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Abstract

Linear cosmological perturbation theory is pivotal to a theoretical understanding of current cosmological
experimental data provided e.g. by cosmic microwave anisotropy probes. A key issue in that theory is to extract
the gauge invariant degrees of freedom which allow unambiguous comparison between theory and experiment.

When one goes beyond first (linear) order, the task of writing the Einstein equations expanded to n’th order
in terms of quantities that are gauge invariant up to terms of higher orders becomes highly non-trivial and
cumbersome. This fact has prevented progress for instance on the issue of the stability of linear perturbation
theory and is a subject of current debate in the literature.

In this series of papers we circumvent these difficulties by passing to a manifestly gauge invariant framework.
In other words, we only perturb gauge invariant, i.e. measurable quantities, rather than gauge variant ones.
Thus, gauge invariance is preserved non perturbatively while we construct the perturbation theory for the
equations of motion for the gauge invariant observables to all orders.

In this first paper we develop the general framework which is based on a seminal paper due to Brown
and Kuchǎr as well as the realtional formalism due to Rovelli. In the second, companion, paper we apply our
general theory to FRW cosmologies and derive the deviations from the standard treatment in linear order. As it
turns out, these deviations are negligible in the late universe, thus our theory is in agreement with the standard
treatment. However, the real strength of our formalism is that it admits a straightforward and unambiguous,
gauge invariant generalisation to higher orders. This will also allow us to settle the stability issue in a future
publication.
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1 Introduction

General relativity is our best theory for gravitational physics and, sofar, has stood the test of time and
experiments. Its complicated, highly nonlinear equations of motion, however, mean that the calculation of
many gravitational processes of interest has to rely on the use of approximations. One important class of
such approximations is given by perturbation theory, where, generally speaking, one perturbs quantities of
interest, such as the metric and matter degrees of freedom around an exact, known solution which, typically,
displays a high degree of symmetry.

It is well-known that perturbation techniques in general relativity pose challenges above and beyond
those typically associated with them in other areas of physics, such as stability, convergence issues etc.
The reason is that general relativity is a gauge theory, the gauge group being the diffeomorphism group
Diff(M) of the spacetime manifold M . As a result, all metric and matter variables transform non-trivially
under gauge transformations. This creates the problem of differentiating between (physical) perturbations
of a given variable and the effect of a gauge-transformation on the latter. The obvious solution to this
situation would be to calculate only with observables and perturb those. It has proved extremely difficult,
however, to find observables in the full theory, with the exception of a few special situations, such as for
asymptotically flat spacetimes. As a way out of this conundrum, one usually resorts to calculating in a
specific gauge, carefully ensuring that all calculated quantities are gauge-independent. Alternatively, one
tries to construct quantities that are observables up to a certain order. In the cosmological standard model
this has been successfully done in linear order and forms an integral part of the modern lore of cosmology.
In fact, there have been attempts to extend this even to second order and beyond, see, e.g., [1, 2, 3, 4]. The
sheer complexity of those calculations, however, shows that there is a natural limit to how far that approach
can be pushed. Furthermore, it is not clear whether it will succeed for other backgrounds, such as a black
hole spacetime etc.

This clearly makes the search for a more general framework for perturbation theory of observable quan-
tities highly desirable. Another motivation comes from the prospects of developing perturbation methods
for non-perturbative quantum gravity approaches, such as loop quantum gravity [5]. It is clear that the
standard methods mentioned earlier will be extremely difficult, if not impossible to implement.

This paper, the first in a series dedicated to this challenge, lays the foundations at the level of the full
theory. Subsequent papers will deal with simplified cases of particular interest, such as perturbations around
an FRW background.

After this brief overview of the motivations behind our paper, let us now discuss some of these issues in
more detail. The crucial ingredient in our undertaking is the construction of observables for the full theory.
To that end let us first recall the counting of the true degrees of freedom of general relativity: The temporal-
temporal as well as the temporal-spatial components of the Einstein equations do not contain temporal
derivatives of four metric functions (known as lapse and shift). Thus, in the Lagrangean picture, these four
sets of equations can be used, in principle, in order to eliminate the temporal-temporal and temporal-spatial
components of the metric in terms of the spatial-spatial components1. In addition, diffeomorphism gauge
invariance displays four additional degrees of freedom as pure gauge2. This is why general relativity in
vacuum (without matter) has only two true (configuration) degrees of freedom (gravitons).

In the canonical picture, the ten equations split into four plus six equations. The four equations are the
afore mentioned constraints which canonically generate spacetime diffeomorphisms, that is, gauge transfor-
mations. The other six equations are canonically generated by a canonical “Hamiltonian” which is actually
a linear combination of these constraints, and thus also generates gauge transformations and even is con-
strained to vanish. It is customary not to call it a Hamiltonian but rather a Hamiltonian constraint. The

1In the Hamiltonian picture, these equations relate canonical momenta to canonical configuration coordinates. There are
four additional (so called primary) constraints which impose that the momenta conjugate to lapse and shift vanish which leaves
only two independent momenta. These eight constraints are of the first class type in Dirac’s terminology [6].

2In the Hamiltonian picture, the eight constraints canonically generate gauge transformations which displays eight out of
ten configuration variables as pure gauge.
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interpretation of Einstein’s equations as evolution equations is therefore unconvincing. Instead, the correct
interpretation seems to be that they actually describe the flow of unphysical degrees of freedom under gauge
transformations. Thus we contend that their primary use is to extract the true degrees of freedom in the
way described below. These true degrees of freedom are gauge invariant and thus have trivial evolution with
respect to the canonical Hamiltonian (constraint). This is the famous problem of time of General Relativity
[8]: There is no true Hamiltonian, only a Hamiltonian constraint and the observable quantities do not move
under its flow. Nothing seems to move, everything is frozen, in obvious contradiction to our experience.
This begs, of course, the question of what determines the time evolution of the true physical observables.

In [9] a possible answer was proposed. Namely, it was shown that the problem of time can be resolved
without affecting the interpretation of Einstein’s equations as evolution equations by adding certain matter
to the system. The method for doing this is based on Rovelli’s relational formalism [10], which was recently
extended considerably by Dittrich [11], as well as on the Brown – Kuchař mechanism [12]. This necessarily
uses a canonical approach. Furthermore, it was shown in [9] that this in one stroke provides the true degrees
of freedom and provides us with a true (physical) Hamiltonian which generates a non trivial evolution of the
gauge invariant degrees of freedom. Remarkably, these evolution equations look very similar to Einstein’s
equations for the type of matter considered. The type of matter originally used in [9] was chosen somewhat
ad hoc and guided more by mathematical convenience rather than physical arguments 3. Furthermore, it
seems desirable to find the optimal matter which would minimally affect the standard interpretation of
Einstein’s equations as evolution equations while increasing the number of true degrees of freedom by four.
As it turns out, there is a natural candidate, which we will use for our purposes: Pressure free dust as
introduced in the seminal paper by Brown and Kuchař [12] cited before. The dust particles fill time and
space, they are present everywhere and at every instant of time. They follow geodesics with respect to the
dynamical four metric under consideration. However, they only interact gravitationally, not with the other
matter and not with itself. The dust serves as a dynamical reference frame solving Einstein’s hole problem
[14]. It can be used to build gauge invariant versions of all the other degrees of freedom.

The dust supplies the physically meaningless spacetime coordinates with a dynamical field interpretation
and thus solves the “problem of time” of General Relativity as outlined above. This is its only purpose. For
every non – dust variable in the usual formalism without dust there is unique gauge invariant substitute
in our theory. Once these observable, that is gauge invariant, matter and geometry modes have been
constructed as complicated aggregates made out of the non gauge invariant matter, geometry and dust
modes, the dust itself completely disappears from the screen. The observable matter and geometry modes
are now no longer subject to constraints, rather, the constraints are replaced by conservation laws of a
gauge invariant energy momentum density. This energy momentum density is the only trace that the dust
leaves on the system, it can be arbitrarily small but must not vanish in order that the dust fulfills its role
as a material reference frame of “clocks and rods”. The evolution equations of the observables is generated
by a physical Hamiltonian which is simply the spatial integral of the energy density. These evolution
equations, under proper field identifications, can be mapped exactly to the six of the Einstein equations for
the unobservable matter and geometry modes without dust, up to modifications proportional to the energy
momentum density. Thus again the influence of the dust can be tuned away arbitrarily and so it plays a
perfect role as a “test observer”. It is interesting that in contrast to [12] the dust must be a “phantom dust”,
for the same reason that the phantom scalars apperared in [9]: If we would use usual dust as in [12] then
the physical Hamiltonian would come out negative definite rather than positive definite. Or equivalently,
physical time would run backwards rather than forward. Notice that general relativistic energy conditions
for the gauge invariant energy momentum tensor are not violated because it does not contain the dust
variables and it is the dust free and gauge invariant energy momentum tensor that the positive physical
Hamiltonian generates. Hence, while the energy conditions for the phantom dust species are violated at
the gauge variant level, at the gauge invariant level there is no problem because the dust has disappeared.
Notice also that even at the gauge variant level the energy conditions for the total energy momentum tensor

3Also, apart from cosmological settings, the consequences of the deviations of these evolution equations from Einstein’s
equations was not analysed.
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are still satisfied if there is sufficient additional, observable matter present.
Based on these constructions we will develop a general relativistic perturbation theory in this series of

papers. In the current work we treat the case of a general background, in the follow-up papers we discuss
special cases of particular interest.

The plan of this paper is as follows:
In section 2 we review the seminal work of Brown and Kuchař [12]. We start from their Lagrangian

(with opposite sign in order to get phantom dust) and then perform the Legendre transform. This leads to
second class constraints which were not discussed in [12] and which we solve in appendix A. After having
solved the second class constraints the further analysis agrees with [12]. The Brown – Kuchař mechanism
can now be applied to the dust plus geometry plus other matter system and enables us to rewrite the four
initial value constraints of General Relativity in an equivalent way such that these constraints are not only
mutually Poisson commuting but also that the system deparametrises. That is, they can be solved for the
four dust momentum densities, and the Hamiltonian densities to which they are equal no longer depend on
the dust variables.

In section 3 we pass to the gauge invariant observables and the physical Hamiltonian. In situations
such as ours where the system deparametrises, the general framework of [11] drastically simplifies and
one readily obtains the Dirac observables and the physical Hamiltonian. Due to general properties of the
relational approach, the Poisson algebra among the observables remains simple. More precisely, for every
gauge variant non – dust variable we obtain a gauge invariant analog and the gauge variant and gauge
invariant observables satisfy the same Poisson algebra. This is also proved for part of the gauge invariance
by independent methods in appendix B. The physical time evolution of these observables is generated by a
unique, positive Hamiltonian.

In section 4 we derive the equations of motion generated by the physical Hamiltonian for the physical
configuration and momentum observables. We also derive the second order in time equations of motion
for the configuration observables. Interestingly, these equations can be seen of almost precisely the usual
form that they have in the canonical approach [26] if one identifies lapse and shift with certain functions of
the canonical variables. Hence we obtain a dynamical lapse and shift. The system of evolution equations
is supplemented by four sets of conservation laws which follow from the mutual commutativity of the
constraints. They play a role quite similar to the initial value constraints for the system without dust
written in gauge variant variables but now the constraint functions do not vanish bur rather are constants
of the motion.

In section 5 we treat the case of asymptotically flat spacetimes and derive the necessary boundary terms
to make the Hamiltonian functionally differentiable in that case. Not surprisingly, the boundary term is
just the ADM Hamiltonian. However, while in the usual formalism the bulk term is a linear combination
of constraints, in our formalism the bulk term does not vanish on the constraint surface, it represents the
total dust energy.

In appendix C we perform the inverse Legendre transform from the physical Hamiltonian to an action.
This cannot be done in closed form, however, we can write the transform in the form of a fix point equation
which can be treated iteratively. The zeroth iteration precisely becomes the Einstein – Hilbert action
for geometry and non – dust matter. Including higher orders generates a more complicated “effective”
action which contains arbitrarily high spatial derivatives of the gauge invariant variables but only first time
derivatives.

In section 6 we perturb the equations of motion about a general exact solution to first order, both in the
first time derivative order form and the second time derivative order form. Notice that our perturbations
are fully gauge invariant. In appendix D we show that one can get the second time derivative equation of
motion for the perturbations in two equivalent ways: Perturbing the second time derivative equations of
motion to first order or deriving the second time order equation from the perturbations to first order of the
first time order equations. This is an important check when one derives the equations of motion for the
perturbations on a general background and the second avenue is easier at linear order. However, the first
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avenue is more economic at higher orders. In appendix E we show that the equations of motion up to n’th
order are generated by the physical Hamiltonian expanded up to (n+1)th order. Moreover we show that
the invariants expanded to n’th order remain constants of the motion under the (n+1)th order Hamiltonian
up to terms of at least order n+1. This is important in order to actually derive the second time derivative
equations of motion because we can drop otherwise complicated expressions.

