}(x) \pi_{I}^{\text {in }}(x):
$$

The uniqueness of the forms (3.34) and (3.35) is assured by the irreducibility of the Heisenberg fields and the asymptotic fields, respectively. This result coincides with that obtained by Umezawa and his collaborators ${ }^{13}$ in some specific cases
 here are similar to theirs, we have obtained the result without use of the path

 In a sense, for any charges Q, when it is written in terms of the asymptotic fields, we can drop off the terms which produce non-linear terms of the transfor-
 the coefficients of the linear parts.
Although we have worked only about in-fields, the arguments given above are easily transformed into those for the case of out-fields by the use of the
 § 4. Asymptotic forms of Q_{B} and Q_{C}
 the factors $1 / 2$ are needed in front of them.
Manifestly Covariant Canonical Formulation of YM Field Theories 313
charge Q_{B} and Q_{C}. Due to the formula $(3 \cdot 34)$, all the problem which we have to do is to determine the coefficients $A_{I J}$ by using (3.33) in these cases. The
 totic fields $\phi_{I}^{\text {in }}(x)$ is given as follows in case of Q_{B} :
$\delta U_{\mu}^{r}=\left[i \delta \lambda \cdot Q_{B}, U_{\mu}^{r}\right]=\delta \lambda \sqrt{K} Z_{3}\left\{D_{\mu} c^{r}-\sqrt{L} / Z_{\chi} \partial_{\mu}(g / 2)[(v+\phi)+\chi \times] c^{r}\right\}$, $\delta \bar{c}^{r}=\left[i \delta \lambda \cdot Q_{B}, \bar{c}^{r}\right]=i \delta \lambda B^{r}, \quad$ (4.1)
where use has been made of (1
 related to the original Noether charge $Q_{B}{ }^{0}$ as $Q_{B}=\widetilde{Z}_{3}^{1 / 2} Z_{B}^{-1 / 2} Q_{B}^{0}, \quad$ (4.2)

[^2]

[^0]: $(07 \cdot \varepsilon)$

[^1]:

[^2]:

 desired result

 $(\partial \varnothing \cdot \varnothing) \quad{ }^{6} 0={ }_{\Omega} \underline{Q}={ }_{\mu} \mathscr{Q} \underline{\underline{Q}}$