In section eight we compare our new approach to general-relativistic perturbation theory with some
other approaches that can be found in the literature.

Finally, in section nine we conclude and discuss the implications and open problems raised by the present
paper.

In appendix F we ask the question whether the qualitative conclusions of the present paper are generic or
whether they are special for the dust we chose. In order to test this question we sketch the repetition of the
analysis carried out for the phantom dust for the phantom scalar field of [9]. It seems that qualitatively not
much changes, although the dust comes closer than the phantom scalar to reproducing Einstein’s equations
of motion. This indicates that the Brown – Kuchař mechanism generically leads to equations of motion
for gauge invariant observables which completely resemble the equations of motion of their gauge variant
counter parts.

Appendix G contains more details concerning some calculations in section seven.
Finally, our rather involved notation is listed, for the convenience of the reader, on the next page.
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Notation

As a rule of thumb, gauge non invariant quantities are denoted by lower case letters, gauge invariant
quantities by capital letters. The only exceptions from this rule are the dust fields T, Sj , ρ,Wj , their conju-
gate momenta P,Pj , I, I

j and their associated primary constraints Zj , Z, Z
j which however disappear in the

final picture. Partially gauge invariant quantities (with respect to spatial diffeomorphisms) carry a tilde.
Background quantities carry a bar. Our signature convention is that of relativists, that is, mostly plus.
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symbol meaning

GN Newton constant
κ = 16πGN gravitational coupling constant

λ scalar coupling constant
Λ cosmological constant
M spacetime manifold
X spatial manifold
T dust time manifold
S dust space manifold

µ, ν, ρ, .. = 0, .., 3 tensor indices on M
a, b, c, .. = 1, 2, 3 tensor indices on X
i, j, k, .. = 1, 2, 3 tensor indices on S

Xµ coordinates on M
xa coordinates on X
σj coordinates on S
t foliation parameter
τ dust time coordinate
Y µ

t one parameter family of embeddings X →M
Xt = Yt(X ) leaves of the foliation

gµν metric on M
qab (pullback) metric on X
q̃ij (pullback) metric on S
Qij Dirac observable associated to qab

pab momentum conjugate to qab

p̃ij momentum conjugate to q̃ij
P ij momentum conjugate to Qij

ζ scalar field on M
ξ scalar field on X
ξ̃ pullback scalar field on S
Ξ Dirac observable associated to ξ
π momentum conjugate to ξ

π̃ momentum conjugate to ξ̃
Π momentum conjugate to Ξ

v potential of ζ, ξ, ξ̃, Ξ
T dust time field on X
T̃ dust time field on S
Sj dust space fields on X
ρ dust energy density on M, X
Wj dust Lagrange multiplier field on M,X

U = −dT +WjdS
j dust deformation covector field on M

J = det(∂S/∂x) dust field spatial density on X
P momentum conjugate to T

P̃ momentum conjugate to T̃
Pj momentum conjugate to Sj

I momentum conjugate to ρ
Ij momentum conjugate to Wj

Zj , Z, Z
j dust primary constraints on X

µj , µ, µj dust primary constraint Lagrange multipliers on X

8



ϕ diffeomorphism of X
nµ unit normal of spacelike hypersurface on M
n coordinate lapse function on X
na coordinate shift function on X
p momentum conjugate to n
pa momentum conjugate to na

z, za primary constraint for lapse, shift
ν, νa lapse and shift primary constraint Lagrange multipliers

φ,ψ,B,E MFB scalars on X , S
Sa, Fa MFB transversal vectors on X
Sj, Fj MFB transversal vectors on S
hab MFB transverse tracefree tensor on X
hjk MFB transverse tracefree tensor on S
Φ,Ψ linear gauge invariant completions of φ,ψ
Va linear gauge invariant completions of Fa

Vj linear gauge invariant completions of Fj

ctota total spatial diffeomorphism constraint on X
ctotj = Sa

j c
tot
a total spatial diffeomorphism constraint on X

ctot total Hamiltonian constraint on X
ca non – dust contribution to spatial diffeomorphism constraint on X

cj = Sa
j ca non – dust contribution to spatial diffeomorphism constraint on X

c̃j non – dust contribution to spatial diffeomorphism constraint on S
Cj 6= c̃j momentum density: Dirac observable associated to c̃j

c non – dust contribution to Hamiltonian constraint on X
c̃ non – dust contribution to Hamiltonian constraint on S

C 6= c̃ Dirac observable associated to c̃
h energy density on X
h̃ energy density on S

H = h̃ energy density: Dirac observable associated to h̃
hj = ctotj − Pj auxiliary density on X

ǫ numerical energy density on S
ǫj numerical momentum density on S

H =
∫
S d3σ H physical Hamiltonian, energy
L Lagrange density associated to H

L =
∫
S d3σ L physical Lagrangian
Vjk velocity associated to Qjk

Υ velocity associated to Ξ
N = C/H dynamical lapse function on S

Nj = −Cj/H dynamical shift function on S
N j = QjkNk dynamical shift function on S

∇µ gµν compatible covariant differential on M
Da qab compatible covariant differential on X
D̃j q̃jk compatible covariant differential on S
Dj Qjk compatible covariant differential on S
Q̄jk background spatial metric
P̄ jk background momentum conjugate to Q̄jk

Ξ̄ background scalar field
Π̄ background momentum conjugate to Ξ̄

ρ̄ = 1
2λ

[ ˙̄Ξ2 + v(Ξ̄)] background scalar energy density

p̄ = 1
2λ

[ ˙̄Ξ2 − v(Ξ̄)] background scalar pressure

9



Gjkmn = Qj(mQn)k − 1
2QjkQmn physical DeWitt bimetric

[G−1]jkmn = Qj(mQn)k −QjkQmn inverse physical DeWitt bimetric
Ḡjkmn = δj(mδn)k − 1

2δjkδmn flat background DeWitt bimetric

[Ḡ−1]jkmn = δj(mδn)k − δjkδmn] inverse flat background DeWitt bimetric

10



2 The Brown – Kuchař formalism

In this section we review those elements of the Brown – Kuchař formalism [12] that are most relevant to us.
Furthermore, we present an explicit justification for dust as a deparametrising system, based on a canonical
analysis using the full arsenal of Dirac’s algorithm for constrained Hamiltonian systems.

For concreteness, we employ dust to deparametrise a system consisting of a generic scalar field ζ on
a four-dimensional hyperbolic spacetime (M,g). The corresponding action, Sgeo + Smatter, is given by the
Einstein – Hilbert action

Sgeo =
1

κ

∫

M
d4X

√
|det(g)| [R(4) + 2Λ] (2.1)

where κ ≡ 16πGN, with GN denoting Newton’s constant, R(4) is the Ricci scalar of g and Λ denotes the
cosmological constant, and the scalar field action

Smatter =
1

2λ

∫

M
d4X

√
det(g)| [−gµνζ,µζ,ν − v(ζ)] (2.2)

with λ denoting a coupling constant allowing for a dimensionless ζ and v is a potential term.

2.1 Lagrangian Analysis

In their seminal paper [12] Brown and Kuchař introduced the following dust action4

Sdust = −1

2

∫

M
d4X

√
|det(g)| ρ [gµν UµUν + 1] . (2.3)

Here, g denotes the four-metric on the spacetime manifold M. The dust velocity field is defined by U =
−dT +WjdS

j (j ∈ 1, 2, 3. The action Sdust is a functional of the fields ρ, gµν , T, S
j , Wj

5. The physical
interpretation of the action will now be given in a series of steps.

First of all, the energy momentum of the dust reads

T dust
µν = − 2√

|det(g)|
δSdust

δgµν
= ρ UµUν − ρ

2
gµν [gλσUλUσ + 1] . (2.4)

By the Euler–Lagrange equation for ρ

δSdust

δρ
= gλσUλUσ + 1 = 0 (2.5)

the second term in (2.4) vanishes on shell. Hence, U is unit timelike on shell. Comparing with the energy
momentum tensor of a perfect fluid with energy density ρ, pressure p and unit (timelike) velocity field U

T pf
µν = ρ UµUν + p (gµν + UµUν) (2.6)

shows that the action (2.3) gives an energy-momentum tensor for a perfect fluid with vanishing pressure.
For ρ 6= 0, variation with respect to Wj yields an equation equivalent to

LUS
j = 0 (2.7)

where L denotes the Lie derivative. Hence, the fields Sj are constant along the integral curves of U . Equation
(2.7) implies

LUT = UµT,µ = Uµ[T,µ −WjS
j
,µ] = −UµUµ = +1 (2.8)

4A classical particle interpretation of this action will be given in section 2.4.
5Here, T, Sj have dimension of length, Wj is dimensionless and, thus, ρ has dimension length−4. The notation used here is

suggestive: T stands for time, Sj for space and ρ for dust energy density.
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so that T defines proper time along the dust flow lines.
Variation with respect to T results in

∂µ[ρ
√

|det(g)|Uµ] =
√

|det(g)|∇µ[ρUµ] = 0 (2.9)

while variation with respect to Sj gives

∂µ[ρ
√

|det(g)|UµWj ] =
√

|det(g)|∇µ[ρUµWj ] = 0 . (2.10)

Using (2.9), (2.10) reduces to (assuming ρ 6= 0)

∇UWj = 0 . (2.11)

Thus, ∇UUµ = 0, and, as a consequence, the integral curves of U are affinely parametrised geodesics. The
physical interpretation of the fields T, Sj is complete: the vector field U is geodesic with proper time T ,
and each integral curve is completely determined by a constant value of Sj. This determines a dynamical
foliation of M, with leaves characterized by constant values of T . A given integral curve intersects each leave
at the same value of Sj.

2.2 Hamiltonian Analysis

In this section we derive the constraints that restrict the phase space of the system of a generic scalar field
on a spacetime (M, g), extended by the Brown – Kuchař dust. The reader not interested in the details of
the derivation, which uses the full arsenal of Dirac’s algorithm for constrained systems, may directly refer
to the result (2.32–2.34).

We assume (M, g) to be globally hyperbolic in order to guarantee a well posed initial value problem. As a
consequence, M is diffeomorphic to R×X , where X is a three-manifold of arbitrary topology. The spacelike
leaves Xt of the corresponding foliation are obtained as images of a one parameter family of embeddings
t 7→ Yt, see e.g. [26] for more details and our notation table for ranges of indices etc. The timelike unit
normals to the leaves may be written6 as nµ = [Y µ

,t − naY µ
,a]/n, where n, na are called lapse and shift

functions, respectively. Throughout, nµ is assumed to be future oriented with respect to the parameter t,
which requires n > 0.

The three metric on X is the pull back of the spacetime metric under the embeddings, that is, qab(x, t) =
Y µ

,aY ν
,bgµν . Denoting the inverse of qab by qab it is not difficult to see that

gµν = −nµnν + qab Y µ
,aY

ν
,b . (2.12)

It follows that the dust action can be written as

Sdust = −1

2

∫

R

dt

∫

X
d3x

√
det(q) n ρ

(
−U2

n + qabUaUb + 1
)

(2.13)

with Un ≡ nµUµ, Ua ≡ Y µ
,aUµ.

The form (2.13) is useful to derive the momentum fields canonically conjugate to T, Sj , respectively, as

P :=
δSdust

δT,t
= −

√
det(q) ρ Un

Pj :=
δSdust

δSj
,t

=
√

det(q) ρ UnWj . (2.14)

The second relation in (2.14) shows that the Legendre transform is singular, and we obtain the primary

constraint (Zwangsbedingung)
Zj := Pj +WjP = 0 . (2.15)

6We have written Y (t, x) ≡ Yt(x).
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Additional primary constraints arise when we compute the momenta conjugate to ρ and Wj

I := Z :=
δSdust

δρ,t
= 0

Ij := Zj :=
δSdust

δWj,t
= 0 . (2.16)

Considering the total action S ≡ Sgeo+Smatter+Sdust, further primary constraint follow from the calculation
of the canonical momentum fields conjugate to lapse and shift n, na, respectively,

p := z :=
δS

δn, t
= 0

pa := za :=
δS

δna
,t

= 0 (2.17)

The primary constraints signify the fact that we cannot solve for the velocities {Sj
,t, ρ,t, Wj ,t, n,t, n

a
,t},

respectively, in terms of the momenta and configuration variables. Therefore, all primary constraints must
be included in the canonical action, together with appropriate Lagrange multipliers

{
µj, µ, µj, ν, ν

a
}
, in

order to reproduce the Euler – Lagrange equations.
It is straightforward to solve for T,t and ζ,t, qab ,t. For instance,

T,t = nTn + naT,a = n
[
−Un +WjS

j
n

]
+ naT,a = n

1

ρ

P√
det(q)

+ Sj
,tWj + na

[
T,a −WjS

j
,a

]
. (2.18)

How to eliminate the velocities of the scalar field and the three-metric is well known,e.g. [26], and will not
be repeated here.

The resulting Hamiltonian constraint for the extended system, ctot ≡ cgeo + cmatter + cdust, is explicitly
given by

κ cgeo =
1√

det(q)

[
P abPab −

1

2
(P a

a )2
]
−
√

det(q) R(3) + 2Λ
√

det(q)

λ cmatter =
1

2

[
π2

√
det(q)

+
√

det(q)
(
qabξ,aξ,b + v(ξ)

)]

cdust =
1

2

[
P 2/ρ√
det(q)

+
√

det(q) ρ
(
qabUaUb + 1

)]
(2.19)

with Ua ≡ −T,a + Wj S
j
,a. The spatial diffeomorphism constraints for the extended system, ctota ≡ cgeoa +

cmatter
a + cdust

a , are explicitly given by

κ cgeoa = −2 Db P
b
a

λ cmatter
a = π ξ,a

cdust
a = P

[
T,a −Wj S

j
,a

]
. (2.20)

The total action in canonical form reads

S =

∫

R

dt

∫

X
d3x

(
PT,t + Pj S

j
,t + I ρ,t + Ij Wj,t + p n,t + pa n

a
,t +

1

κ
pab qab,t +

1

λ
π ξ,t

)

−
∫

R

dt Hprimary (2.21)

with pab denoting the momentum field conjugate to qab, ξ denoting the pullback of ζ to X , π denoting its
canonical momentum and D is the covariant differential compatible with qab. Furthermore, the Hamiltonian
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and spatial diffeomorphism constraints, together with the primary constraints, entered the definition of the
primary Hamiltonian

Hprimary ≡
∫

X
d3x hprimary (2.22)

via the density
hprimary ≡ µj Zj + µ Z + µj Z

j + ν z + νa za + n ctot + na ctota . (2.23)

Consistency requires that the the constraint surface, defined by the primary constraints (2.15), (2.16) and
(2.17), is stable under the action of Hprimary. In order to to check this, we summarise the only non-vanishing
elementary Poisson brackets7

{pab(x), qcd(y)} = κ δa
(cδ

b
d) δ(x, y)

{π(x), ξ(y)} = λ δ(x, y)

{P (x), T (y)} = δ(x, y)

{Pj(x), S
k(y)} = δk

j δ(x, y)

{I(x), ρ(y)} = δ(x, y)

{Ij(x),Wk(y)} = δj
k δ(x, y)

{p(x), n(y)} = δ(x, y)

{pa(x), n
b(y)} = δb

a δ(x, y) . (2.24)

The primary constraints transform under the action of the primary Hamiltonian Hprimary as follows

z,t = {Hprimary, p} = −ctot

za,t = {Hprimary, pa} = −ctota

Z,t = {Hprimary, I} =
n

2

[
− P 2/ρ2

√
det(q)

+
√

det(q)
(
qabUaUb + 1

)]
≡ c̃

Zj
,t = {Hprimary, I

j} = −µj P − n ρ
√

det(q) qab Ua S
j
,b + P Sj

,a n
a

Zj,t = {Hprimary, Pj +WjP} = µj P −
(
na − nρ

√
det(q)

P
qabUb

)
P Wj,a . (2.25)

Consistency demands that (2.25) must vanish. Indeed, the last two equations in (2.25) involve the Lagrange
multipliers µj, µj , respectively, and can be solved for them, since the system of equations has maximal rank.
However, the first three equations in (2.25) do not involve Lagrange multipliers. Hence, they represent
secondary constraints. According to Dirac’s algorithm, the secondary constraints in equation (2.25) force
us to reiterate the stability analysis, i.e. to calculate the action of Hprimary on the secondary constraints. A
lengthy calculation presented in A shows that the secondary constraints are stable under the Hamiltonian
flow generated by Hprimary. In other words, no tertiary constraints arise in the stability analysis for the
secondary constraints. However, the action of Hprimary on c̃ involves the Lagrange multipliers µj , µj,µ, and
can be solved for µ.

The final set of constraints is given by
{
ctot, ctota , c̃, Zj , Z

j, Z, za, z
}

and it remains to classify them
into first and second class, respectively. Obviously,

{Zj(x), Zk(y)} = P δj
k δ(x, y)

{Z(x), c̃(y)} =
nP 2

ρ3
√

det(q)
δ(x, y) (2.26)

7 Notice that n, na, Wj , ρ, Sj are not Lagrange multipliers at this point, they are canonical coordinates just like the other
fields.
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does not vanish on the constraint surface defined by the final set of constraints, hence they are of second
class. Next, since n appears at most linearly in the constraints, while na does not appear at all, it follows
immediately that z, za are of first class. Further, consider the linear combination of constraints

c̃tota ≡ I ρ,a + Ij Wj,a + P T,a + Pj S
j
,a + p n,a + L~n pa + ca

= ctota + Z ρ,a + Zj Wj,a + Zj S
j
,a + z n,a + L~n za (2.27)

where
ca ≡ cgeoa + cmatter

a (2.28)

is the non-dust contribution to the spatial diffeomorphism constraint ctota . Since all constraints are scalar or
covector densities of weight one and c̃tota is the generator of spatial diffeomorphisms, it follows that c̃tota is
first class. Finally, we consider the linear combination

c̃tot ≡ ctot + αj Zj + αj Z
j + α Z (2.29)

and determine the phase space functions αj , αj , α such that c̃tot has vanishing Poisson brackets with
Zj, Z

j , Z up to terms proportional to Zj , Z
j, Z. Then, c̃tot is first class, as well. See appendix A for details.

In the final step we should calculate the Dirac bracket [6, 22] {f, g}∗ for phase space functions f, g. It
differs from the Poisson bracket {f, g} by linear combinations of terms of the form {f, Zj(x)} {g, Zk(y)}
and {f, Z(x)} {g, c̃(y)} (and terms with f, g interchanged). Fortunately, the Dirac bracket agrees with
the Poisson bracket on functions f, g which only involve

{
T, Sj, qab, n, n

a
}

and their conjugate momenta{
P, Pj , P

ab, p, pa

}
on which we focus our attention in what follows. Using the Dirac bracket, the second

class constraints can be solved strongly:

Zj = 0 ⇔ Wj = −Pj/P

Zj = 0 ⇔ Ij = 0

Z = 0 ⇔ I = 0

c̃ = 0 ⇔ ρ2 =
P 2

det(q)

(
qabUaUb + 1

)
. (2.30)

From the last equation in (2.30) we find

ρ = ǫ
P√

det(q)

√
qabUaUb + 1 , (2.31)

with ǫ = ±1. We may also partially reduce the phase space subject to (2.30) by setting z = za = 0 and
treating n, na as Lagrange multipliers, since they are pure gauge. Then, we are left with two constraints

ctot = c+ cdust

ctota = ca + cdust
a (2.32)

where
c ≡ cgeo + cmatter (2.33)

and

cdust = ǫ P
√
qabUaUb + 1

cdust
a = P T,a + Pj S

j
,a . (2.34)

Equations (2.32–2.34) are the main result of this subsection. They represent the final constraints that
restrict the phase space of the system consisting of a generic scalar field on (M, g), extended by dust.
The form of the dust Hamiltonian and spatial diffeomorphism constraints

{
cdust , cdust

a

}
, respectively, is of

paramount importance for utilising dust as a deparameterising system, as we will explain in the next section.
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2.3 The Brown – Kuchař Mechanism for Dust

In the previous section we have shown that the canonical formulation of a classical system, originally
described by General Relativity and a generic scalar field theory, then extended by a specific dust model,
results in a phase space subject to the Hamiltonian and spatial diffeomorphism constraints (2.32–2.34). The
primary Hamiltonian, after having solved the second class constraints, is a linear combination of those final
first class constraints (2.32–2.34) and, thus, is constrained to vanish. This holds in general, independently
of the matter content, and is a direct consequence of the underlying spacetime diffeomorphism invariance.

Now, observable quantities are special phase space functions, distinguished by their invariance under
gauge transformations. In other words, their Poisson brackets with the constraints must vanish when the
constraints hold. In particular, they have vanishing Poisson brackets with the primary Hamiltonian Hprimary

on the constraint surface. This is one of the many facets of the problem of time: observable quantities do not
move with respect to the primary Hamiltonian, because the latter generates gauge transformations rather
than physical evolution. It follows that physical evolution must be generated by a true Hamiltonian (not
constrained to vanish, but still gauge invariant).

In this section we address the questions how to construct a true Hamiltonian from a given Hamiltonian
constraint, and, how to construct observable quantities (gauge invariant phase space functions).

2.3.1 Deparametrisation: General Theory

The manifest gauge invariant construction of a true Hamiltonian, generating physical evolution as opposed
to mere gauge transformations, becomes particular simple when the original system under consideration can
be extended to a deparametrising system.

Consider first a general system subject to first class constraints cI . The set of canonical pairs on phase
space split into two sets of canonical pairs (qa, pa) and (T I , πI), respectively, such that the constraints can
be solved, at least locally in phase space, for the πI . In other words,

cI = 0 ⇔ c̃I = πI + hI(T
J ; qa, pa) = 0 . (2.35)

Notice that, in general, the functions hI do depend on the T J . The first class property guarantees that the
c̃I are mutually Poisson commuting [36].

A deparametrising system allows to split the set of canonical pairs into two sets of canonical pairs such
that (1) equation (2.35) holds globally on phase space8, and (2) the functions hI are independent of the T J .

Property (2) implies that the functions hI are gauge invariant. Hence, any linear combination of the
hI that is bounded from below is a suitable candidate for a true Hamiltonian in the following sense: let
c̃τ ≡ τ I c̃I be such a linear combination, with real coefficients τ I in the range of T I , and consider for any
phase space function f the expression

Of (τ) ≡
[

∞∑

n=0

1

n!
{c̃τ , f}(n)

]

τI→(τ−T )I

. (2.36)

Here9, the iterated Poisson bracket is inductively defined by {c̃τ , f}(0) = f, {c̃τ , f}(n+1) = {c̃τ , {c̃τ , f}(n)}.
Then, Of (τ) is an observable quantity. More precisely, it is a gauge invariant extension of the phase space
function f. Furthermore, physical time translations of Of (τ) are generated by the functions hI :

∂Of (τ)

∂τ I
= {hI , Of (τ)} (2.37)

8This is not the case for Klein – Gordon fields and many other scalar field theories with a canonical action that is at least
quadratic in the πI .

9Notice that the substitution of the phase space independent numbers τ I by the phase space dependent combination (τ −T )I

is performed only after the series has been calculated.
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provided that f only10 depends on (qa, pa).
The observable quantities Of (τ) can also be interpreted from the point of view of choosing a physical

gauge. Indeed, Of (τ) can be interpreted as representing the value of f in the gauge T I = τ I .

2.3.2 Deparametrisation: Scalar Fields

The Brown – Kuchař mechanism relies on the observation that free scalar fields lead to deparametrisation
of General Relativity, as we sketch below (see [9] for a detailed discussion).

A free scalar field contributes to the spatial diffeomorphism constraint a term of the form

cscalara = πφ,a (2.38)

and to the Hamiltonian constraint a function of π2 and qabφ,aφ,b, in the absence of a potential. On the
constraint surface, defined by the spatial diffeomorphism constraint, we have the identity

qabφ,aφ,b =
qab cscalara cscalarb

π2
=
qab cacb
π2

(2.39)

with ca denoting the contribution to the total spatial diffeomorphism constraint that is independent of the
free scalar field. Substitution of (2.39) into the total Hamiltonian and spatial diffeomorphism constraints
yields the same constraint surface and gauge flow than before. In other words, the constraints with the
substitution (2.39) are equivalent to the original ones. However, the new total Hamiltonian constraint does
not depend on the free scalar field φ any more. Therefore, at least locally in phase space, we can solve the
new total Hamiltonian constraint for the momentum field π and write locally

c̃tot(x) = π(x) + h(x) (2.40)

where the scalar density h of weight one is independent of π, φ and, typically, positive definite, see [9] for
details.

As mentioned above, the constraint (2.40) and h(x) are mutually Poisson commuting, which guarantees
that the physical Hamiltonian

H :=

∫

X
d3x h(x) (2.41)

is observable (it has vanishing Poisson brackets with the spatial diffeomorphism constraint, because h has
density weight one).

This is as much as the general theory goes. There are two remaining caveats: first of all, the construction
is only local in phase space. Secondly, the construction based on a single free scalar field requires phase
space functions that are already invariant under spatial diffeomorphisms. Only those can be completed to
fully gauge invariant quantities11.

2.3.3 Deparametrisation: Dust

Dust as a deparametrising system described by the action (2.3) does not entirely fit into the classification
scheme given in [9] and sketched in the last section. It is not simply based on four free scalar fields T, Sj,
but in addition leads to second class constraints. However, it has a clear interpretation as a system of
test observers in geodesic motion, and circumvents the remaining caveats mentioned at the end of the last
subsection as we will see.

Recall the final form of the Hamiltonian constraint (2.32–2.32) derived in the previous section:

ctot = c+ ǫP
√

1 + qabUaUb (2.42)

10This is no restriction, since the πI can be expressed in terms of the (qa, pa) (using (2.35)), and the T I are pure gauge.
11 This can be circumvented by employing e.g. three more free scalars but this would be somewhat ad hoc.
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with Ua = −T,a + Wj S
j
,a. Solving the second class constraint Zj = 0 for Wj, we find Ua = −cdust

a /P .
Inserting the first class spatial diffeomorphism constraint ctota = ca + cdust

a , we arrive at the equivalent
Hamiltonian constraint

ctot ′ = c+ ǫP

√
1 +

qabcacb
P 2

(2.43)

which is already independent of T, Sj and Pj , but still not of the form c̃tot = P + h, as required for a
deparametrising system.

2.3.4 Deparametrisation for Dust: Sign Issues

In order to bring (2.43) into the form c̃tot = P + h, we have to solve a quadratic equation. Each root
describes only one sheet of the constraint surface, unless the sign of P is somehow fixed. As we argue below,
this freedom will be fixed by our interpretation of the deparametrising system as a physical reference system.

Recall that P = −ρ
√

det(q)Un and Uµ T,µ = 1, Uµ Sj
,µ = 0. In accordance with our interpretation,

we identify T with proper time along the dust flow lines. Thus, U is timelike and future pointing, hence
Un < 0. It follows that sgn(P ) =sgn(ρ), so ǫ = 1 in (2.31).

In [12] the authors assume ρ > 0, as it is appropriate for observable dust12. In our case, however, the
dust serves only as a deparametrising system and is, by construction, only pure gauge. Therefore, we relax
the restriction ρ > 0, when solving (2.43) for P :

P 2 = c2 − qabcacb . (2.44)

The right hand side of (2.44) is constrained to be non – negative, albeit it is not manifestly non – negative.
But this causes no problem, since it is sufficient to analyse the system in an arbitrarily small neighborhood
of the constraint surface, where c2 − qabcacb ≥ 0. Then,

c̃tot = P − sgn(P ) h, h =
√
c2 − qabcacb (2.45)

is the general solution, globally defined on (the physically interesting portion of) the full phase space.
However, c̃tot is not yet of the form required by a successful deparametrisation, because of the sign function
which also renders the constraint non – differentiable.

In order to utilise dust for deparametrisation, the choice P < 0 is required. Before presenting reasons
for this choice, we stress again that the dust itself is not observable. There are three related arguments for
the choice of P < 0:

1. Dynamics

The deparametrisation mechanism supplies us with a physical Hamiltonian of the form

H =

∫

X
d3x h . (2.46)

In the case of dust as a deparametrising system, the variation of the physical Hamiltonian is given by

δH =

∫

X
d3x

(
c

h
δc− qab cb

h
δca +

1

2h
qacqbdcccd δqab

)
. (2.47)

For P 6= 0, then h 6= 0 (in a sufficiently small neighbourhood of the constraint surface). Hence, the
coefficients of the variations on the right hand side of (2.47) are non singular. Moreover, for P 6= 0,

12 This would be required by the usual energy conditions if the dust would be the only observable matter. However, notice
that only the total energy momentum is subject to the energy conditions, not the individual contributions from various matter
species.
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also c 6= 0, as we see from (2.43). In fact, using sgn(c) = −sgn(P ) (from (2.43)) in a neighborhood of
the constraint surface,

c

h
= −sgn(P )

√
1 + qab

ca
h

cb
h

(2.48)

has absolute value no less than one.

Let us now compare (2.47) with the differential of the primary Hamiltonian constraint in the absence
of dust:

Hprimary =

∫

X
d3x (nc+ naca) (2.49)

which is given by (lapse and shift functions are considered as Lagrange multipliers, i.e. are phase space
independent)

dHprimary =

∫

X
d3x (ndc+ nadca) . (2.50)

Comparison between (2.47) and (2.50) reveals that the differentials coincide, up to the additional
term proportional to δqab, provided we identify n := c/h as dynamical lapse and na := −qabcb/h as
dynamical shift. This is promising in our aim to derive physical equations of motions for observable
quantities which nevertheless come close to the usual Einstein equations for gauge dependent quantities.
However, in the standard framework the lapse function is always positive, guaranteeing that the normal
vector field is future oriented. This fact is correctly reflected in our framework only if P < 0.

2. Kinematics

The identification n ≡ c/h and na ≡ −qabcb/h can also be motivated as follows:
Consider a spacetime diffeomorphism defined by Xµ 7→ (τ, σj) := (T (X), Sj(X)) =: Y µ(X) and let
(τ, σj) → Zµ(τ, σ) be its inverse. We can define a dynamical foliation of M by T (X) = τ =const.
hypersurfaces. The leaves Sτ of that foliation are the images of S (which is the range of the Sj) under
the map Z at constant τ . Using the identity

δµ
ν = Zµ

,τ T,ν + Zµ
,j S

j
,ν (2.51)

and Uµ T,µ = 1 , Uµ Sj
,µ = 0, we find Uµ = Zµ

,τ . Thus, as expected, the foliation is generated by the
vector field U = ∂/∂τ , which is unit timelike.

It is useful to decompose the deformation vector field U with respect to the arbitrary coordinate
foliation that we used before:

Uµ = gµνUν = −nµUn +Xµ
,a q

ab Ub . (2.52)

From (2.13) and (2.31) with ǫ = 1 we find Un = −
√

1 + qabUaUb. Next,

Ua = −c
dust
a

P
=
ca
P
. (2.53)

On the other hand n ≡ c/h = sgn(P )Un and na ≡ −ca/h = −sgn(P ) Ua. Therefore, (2.52) can be
written

Uµ = −sgn(P )
(
n nµ +Xµ

,a n
a
)
. (2.54)

Hence, the sign for which n is positive yields the correct decomposition of the deformation vector field
U in terms of lapse and shift. This calculation reveals also the geometrical origin of the identification
n ≡ c/h and na ≡ −qabcb/h.

As a side remark: the identity −n2 + qabnanb = −1 is an immediate consequence of the normalisation
of the deformation vector field, gµνU

µUν = −1. That is, the deformation vector field is timelike, future
oriented and normalised, but not normal to the leaves of the foliation that it defines.
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3. Stability and flat spacetime limit

Of course, we could choose P > 0 and use −h instead of h in order to obtain equations of motion.
However, in that case the physical Hamiltonian would be unbounded from below, leading to an unstable
theory. Alternatively, we could stick to +h for the equations of motion, but then the τ evolution would
run backwards.

Moreover, since ctot = c + P
√

1 + qabUaUb = 0 on the constraint surface, we would have c < 0 for
P > 0. Since c = cgeo + cmatter and cmatter > 0, this would enforce cgeo < 0. Hence, flat space would
not be a solution.

As a side remark: for ca/h ≪ 1 and P < 0, h ≈ c, while h ≈ −c for P > 0. Thus, the physical
Hamiltonian density, with respect to dust as a physical reference system, approximates the standard
model Hamiltonian density cmatter only for P < 0.

We emphasise again that the dust used for deperametrisation is not observable, and should not be confused
with observable matter. It solely provides a dynamical reference frame.

2.4 Dust Interpretation

In this section we derive a physical interpretation of the Brown – Kuchař action based on the geodesic
motion of otherwise free particles [12].

Consider first the action for a single relativistic particle with mass m on a background g:

Sm = −m
∫

R

ds

√
−gµν Ẋµ Ẋν . (2.55)

The momentum conjugate to the configuration variable Xµ is given by

Pµ =
δSm

δẊµ
= m

gµνẊ
ν

√
−gρσẊρẊσ

, (2.56)

rendering the Legendre transformation singular. This is a consequence of the reparametrisation invariance
of the action (2.55). Hence, the system exhibits no physical Hamiltonian, but instead a primary Hamiltonian
constraint enforcing the mass shell condition:

C =
1

2m

(
m2 + gµνPµPν

)
. (2.57)

Let us proceed to the canonical formulation. In terms of the embeddings X ≡ Yt(x), the particle
trajectory reads X(s) = Yt(s)(x(s)), so that

Ẋ(s) = ṫ(s) Y,t + ẋa(s) Y,a (2.58)

where the overdot refers to differentiation with respect to the trajectory parameter s. The momenta are
then given by

pa ≡ Y µ
,aPµ =

m√
−gρσẊρẊσ

qab

(
ṫ nb + ẋb

)

pt ≡ Y µ
,t Pµ =

m√
−gρσẊρẊσ

(
ṫ gtt + qab n

bẋa
)

(2.59)

where gtt = −n2 + qabn
anb. We can only eliminate the spatial velocities ẋa. To do this set A ≡ gtaẋ

a =
qabn

bẋb and B ≡ qabẋ
aẋb. Then,

w ≡ gµνẊ
µẊν = gtt ṫ

2 + 2A ṫ+B . (2.60)
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On the other hand,

− w

m2
qabpapb = B + 2Aṫ+ qabn

anbṫ2 . (2.61)

Substituting w from (2.60) and collecting coefficients of A,B, ṫ2 yields

0 = B + 2A ṫ+ ṫ2
gtt

qabpapb

m2 + qabn
anb

1 + qabpapb

m2

= w +
ṫ2 n2

1 + qabpapb

m2

. (2.62)

Now we can solve the first equation in (2.59) for ẋa:

ẋa = ṫ

(
−na ±

√
1 +

qabpapb

m2

)
. (2.63)

Inserting this into the second equation in (2.59) leads to a constraint of the form C ≡ ps + h:

C = ps − napa ± n
√
m2 + qabpapb (2.64)

while the canonical Hamiltonian is obtained from the Lagrangian in (2.55) as

Hcanon = PµẊ
µ − L = ṫ C . (2.65)

Since the constraint (2.64) is in deparametrised form, the phase space can easily be reduced, leading to the
reduced action

Sreduced =

∫
ds (paẋ

a − h) . (2.66)

We extend this phase space by adding a canonical pair (τ,m) and consider the extended action

Sextended =

∫
ds (mτ̇ + paẋ

a − h) (2.67)

where the particle mass m is now considered as a dynamical variable. The equations of motion for m, τ give
ṁ = 0 and τ̇ = ṫ

√−w. Thus, the mass is constant and τ is the proper time (in the gauge s = t).
We generalize our results now to the case of many particles. More precisely, let S be a label set and

consider a relativistic particle for each label σ ∈ S. This amounts to provide each variable appearing in the
extended action with a corresponding label, i.e. xa

σ, p
σ
a , τσ, m

σ, and the total action for those particles is
then just the sum over the corresponding actions Sσ

extended

Sextended =
∑

σ∈S

Sσ
extended . (2.68)

Next we consider the limit in which S becomes a three – manifold, with the labels σ becoming coordinates
on this manifold. In this limit, we introduce the following fields:

T̃ (σ) ≡ τσ

P̃ (σ) d3σ ≡ mσ

S̃a(σ) ≡ xa
σ

P̃a(σ)d3σ ≡ pa(σ)

ñ(σ) ≡ n(xσ)

ña(σ) ≡ na(xσ)

q̃ab(σ) ≡ qab(xσ). (2.69)
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Then, in the specified limit, the extended action (2.68) becomes

Sextended =

∫
dt

∫
d3σ

(
˙̃T P̃ + ˙̃SaP̃a + ñaP̃a ∓ ñ

√
P̃ 2 + q̃abP̃aP̃b

)
. (2.70)

Finally, we perform a canonical transformation: instead of the fields S̃a(σ) with values in X , we would
like to consider the inverse fields Sj(x) with values in S, that is Sj(S̃(σ)) = σj, S̃a(S(x)) = xa. This is at
the same time a diffeomorphism and we can transform the other fields as well. For instance (T is a scalar
and P is a scalar density),

T (x) = T̃ (S(x)) =

∫

S
d3σ δ

(
x, S̃(σ)

) ∣∣∣det(∂S̃/∂σ)
∣∣∣ T̃ (σ)

P (x) =
P̃

|det(∂S̃/∂σ)|
(S(x)) =

∫

S
d3σ δ

(
x, S̃(σ)

)
P̃ (σ)

Sj(x) =

∫

S
d3σ σj δ(x, S̃(σ))

∣∣∣det(∂S̃/∂σ)
∣∣∣ . (2.71)

Calculating the time derivatives and performing integrations by parts, we find
∫

S
d3σ ˙̃T P̃ =

∫

X
d3x

(
Ṫ P − ṠjSa

j PT,a

)
(2.72)

with Sa
j denoting the inverse of the matrix Sj

,a. Using

˙̃Sa(σ) = −
[
ṠjSa

j

]
S(x)=σ

(2.73)

and defining Pj(x) implicitly through

P̃a = −
[
PT,a + PjS

j
,a

|det(∂S/∂x)|

]

S(x)=σ

(2.74)

we find that Sextended precisely turns into the dust action on X with the second class constraints eliminated13.

3 Relational Observables and Physical Hamiltonian

In this section we present an explicit prescription for constructing gauge invariant completions of arbitrary
phase space functions. The construction is non – perturbative and technically involved, but the physical
picture behind it will become crystal clear. Furthermore, the formal expressions are only required to establish
certain properties of the construction, but are not required for the calculation of physical properties. This
is a great strength of the relational formalism.

Let us summarise the situation. After having solved the second class constraints and having identified
lapse and shift fields as Lagrange multipliers, we are left with the following canonical pairs

(qab, p
ab), (ξ, π), (T, P ), (Sj , Pj) , (3.1)

subject to the following first class constraints

ctota = ca + cdust
a , cdust

a = P T,a + Pj S
j
,a

ctot = c+ cdust , cdust = −
√
P 2 + qabcdust

a cdust
b (3.2)

13The metric field has to be pulled back by the dynamical spatial diffeomorphism, as well. For details, see next section.
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where ca, c are independent of the dust variables
{
T, P, Sj , Pj

}
. We already used P < 0.

As explained in 2.3, we aim at deparametrisation of the theory and therefore solve (3.2) for the dust
momenta, leading to the equivalent form of the constraints

c̃tot = P + h , h =
√
c2 − qabcacb

c̃totj = Pj + hj , hj = Sa
j (−hT,a + ca) (3.3)

with Sa
j S

k
,a = δk

j , Sa
j Sj

,b = δa
b , hence Sa

j is the inverse of Sj
,a (assuming, as before, that S : X →

S is a diffeomorphism). These constraints are mutually Poisson commuting14. However, only c̃tot is in
deparametrised form (i.e. h is independent of T, Sj), but c̃totj is not. In particular, we can only conclude

that the h(x) are mutually Poisson commuting. Still, this will be enough for our purposes15.
Following the works [9, 10, 11], we describe the construction of fully gauge invariant completions of phase

space functions. Consider the smeared constraint

Kβ ≡
∫

X
d3x

[
β(x)ctot(x) + βj(x)ctotj (x)

]
(3.4)

where β(x), βj(x) are phase space independent smearing functions in the range of T (x), Sj(x). Under a
gauge transformation generated by this constraint, an arbitrary phase space function f is mapped to:

αβ(f) ≡
∞∑

n=0

1

n!
{Kβ, f}(n) . (3.5)

The fully gauge invariant completion of f is given by

Of [τ, σ] ≡
[
αβ(f)

]
β→τ−T

βj→σj−Sj

. (3.6)

Here, the functions τ(x), σj(x) are also in the range of T (x), Sj(x), respectively16. It is important to first

calculate the Poisson brackets appearing in (3.5) with the phase space independent functions β, βj , and
afterwards to replace them with the phase space dependent functions τ − T, σj − Sj , respectively.

The construction of observable quantities Of from arbitrary phase space functions f can be related to a
physical gauge choice. This connection can be established based on the gauge transformation properties of
T, Sj: αβ(T ) = T + β, αβ(Sj) = Sj + βj . Hence,

Of [τ, σ] ≡
[
αβ(f)

]
αβ (T )=τ

αβ(Sj)=σj

. (3.7)

Indeed, (3.7) motivates the following interpretation: Of [τ, σ] is the gauge invariant completion of of f , which
in the gauge T = τ, Sj = σj takes the value f . This is not the only interpretation we entertain a different
one below.

For the purpose of this paper it suffices to consider the infinite series appearing in the gauge invariant
completions as expressions useful for formal manipulations. There is no need to actually calculate these
series for any physical problem.

Further important properties [36, 20] of the completion are:

{Of [τ, σ], Of ′ [τ, σ]} = {Of [τ, σ], Of ′ [τ, σ]}∗ = O{f,f ′}∗ [τ, σ] (3.8)

14One can either prove this by direct calculation, or one uses the following simple argument: the Poisson bracket between the
constraints must be proportional to a linear combination of constraints, because the constraint algebra is first class. Since the
constraints are linear in the dust momenta, the result of the Poisson bracket calculation no longer depends on them. Therefore,
the coefficients of proportionality must vanish.

15 In what follows we will drop the tilde in noting the constraints for notational simplicity.
16We denote the functional dependence of (3.6) on the functions τ (x), σj(x) by square brackets. Below we show that it is

sufficient to choose those functions to be constant and replace the square brackets by round ones for notational convenience.
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Of+f ′ [τ, σ] = Of [τ, σ] +Of ′ [τ, σ] , Of ·f ′ [τ, σ] = Of [τ, σ] ·Of ′ [τ, σ] . (3.9)

Here, {., .}∗ is the Dirac bracket17 [6] associated with the constraints and the gauge fixing functions T, Sj.
Relations (3.8) and (3.9) show that the map f 7→ Of [τ, σ] is a Poisson homomorphism of the algebra
of functions on phase space with pointwise multiplication, equipped with the Dirac bracket18 as Poisson
structure.

In particular, for a general functional f = f [qab(x), P
ab(x), ξ(x), π(x), T (x), P (x), Sj (x), Pj(x)] the fol-

lowing useful identity holds:

Of = f
[
Oqab(x), OP ab(x), Oξ(x), Oπ(x), OT (x), OP (x), OSj(x), OPj(x)

]
(τ, σ) . (3.11)

This has important consequences: (3.11) ensures that it suffices to know the completions of the elementary
phase space variables. In fact, we are only interested in those functions that are independent of the dust
variables

{
T, Sj , P, Pj

}
. The reason for this is that, first of all, P,Pj are expressible in terms of all other

variables on the constraint surface. Alternatively, since the constraints are mutually Poisson commuting,
we have

OP (x) = Octot(x) +Oh(x) = ctot(x) +Oh(x) , OPj(x) = Octotj (x) +Ohj(x) = ctotj (x) +Ohj(x) . (3.12)

Hence, these functions are known, once we know the completion of the remaining variables. Secondly,

OT (x)[τ, σ] = τ(x) , OSj(x)[τ, σ] = σj(x) (3.13)

are phase space independent. Thus, the only interesting variables to consider are
{
qab, P

ab, ξ, π
}
.

In what follows we consider only dust – independent functions f . For those (3.8) simplifies to

{Of [τ, σ], Of ′ [τ, σ]} = O{f,f ′}[τ, σ] . (3.14)

Equations (3.9) and (3.8) imply that f 7→ Of [τ, σ] is a Poisson automorphism of the Poisson subalgebra of
functions that do not depend on the dust variables with the ordinary Poisson bracket as Poisson structure.
This will be absolutely crucial for all what follows.

Further useful properties of the completion are:

Of [τ, σ] = O
(2)

O
(1)
f

[σ]
[τ ] (3.15)

where (recall (3.4), (3.5) and (3.6))

O
(1)
f [σ] =

[
αβ(f)

]
β→0

βj→σj−Sj

O
(2)
f [τ ] = [αβ(f)]β→τ−T

βj→0

. (3.16)

This follows from the fact that the constraints are mutually Poisson commuting and {ctot(x), Sj(y)} = 0.
The important consequence of (3.15) is that we can accomplish full gauge invariance in two stages: we
establish first invariance under the action of the spatial diffeomorphism constraint, and afterwards achieve
invariance with respect to gauge transformations generated by the Hamiltonian constraint. This holds even
under more general circumstances [11], i.e. when the constraints can not be deparametrised.

17 For completeness, we note the definition of the Dirac bracket:

{f, f ′}∗ ≡ {f, f ′} −

Z

X

d3x

3
X

µ=0

ˆ

{f, ctot
µ (x)}{f ′, Sµ(x)} − {f ′, ctot

µ (x)}{f, Sµ(x)}
˜

(3.10)

where ctot
0 ≡ ctot, S0 := T . The Dirac bracket is antisymmetric and {f, ctot

µ (x)}∗ = {f, Sµ(x)}∗ = 0 everywhere. This follows
from the fact that ctot

µ (x) and Sµ(x) are mutually Poisson commuting, and that {ctot
µ (x), Sν(y)} = δ(x, y)δν

µ.
18The Dirac bracket coincides with the Poisson bracket on gauge invariant functions. It is degenerate, since it annihilates

coinstraints and gauge fixing functions. Hence, it defines only a Poisson structure, but not a symplectic structure on the full
phase space.
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3.1 Implementing spatial diffeomorphism invariance

Keeping the physical interpretation of the completion in mind, the map f 7→ O
(1)
f [σ] can be worked out

explicitly. In the first stage of the construction, the corresponding smeared constraint reads

Kβ =

∫

X
d3x βj(x) ctotj (x) . (3.17)

Given a phase space function f , its completion O
(1)
f with respect to gauge transformations generated by Kβ

becomes

O
(1)
f [σ] =

∞∑

n=0

1

n!

[
{Kβ , f}(n)

]
βj→σj−Sj

= f +
∞∑

n=1

1

n!

∫

X
d3x1 [σj1(x1) − Sj1(x1)] . . .

∫

X
d3xn [σjn(xn) − Sjn(xn)]

×
{
ctotj1

(x1),
{
ctotj2

(x2), . . . ,
{
ctotjn

(xn), f
}
. . .
}}

. (3.18)

Let us begin with f = ξ(x). We claim that

{Kβ, ξ(x)}(n) =
[
βj1 . . . βjn vj1 . . . vjn · ξ

]
(x) (3.19)

where vj is the vector field defined by

vj · ξ(x) := Sa
j (x) ξ,a(x) . (3.20)

In fact the vectors vj are mutually commuting.

[vj , vk] = Sa
j S

b
k,a∂b − j ↔ k

= −Sa
j S

b
l S

l
,caS

c
k∂b − j ↔ k

= −Sa
j S

b
l S

l
,acS

c
k∂b − j ↔ k

= Sa
j S

b
l,cS

l
,aS

c
k∂b − j ↔ k

= Sb
j,cS

c
k∂b − j ↔ k

= Sa
kS

b
j,aS

c
k∂b − j ↔ k

= 0 (3.21)

To prove (3.19) by induction over n we need

{Kβ , S
a
j (x)} = −Sa

k(x){Kβ , S
k
,b(x)}Sb

j (x) = −Sa
k(x)βk

,b(x)S
b
j (x) = −[vj · βk]Sa

k (3.22)

For n = 1 we have
{Kβ , ξ(x)}(1) = [βjSa

j ξ,a](x) = βjvj · ξ (3.23)

which coincides with (3.19). Suppose that (3.19) is correct up to n, then

{Kβ , ξ}(n+1) = βj1 . . . βjn {Kβ , vj1 . . . vjn · ξ}

= βj1 . . . βjn

[
vj1 . . . vjn · {Kβ, ξ} +

n∑

l=1

vj1 . . . vjl−1

{
Kβ, S

a
jl

}
∂avjl+1

. . . vjn · ξ
]

= βj1 . . . βjn

[
vj1 . . . vjn · βjn+1vjn+1 · ξ −

n∑

l=1

vj1 . . . vjl−1

[
vjl
βjn+1

]
vjn+1vjl+1

. . . vjn · ξ
]

= βj1 . . . βjn

[
vj1 . . . vjn · βjn+1vjn+1 · ξ −

n∑

l=1

vj1 . . . vjl−1

[
vjl
βjn+1

]
vjl+1

. . . vjn+1 · ξ
]

= βj1 . . . βjn
[
vj1 . . . vjn · βjn+1vjn+1 · ξ −

(
vj1 . . . vjnβ

jn+1 − βjn+1vj1 . . . vjn

)
vjn+1 · ξ

]

= βj1 . . . βjn+1 vj1 . . . vjn+1 · ξ . (3.24)

25



where we used commutativity of the vj and the Leibniz rule.
It follows that

O
(1)
ξ(x)[σ] = ξ(x) +

∞∑

n=1

1

n!

[
σj1(x) − Sj1(x)

]
. . .
[
σjn(x) − Sjn(x)

]
vj1 . . . vjn · ξ(x) . (3.25)

Using vj · Sk = δk
j and commutativity of the vj , we find with βj := σj − Sj that

vk ·O(1)
ξ(x)[σ] = vk · ξ +

∞∑

n=1

[
1

(n− 1)!

[
vk · βj

]
βj1 . . . βjn−1 vjvj1 . . . vjn−1 · ξ +

1

n!
βj1 . . . βjn vkvj1 . . . vjn · ξ

]

= vk · ξ +
[
vk · βj

]
vj · ξ +

∞∑

n=1

1

n!
βj1 . . . βjn

[[
vk · βj

]
vjvj1 . . . vjn · ξ + vkvj1 . . . vjn · ξ

]

=
∞∑

n=0

1

(n)!
βj1 . . . βjn

[
vk · σj

]
vjvj1 . . . vjn · ξ . (3.26)

The interpretation of (3.25) becomes clear for the choice σj(x) = σj =const., for which (3.26) vanishes

identically. In other words, the completion O
(1)
ξ(x)[σ] does not depend on x at all. Hence, for this choice

of σj , we are free to choose x in O
(1)
ξ(x)[σ] in order to simplify (3.25). Since (3.25) is a power expansion

in
(
σj(x) − Sj

)
(x), and Sj is a diffeomorphism, we choose x = xσ, with xσ being the unique solution of

Sj(x) = σj . Then19,

O
(1)
ξ(x)(σ) = ξ(xσ) = [ξ(x)]Sj(x)=σj . (3.27)

The completion O
(1)
ξ(x)(σ) of ξ(x) has also a simple integral representation:

O
(1)
ξ(x)(σ) =

∫

X
d3x |det(∂S(x)/∂x)| δ (S(x), σ) ξ(x) . (3.28)

The significance of choosing σj =const is the following: Clearly, the choice σj(x) = const. is not in the

range of Sj(x), which is supposed to be a diffeomorphism. Thus, the interpretation of O
(1)
f (σ) as the value

of f in the gauge Sj = σj is obsolete. However, given a function σj(x), instead of solving Sj(x) = σj(x)
for the values of the function Sj for all x, we could solve it for x, while keeping the function Sj arbitrary.

This is the appropriate interpretation of O
(1)
f (σ). This is possible because O

(1)
f [σ] is (at least formally)

gauge invariant, whether or not Sj = σj is a good choice of gauge. It is fully sufficient to do this because,
as shown in [12] and as we will show in appendix B, the partially reduced phase space (with respect to

the spatial diffeomorphism constraint) is completely determined by the O
(1)
f (σ), hence the O

(1)
f [σ] must be

hugely redundant.
We can now compute the spatially diffeomorphism invariant extensions for the remaining phase space

variables without any additional effort, by switching first to variables which are spatial scalars on X , using
J := det(∂S/∂x), which we assume to be positive (orientation preserving diffeomorphism):

(ξ, π/J) , (T, P/J) ,
(
qjk ≡ qab S

a
j S

b
k , p

jk ≡ Sj
,aS

k
,b p

ab/J
)
. (3.29)

The image of these quantities, evaluated at x, under the completion O
(1)
f (σ) simply consists in replacing x by

xσ, where xσ solves Sj(x) = σj, just as in (3.27). The scalars (3.29) on X are the pull backs of the original
tensor (densities) under the diffeomorphism σ 7→ xσ evaluated at σ. Thus, they are tensor (densities) of the
same type, but live now on the dust space manifold S.

19We switched to the notation O
(1)
f (σ) to indicate the choice σj(x) = σj =const.
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This statement sounds contradictory because of the following subtlety: We have e.g. the three quantities
P (x), P̃ (x) = P (x)/J(x), P̃ (σ) = P̃ (xσ). On X , P (x) is a scalar density while P̃ (x) is a scalar. Pulling
back P (x) to S = S(X ) by the diffeomorphism σ 7→ S−1(σ) results in P̃ (σ). But pulling back P̃ (x) back to
S results in the same quantity P̃ (σ). Since a diffeomorphism does not change the density weight, we would
get the contradiction that P̃ (σ) has both density weights zero and one on S. The resolution of the puzzle
is that what determines the density weight of P (x) on X is its transformation behaviour under canonical
transformations generated by the total spatial diffeomorphism constraint ctota = cdust

a +ca where cdust
a , ca are

the dust and non dust contributions respectively. After the reduction of ctota , what determines the density
weight of P̃ (σ) on S is its transformation behaviour under ([ca + PT,a]S

a
j /J)(xσ) = c̃j(σ) + P̃ (σ)T̃,j(σ) and

this shows that P̃ (σ) has density weight one20.

We will denote the images under f 7→ O
(1)
f (σ) by

(
ξ̃(σ), π̃(σ)

)
,
(
T̃ (σ), P̃ (σ)

)
,
(
q̃ij(σ)p̃ij(σ)

)
. (3.30)

In appendix B we show that the quantities (3.30) can be also obtained through symplectic reduction which
is an alternative method to show that the pairs in (3.30) are conjugate and as it was done in [12].

3.2 Implementing invariance with respect to the Hamiltonian constraint

Having completed the elementary phase space variables with respect to the spatial diffeomorphism constraint,
it remains to render those variables invariant under the action of the Hamiltonian constraint. This amounts
to calculate the image of those variables under the map f 7→ O

(2)
f [σ], for any f in (3.30). For f independent

of T, P , the completion of f with respect to the Hamiltonian constraint is given by

O
(2)
f [τ ] =

∞∑

n=0

1

n!
{h[τ ], f}(n) , h[τ ] =

∫

X
d3x (τ(x) − T (x)) h(x) . (3.31)

Only if we choose τ(x) = τ = const. (3.31) is invariant under diffeomorphisms. Hence we choose τ(x) = τ =
const. which allows to rewrite (3.31) entirely in terms of the variables (3.30). As a reminder of this choice,

we denote the completion by O
(2)
f (τ). In this case (3.31) can be written as

O
(2)
f (τ) =

∞∑

n=0

1

n!
{h̃(τ), f}(n) , h̃(τ) =

∫

S
d3σ (τ − T̃ (σ)) h̃(σ) (3.32)

with h̃(σ) denoting the image of h(x) under the replacement21 of
{
ξ(x), π(x), qab(x), p

ab(x)
}

by{
ξ̃(σ), π̃(σ), q̃jk(σ), p̃jk(σ)

}
, respectively. Explicitly, denoting

c̃(σ) ≡
[
c(x)

J(x)

]

S(x)=σ

c̃j(σ) ≡
[
cj(x)

J(x)

]

S(x)=σ

, (3.33)

where, as before, cj(x) = Sa
j (x) ca(x), we find

h̃(σ) =
√
c̃2 − q̃jk c̃j c̃k(σ) . (3.34)

20 In order to avoid confusion of the reader we mention that any quantity f on X which has positive density weight is mapped
to zero under f 7→ O

(1)
f (σ). Let us again consider the example f = P . We have P̃ (σ) = P (xσ) det(∂S−1(σ)/∂σ) which is

perfectly finite. However by the Poisson automorphism formula O
(1)

P (x) = O
(1)

J(x) P̃ (x)
= O

(1)

J(x) P̃ (σ) = det(∂σ/∂x) P̃ (σ) = 0 since

σ =const.
21 The proof of this statement is based on the fact that the replacement corresponds to a diffeomorphism and that h(τ ) is

the integral of a scalar density of weight on, for τ =const.
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It is easy to see that
d

dτ
O

(2)
f (τ) = {H, O(2)

f (τ)} (3.35)

with

H :=

∫

S
d3σ h̃(σ) (3.36)

is the physical Hamiltonian (not Hamiltonian density) of the deparametrised system.
We denote the fully gauge invariant completions of the Hamiltonian constraint, the spatial diffeomor-

phism constraints22 and the physical Hamilton density, respectively, as

C(τ, σ) ≡ O
(2)
c̃(σ)(τ) Cj(τ, σ) ≡ O

(2)
c̃j(σ)(τ) ,

H(τ, σ) ≡ O
(2)

h̃(σ)
(τ) . (3.37)

It is worth emphasising again that H(τ, σ) is the physical energy density with respect to the deparametrising
dust system. The fully gauge invariant completions of the phase space variables for matter and gravity are
denoted by

Ξ(τ, σ) ≡ O
(2)

ξ̃(σ)
(τ) Π(τ, σ) ≡ O

(2)
π̃(σ)(τ), ,

Qij(τ, σ) ≡ O
(2)
q̃ij(σ)(τ) P ij(τ, σ) ≡ O

(2)
p̃ij(σ)

(τ) . (3.38)

The matter scalar field Ξ(τ, σ) and its conjugate momentum Π(τ, σ) are observable quantities with respect
to the deparametrising dust system. The same applies to the three-metric Qij(τ, σ) and its canonical
momentum field P ij(τ, σ). Moreover, the completion is non – perturbative, i.e. full non-Abelian gauge
invariance has been accomplished.

3.3 Constants of the physical Motion

In the previous section we successfully constructed fully gauge invariant quantities for a specific deparmetris-
ing system. In some sense, the construction frees the true degrees of freedom from the constraints, replacing
them by conservation laws which govern the physical motion of observable quantities. Indeed, we have the
following first integrals of physical motion (conservation laws):

d

dτ
Cj(τ, σ) = 0 ,

d

dτ
H(τ, σ) = 0 . (3.39)

These equations express invariance under the physical evolution generated by H, as opposed to gauge
invariance. The functions Cj, H, representing physical three – momentum and energy, are already gauge
invariant.

We proceed the the proof of (3.39). Recall that the original constraints ctot(x) , ctotj (x) are mutually
Poisson commuting. Using (3.3), this means in particular,

{
ctot(x), ctot(y)

}
= {P (x) + h(x), P (y) + h(y)} = {h(x), h(y)} = 0 (3.40)

where we used that the P (x) are mutually Poisson commuting and that h(x) is independent of the dust
variables. Next, consider the smeared spatial diffeomorphism generator

c(u) ≡
∫

X
d3x ua(x) ca(x) . (3.41)

22Explicit expression for the constraints in terms of the fully gauge invariant phase space variables are given in the next
section, see (3.56).
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The smeared constraint acts on h(y) as it should,

{c(u), h(y)} = [uah],a (y) (3.42)

or, after functional differentiation with respect to the smearing functions ua:

{ca(x), h(y)} = ∂ya (δ(x, y)h(y)) . (3.43)

This follows from the properties of ca, generating spatial diffeomorphims on the matter and gravity variables,
and h, being a scalar density of weight one and only depending on the non – dust variables. Furthermore, the
spatial diffeomorphsims form an algebra with {c(u), c(u′)} = c([u′, u]). From this follows again by functional
differentiation

{ca(x), cb(y)} =
[
∂ybδ(x, y)

]
ca(y) − [∂xaδ(y, x)] cb(x) . (3.44)

Let us investigate the implications of (3.40–3.44) for

h̃(σ) =

[
h(x)

J(x)

]

S(x)=σ

=

∫

X
d3x δ (S(x), σ) h(x)

c̃j(σ) =

[
ca(x) S

a
j (x)

J(x)

]

S(x)=σ

=

∫

X
d3x δ (S(x), σ) Sa

j (x)ca(x) . (3.45)

First of all, {
h̃(σ), h̃(σ′)

}
=

∫

X
d3x

∫

X
d3y δ (S(x), σ) δ

(
S(y), σ′

)
{h(x), h(y)} = 0 (3.46)

where we used that the Sj(x) are mutually commuting, as well as with the h(y). Second, denoting the
pullback of the smeared diffeomorphism generator with c̃(ũ) for some smearing functions ũj(σ), we have

{
c̃(ũ), h̃(σ′)

}
=

∫

S
d3σ ũj(σ)

∫

X
d3x

∫

X
d3y δ

(
S(x), σ) δ(S(y), σ′

)
Sa

j (x) {ca(x), h(y)}

=

∫

S
d3σ ũj(σ)

∫

X
d3x

∫

X
d3y δ (S(x), σ) δ

(
S(y), σ′

)
Sa

j (x) ∂ya (δ(x, y)h(y))

= −
∫

S
d3σ ũj(σ)

∫

X
d3x δ (S(x), σ)

[
∂xaδ

(
S(x), σ′

)]
Sa

j (x)

= −
∫

S
d3σ ũj(σ)

∫

X
d3xδ (S(x), σ)

[
∂σ̃kδ

(
σ̃, σ′

)]
σ̃=S(x)

Sk
,a(x)S

a
j (x) h(x)

= −
∫

S
d3σ ũj(σ)

∫

S
d3σ1 δ (σ1, σ)

[
∂

σ
j
1
δ
(
σ1, σ

′
)] [h(x)

J(x)

]

S(x)=σ1

= −
∫

S
d3σ1 ũ

j(σ1)
[
δ
(
σ1, σ

′
)]

,σ
j
1
h̃(σ1)

=

∫

S
d3σ1

[
ũj(σ1) h̃(σ1)

]

,σ
j
1

δ
(
σ1, σ

′
)

=
[
ũj(σ′) h̃(σ′)

]
,σ′j

. (3.47)

The last implication follows from

c̃(ũ) = c(uS) , ua
S(x) = Sa

j (x)ũj(S(x)) (3.48)

where the vector fields uS are phase space dependent (they depend on S) and using the fact that the Sj(x)
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and ca(y) are mutually Poisson commuting. Then,

{
c̃(ũ), c̃(ũ′)

}
= c

([
u′S , uS

])

=

∫

X
d3x

[
u′bS(x)ua

S,b(x) − ub
S(x)u′aS,b(x)

]
ca(x)

=

∫

X
d3x Sb

j (x)

[
ũ′j(S(x))

(
Sa

k(x)Sl
,b(x) ũ

k
,l(S(x)) − Sa

l (x)Sl
,cb(x)S

c
k(x)ũ

k(S(x))
)

−ũj(S(x))
(
Sa

k(x)ũ′k,l (S(x)) − Sa
l (x)Sl

,cb(x)S
c
k(x)ũ′k(S(x))

) ]
ca(x)

=

∫

X
d3x

[
ũ′j(S(x))ũk

,j(S(x)) − ũj(S(x))ũ′k,j (S(x))
]
ca(x)S

a
k(x)

=

∫

S
d3σ

∫

X
d3x δ (S(x), σ)

[
ũ′j(σ)ũk

,j(σ) − ũj(σ)ũ′k,j (σ)
]
ca(x)S

a
k(x)

= c̃
([
ũ′, ũ

])
. (3.49)

Hence, equations (3.40–3.44) are exactly reproduced by (3.46), (3.47) and (3.49).
We can now easily finish the proof of (3.39). In (3.32) we introduced h̃(τ). From (3.46) follows that

{
h̃(τ), h̃(σ)

}
= 0 . (3.50)

This implies in particular that

h̃(σ) = H(σ) = O
(2)

h̃(σ)
(τ) (3.51)

is already an observable quantity23. Hence, from the definition of H and (3.46) we find {H, h̃(σ)} = 0.
Furthermore,

{H, Cj(τ, σ)} = {O(2)
H

(τ), O
(2)
c̃j (σ)(τ)} = O

(2)
{H,c̃j(σ)}(τ) = 0 . (3.52)

Alternatively, a more direct way to understand this result is to make use of the series representation
(3.32) and of

h̃(τ) = τ H−h̃[T̃ ] h̃[T̃ ] =

∫

S
d3σ T̃ (σ) h̃(σ) . (3.53)

Since the Hamiltonian vector fields X1, X2 of H and h̃[T̃ ], respectively, are commuting, we may write for
(3.32)

Cj(σ, τ) = exp(τX1 −X2) · c̃j(σ) = exp(−X2) · [exp(τX1) · c̃j(σ)]

= exp(−X2) · c̃j(σ) =

∞∑

n=0

(−1)n

n!
{h̃[T̃ ], σ̃j(σ)}(n) (3.54)

which is clearly τ – independent.
We end this section by giving an explicit expressions for the physical Hamiltonian in terms of purely

gauge invariant quantities:

H(σ) =
√
C(τ, σ)2 −Qjk(τ, σ) Cj(σ) Ck(σ) (3.55)

Note that C, Qjk are not independent of the physical time τ . Of course, C(τ, σ), Cj(σ) are obtained from

c̃(σ), c̃j(σ) simply by replacing everywhere the functional dependence on
{
ξ̃(σ), π̃(σ), q̃jk(σ), pjk(σ)

}
by

23Note, however, although H(σ) = h̃(σ), this is not true for the corresponding spatial diffeomorphism constraints, c̃j(σ) 6=
Cj(σ)!
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that on
{
Ξ(τ, σ),Π(τ, σ), Qjk(τ, σ), P jk(τ, σ)

}
. In greater detail,

Cj(σ) =
[
−2Qjk(DkP

kl) + Π(DjΞ)
]
(τ, σ)

C(τ, σ) =
1

κ

[
1√

det(Q)

(
QjmQkn − 1

2
QjkQmn

)
P jkPmn −

√
det(Q)R(3)[Q] + 2Λ

√
det(Q)

]
(τ, σ)

+
1

2λ

[
Π2

√
det(Q)

+
√

det(Q)
(
Qjk (DjΞ) (DkΞ) + v(Ξ)

)]
(τ, σ)

≡ Cgeo(τ, σ) + Cmatter(τ, σ) (3.56)

with Dj denoting the covariant differential compatible with Qjk.

4 Physical Equations of Motion

In this section24 we derive the physical evolution of the gauge invariant functions {Ξ, Π, Qjk, P jk},
generated by the true Hamiltonian H, in the first order (Hamilton) and second order (Lagrange) formulation.
In other words, we study the true evolution of matter degrees of freedom and gravity with respect to the
physical reference system (dust).

4.1 First Order (Hamiltonian) Formulation

For a generic observable F , we denote25 its τ–derivative simply by an overdot, Ḟ . Then,

Ḟ = {H, F} =

∫

S
d3σ {H(σ), F}

=

∫

S
d3σ

1

H(σ)

(
C(σ) {C(σ), F} −Qjk(σ)Ck(σ) {Cj(σ), F} +

1

2
Nm(σ)Nn(σ) {Qmn(σ), F}

)
.(4.1)

Let us introduce dynamical shift and dynamical lapse fields by

Nj ≡ −Cj/H

N ≡ C/H =
√

1 +QjkNjNk . (4.2)

Notice that Nj is a constant of the physical motion, but neither are N nor N j = QjkNk. Then (4.1) can be
rewritten in the familiar looking form

Ḟ =

∫

S
d3σ

(
N(σ) {C(σ), F} +N j(σ) {Cj(σ), F} +

1

2
H(σ)Nm(σ)Nn(σ) {Qmn(σ), F}

)
. (4.3)

The first two terms in (4.3) are exactly the same as those in the gauge variant derivation of the equation of
motion, derived with respect the primary Hamiltonian

Hprimary(N, ~N ) =

∫

S
d3σ

(
N(σ)C(σ) +N j(σ)Cj(σ)

)
. (4.4)

24 For the purposes of this section we assume that X and, equivalently, S have no boundary. In order to allow for more
general topologies, we consider boundary terms in the next section. The calculations of the present section are not affected by
the presence of such a boundary term, because it only cancels the boundary term that would appear in the calculation of this
section.

25 Furthermore, for notational ease we drop the dependence on (τ, σ) when no confusions can arise.
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Here, N, N j are viewed as phase space independent functions. The third term in (4.3), on the other hand,
is a genuine correction to the gauge variant formalism. However, it enters only in the physical evolution
equation of P jk. Hence,

Ξ̇ =
N√

det(Q)
Π + L ~N

Ξ

Π̇ = ∂j

[
N
√

det(Q) QjkΞ,k

]
− N

2

√
det(Q) v′(Ξ) + L ~N

Π

Q̇jk =
2N√
det(Q)

Gjkmn P
mn +

(
L ~N

Q
)
jk

Ṗ jk = N

[
− Qmn√

detQ

(
2P jmP kn − P jkPmn

)
+
κ

2
Qjk C −

√
detQ Qjk

(
2Λ +

κ

2λ
(Ξ,mΞ,m + v(Ξ))

)]

+
√

detQ
[
G−1

]jkmn
((DmDnN) −NRmn[Q]) +

κ

2λ
N
√

detQ Ξ,jΞ,k

−1

2
H QjmQknNmNn + (L ~N

P )jk (4.5)

with L ~N
denoting the Lie derivative26 with respect to the vector field ~N with components N j = QjkNk,

and we have defined the DeWitt metric on symmetric tensors as

Gjkmn ≡ 1

2
(QjmQnk +QjnQmk −QjkQmn) (4.6)

which has the inverse [
G−1

]jkmn
=

1

2

(
QjmQnk +QjnQmk − 2QjkQmn

)
(4.7)

that is Gjkmn

[
G−1

]nmpq
= δp

(jδ
q

k). The Ricci tensor of Q is denoted by Rjk[Q] and C = Cgeo+Cmatter denotes

the split of the Hamiltonian constraint (with the dust reference system excluded) into gravitational27 and
matter contribution, as shown explicitly in (3.56).

It is already evident that the dust model we utilised as a physical reference system (or, equivalently as
a deparametrising system) has the great advantage that, remarkably, equations (4.5) are almost exactly of
the same form as the corresponding equations in the gauge variant formalism, the only difference being the
last term on the right hand side of the physical evolution equation for Ṗ jk. In other words, introducing
a physical reference system must necessarily lead to corrections compared to gauge fixing, because the
physical reference system will communicate via gravitational interaction with the original system under
consideration. In the sense described above, the dust reference system creates only a minimal modification
— it is the minimal extension of the original gravity – matter system that extracts the true degrees of
freedom and allows for their physical evolution.

The other difference is that instead of having constraints imposed on the phase space variables, C =
Cj = 0, now the dynamics of the true degrees of freedom is subject to conservation laws Ḣ = Ċj = 0. Thus,
in solving (4.5) we may prescribe arbitrary functions ǫ(σ), ǫj(σ) which play the role of the (constant in
τ–time) energy and momentum density, respectively. The substitution28 H = ǫ, Cj = −ǫj will be crucial in
what follows. In fact, in order to derive the second order equations of motion, Ξ̇, Q̇jk in (4.5) has to be solved
for Π, P jk. Without the conservation laws, this would be impossible, since Π, P jk enter the expressions for
H,C,Cj in a non trivial way, i.e. solving for them would lead to algebraic equations of higher than fourth
order. The substitution will also be crucial for the derivation of the effective Lagrangian, by the inverse
Legendre transform, corresponding to H, see appendix C.

26 For the explicit calculation of the Lie derivative it is important to note that Π , P jk are tensor densities of weight one in
dust space.

27 Note that we have included a cosmological constant term +2
p

det(q))Λ in Cgeo
28 The letter ǫ is chosen to indicate that these values are small, appropriate for test clocks and rods. In this way it can be

guaranteed that the dust, although gravitationally coupled with the original system, will not alter the dynamics of the original
system in an uncontrolled fashion.
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4.2 Second Order (Lagrangian) Formulation

In this section we will use the first order (Hamiltonian) equations of motion and derive the corresponding
second order (Lagrangian) equations of motion for the configuration variables Ξ and Qjk, respectively. We
will sketch the main steps of these calculations in section 4.3. The reader who is just interested in the results
should skip this section and go directly to section 4.4 where the final equations are summarised.

4.3 Derivation of the Second Order Equations of Motion

In this section we want to derive the second order equations of motion for Ξ and Qjk, respectively. These
second order equations will be functions of the configuration variables Ξ, Qjk and their corresponding veloc-
ities Ξ̇, Q̇jk, respectively. This can be achieved by solving for the conjugate momenta Π and P jk in terms
of their corresponding velocities Ξ̇ and Q̇jk via the equation of motion. The relation between the conjugate
momenta and their velocities is given through the first order Hamiltonian equations which were displayed
in the last section in equation (4.5).

We begin with the matter equation for Ξ. First, we have to take the time derivative of the first order
equation for Ξ given in equation (4.5). This yields

Ξ̈ =
[ Ṅ√

detQ
−N

(
√

detQ)˙

detQ

]
Π +

N√
detQ

Π̇ + L
~̇N
Ξ + L ~N

Ξ̇. (4.8)

As discussed in section 3.3, the shift vector Nj := −Cj/H is a constant of motion since Ċj = Ḣ = 0.

Therefore for the Lie derivative with respect to ~̇N the only non vanishing contribution is the one including
Q̇ij, (

L
~̇N
Ξ
)

= (QijNj)
˙Ξ,i = Q̇ijNjΞ,i. (4.9)

We will use this result later on, but for now we will work with the compact form of the Lie derivatives as
written in equation (4.8). Solving for Π in terms of Ξ̇ we get from equation (4.5)

Π(Ξ, Ξ̇, Qjk) =

√
detQ

N

(
Ξ̇ − L ~N

Ξ
)

(4.10)

and thus have expressed Π as a function of the velocity Ξ̇. In order to stress that Π has to be understood
as a function of Ξ̇, we have explicitly written the function’s arguments in this section. Notice that strictly
speaking Π also appears in N =

√
1 +QjkCjCk/H2 and N j = −QjkCk/H. However, Cj and H are treated

as constants of motion as discussed before. The same applies to P jk below. Next we insert this result into
equation (4.5), obtaining

Π̇(Ξ, Ξ̇) = [N
√

det(Q) QjkΞ,k],j −
N

2

√
det(Q) v′(Ξ) + L ~N

(√detQ

N

(
Ξ̇ − L ~N

Ξ
))

(4.11)

= [N
√

det(Q) QjkΞ,k],j −
N

2

√
det(Q) v′(Ξ) +

(
Ξ̇ − L ~N

Ξ
)(

L ~N

√
detQ

N

)
+

√
detQ

N

(
L ~N

(
Ξ̇ − L ~N

Ξ
))
.

The final second order equation of motion for Ξ can be derived by inserting equation (4.10) and (4.11) into
equation (4.8). The result is

Ξ̈ =
[Ṅ
N

− (
√

detQ)˙√
detQ

+
N√
detQ

(
L ~N

√
detQ

N

)](
Ξ̇ − L ~N

Ξ
)

+QjkΞ,k

[ N√
detQ

[
N
√

detQ],j

]

+N2
[
∆Ξ + [Qjk],jΞ,k −

1

2
v′(Ξ)

]
+ 2
(
L ~N

Ξ̇
)

+
(
L

~̇N
Ξ
)
−
(
L ~N

(
L ~N

Ξ
))
. (4.12)
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The same procedure has to be repeated for the gravitational equations now. Applying another time derivative
to the first order equation of Qjk in equation (4.5) yields

Q̈jk =
(
2
[ Ṅ√

detQ
−N (

√
detQ)˙

detQ

]
Gjkmn +

2N√
detQ

Ġjkmn

)
Pmn +

2N√
detQ

GjkmnṖ
mn +

(
L ~̇

N
Q
)
jk

+
(
L ~N

Q̇
)
jk
.

(4.13)
In order to solve for P jk in terms of Q̇jk we use the inverse of the tensor Gjkmn denoted by [G−1]jkmn and
defined in equation (4.7). This results in

P jk(Qjk, Q̇jk) =

√
detQ

2N
[G−1]jkmn

(
Q̇mn −

(
L ~N

Q
)
mn

)
. (4.14)

Since the equation for Ṗ jk in (4.5) contains C which includes the geometry as well as the matter part of
the Hamiltonian constraint (see equation (3.56) for its explicit definition), it is a function of the variables
Qjk, P

jk,Ξ and Π. This was different for Π where its time derivative involved the matter momentum only.
Thus, in order to express Ṗ jk as a function of configuration variables and velocities, we use equation (4.10)
and (4.14) and replace the momenta occurring in Ṗ jk. Rewriting Cgeo by means of the DeWitt bimetric
Gjkmn we get

Cgeo =
1

κ

[ 1√
detQ

GjkmnP
jkPmn +

√
detQ

(
2Λ −R)

]
. (4.15)

Using the relation in equation (4.14) and the fact that Gjkmn[G−1]jkrs = δr
(mδ

s
n), we obtain

Cgeo(Qjk, Q̇jk) =
1

κ

[√detQ

4N2
[G−1]jkmn

(
Q̇jk −

(
L ~N

Q
)
jk

)(
Q̇mn −

(
L ~N

Q
)
mn

)
+
√

detQ
(
2Λ −R)

]
. (4.16)

For the matter part of the Hamiltonian constraint we obtain by means of equation (4.10)

Cmatter(Ξ, Ξ̇, Qjk) =
1

2λ

[√detQ

N2

(
Ξ̇ − L ~N

Ξ
)2

+
√

detQ
(
QjkΞ,jΞ,k + v(Ξ)

)]
. (4.17)

There are two other terms in Ṗ jk which include the conjugate momenta P jk. One is the first term on
the right hand side of equation (4.5) being quadratic in P jk and the second is the Lie derivative of P jk.
Reinserting into those terms the relation shown in equation (4.14), we end up with the following expression
for Ṗ jk as a function of configuration and velocity variables:

Ṗ jk(Qjk, Q̇jk,Ξ, Ξ̇) = −
√

detQ

2N
Qmn

(
[G−1]jmrs[G−1]kntu − 1

2
[G−1]mnrs[G−1]jktu

)(
Q̇rs −

(
L ~N

Q
)
rs

)

(
Q̇tu −

(
L ~N

Q
)
tu

)
+N

[κ
2
Qjk C −

√
detQ Qjk

(
2Λ +

κ

2λ

(
ΞmΞm + v(Ξ)

))]

+
√

detQ[G−1]jkmn
(
(DmDnN) −NRmn[Q]

)
+

κ

2λ
N
√

detQ Ξ,jΞ,k

+
(
(L ~N

√
detQ

2N
)[G−1]jkmn +

√
detQ

2N
(L ~N

[G−1]
)jkmn

)(
Q̇mn −

(
L ~N

Q
)
mn

)

+
(
(L ~N

Q̇
)
mn

−
(
L ~N

(
L ~N

Q
))

mn

)√detQ

2N
[G−1]jkmn − 1

2
HQjmQknNmNn.
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Next we insert the expressions for P jk and Ṗ jk in equations (4.14) and (4.18), respectively, into equation
(4.13) for Q̈jk. Keeping in mind that GjkmnQ

mn = −1/2Qjk, we end up with

Q̈jk =
[Ṅ
N

− (
√

detQ)˙√
detQ

+
N√
detQ

(
L ~N

√
detQ

N

)](
Q̇jk −

(
L ~N

Q
)
jk

)
(4.18)

−
(
Q̇rs −

(
L ~N

Q
)
rs

)
Gjkmn

[
[Ġ−1]mnrs +

(
L[G−1]

)mnrs
+Qtu

(
Q̇vw −

(
L ~N

Q
)
vw

)(
[G−1]mtrs[G−1]nuvw − 1

2
[G−1]mnvw[G−1]turs

)]

−Qjk

[ N2κ

2
√

detQ
C −N2

(
2Λ +

κ

2λ
v(Ξ)

)]
+N2

[κ
λ

Ξ,jΞ,k − 2Rjk

]
+ 2N

(
DjDkN

)
− NH√

detQ
GjkmnN

mNn

+2
(
L ~N

Q̇
)
jk

+
(
L

~̇N
Q
)
jk

−
(
L ~N

(
L ~N

Q
))

jk
.

(4.19)

Here we used that Ġjkmn[G1−]mnrs = −Gjkmn[Ġ−1]jkrs which follows from
(
Gjkmn[G−1]mnrs

)̇
= 0 and

2N√
detQ

Gjkmn

[
−N

√
detQ Qmn κ

2λ
Ξ,rΞ,r +N

√
detQ

κ

2λ
Ξ,mΞ,n

]
(4.20)

=
2N√
detQ

[
+
N
√

detQ κ

4λ
QjkΞ

,rΞ,r +
N
√

detQ κ

2λ
Ξ,jΞ,k −

N
√

detQκ

4λ
QjkΞ

,rΞ,r

]

= N2κ

λ
Ξ,jΞ,k. (4.21)

A straightforward, but tedious calculation shows that the second term on the right-hand side of the equation
for Q̈jk simplifies greatly:

−
(
Q̇rs −

(
L ~N

Q
)
rs

)
Gjkmn

[
[Ġ−1]mnrs +

(
L[G−1]

)mnrs
+Qtu

(
Q̇vw −

(
L ~N

Q
)
vw

)(
[G−1]mtrs[G−1]nuvw − 1

2
[G−1]mnvw[G−1]turs

)]

= Qmn
(
Q̇mj −

(
L ~N

Q
)
mj

)(
Q̇nk −

(
L ~N

Q
)
nk

)
. (4.22)

Consequently, the final form for the second order equation of motion for Qjk is given by

Q̈jk =
[Ṅ
N

− (
√

detQ)˙√
detQ

+
N√
detQ

(
L ~N

√
detQ

N

)](
Q̇jk −

(
L ~N

Q
)
jk

)

+Qmn
(
Q̇mj −

(
L ~N

Q
)
mj

)(
Q̇nk −

(
L ~N

Q
)
nk

)
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− NH√

detQ
GjkmnN

mNn. (4.23)

This finishes our derivation of the (general) second order equation of motion for Ξ and Qjk, respectively.

4.4 Summary of Second Order Equations of Motion

The second order equations of motion for the (manifestly) gauge invariant matter scalar field Ξ and the
(manifestly) gauge invariant three metric Qjk have the following form:

Ξ̈ =
[Ṅ
N

− (
√

detQ)˙√
detQ

+
N√
detQ

(
L ~N

√
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)](
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]
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Ξ
)
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(
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(
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Ξ
))

(4.24)
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and
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DjDkN

)
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− NH√

detQ
GjkmnN

mNn. (4.25)

The term C = Cgeo + Cmatter occurring in the equation for Q̈jk has to be understood as a function of
configuration and velocity variables and is explicitly given by

Cgeo =
1

κ

[√detQ

4N2
[G−1]jkmn

(
Q̇jk −

(
L ~N

Q
)
jk

)(
Q̇mn −

(
L ~N

Q
)
mn

)
+
√

detQ
(
2Λ −R)

]

Cmatter =
1

2λ

[√detQ

N2

(
Ξ̇ − L ~N

Ξ
)2

+
√

detQ
(
QjkΞ,jΞ,k + v(Ξ)

)]
. (4.26)

Apart from the fact that we have a dynamical lapse function given by N = C/H, as well as a dynamical
shift vector defined as Nj = −Cj/H, the only deviation from the standard Einstein equations in canonical
form is the last term on the right-hand side in equation (4.25). This term, being quadratic in Nj and
therefore quadratic in Cj = Cgeo

j + Cmatter
j , vanishes for instance when FRW spacetimes are considered. In

our companion paper [15], we specialize these equations precisely to this context and show that the equations
above reproduce the correct FRW equations.

5 Physical Hamiltonian, Boundary Term and ADM Hamiltonian

As long as the dust space S (and therefore X ) has no boundary, H is functionally differentiable, which we
always assumed so far. However, for more general topologies we are forced to consider boundary conditions.
In this section we show how to deal with asymptotically flat boundary conditions for illustrative purposes.
More general situations can be considered analogously.

Recall [37] that asymptotically flat initial data are subject to the following boundary conditions

qab(x) = δab +
fab(Ω)

r
+ O(r−2) ,

pab(x) =
gab(Ω)

r
+ O(r−3) ,

ξ(x) =
f(Ω)

r2
+ O(r−3) ,

π(x) =
g(Ω)

r2
+ O(r−3) . (5.1)

Here, xa is an asymptotic coordinate system, r2 ≡ δabx
axb and Ω denotes the angular dependence of the

unit vector xa/r (on the asymptotic sphere). The functions fab, f, g
ab, g are assumed to be smooth.

Moreover, fab is an even function under reflection at spatial infinity on the sphere, while gab is odd (f, g
do not underly parity restrictions). Notice that these boundary conditions directly translate into analogous
ones for the substitutions Qjk ↔ qab, P

jk ↔ pab, Ξ ↔ ξ, Π ↔ π, because switching from X to S is just a
diffeomorphism.

The part of the differential of H that gives rise to a boundary term is

δboundary H =

∫

S
d3σ

[
NδboundaryC +N jδboundaryCj

]
, (5.2)
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which coincides precisely with the boundary terms produced by the canonical Hamiltonian29

Hcanonical =

∫

X
d3x [nc+ naca] (5.3)

without dust. Here, the lapse and shift functions n, na are Lagrange multiplier rather than dynamical quan-
tities like N,N j . Therefore, the usual boundary terms [37] can be adopted, once the asymptotic behaviour
of the dynamical lapse and shift functions N,N j have been determined, which, in turn, is completely spec-
ified by Nj because N j = QjkNk, N =

√
1 +QjkNjNk. The scalar field contribution to C,Cj decays as

1/r4, thus it is sufficient to consider the geometrical contribution. Cgeo
j = −2DkP

k
j decays as 1/r3 and is

even asymptotically. The term quadratic in P jk and the term quadratic in the Christoffel symbols in Cgeo

decays as 1/r4, while the term linear in the Cristoffel symbols decays as 1/r3 and is even. We conclude that

Nj = −Cj

H
(with H =

√
C2 −QjkCjCk) is asymptotically constant and even. The same is true for N , which

is anyway bounded from below by unity. The usual computation [22, 37] yields

δboundary H = −δB′(N) − δ ~B′( ~N ′)

κδB′(N) =

∫

S2

√
det(Q)QjkQmn [(DjN)dSkδ(Qmn − δmn) − (DmN)dSnδ (Qjk − δjk)]

+

∫

S2

√
det(Q)QjkN

[
−dSjδΓ

m
mk + SkδΓ

k
jk

]

κδ ~B′( ~N ) = 2

∫

S2

dSj N
kδP j

k , (5.4)

where dSj = xj/rdΩ , dΩ the volume element of S2. The prime is to indicate that, contrary to what
the notation suggests, the terms shown are, a priori, not total differentials. In the usual formalism they
are, because lapse and shift functions are Lagrange multipliers and do not depend on phase space. Here,
however, they are dynamical and we must worry about the variation δNj .

It turns out that the boundary conditions need to be refined in order to make H differentiable. We
will not analyze the most general boundary conditions in this paper, but just make a specific choice that
will be sufficient for our purposes. Namely, we will impose in addition that Cgeo

j = −2DkP
k
j decays as

1/r3+ǫ, (ǫ > 0) at spatial infinity. Then also Cj falls off as 1/r3+ǫ. Since C decays like 1/r3, it follows that
also H =

√
C2 −QjkCjCk decays as 1/r3, whence Nj = −Cj/H decays as 1/rǫ. This implies that δNj

decays as 30 1/rǫ. Thus, δN = [QjkNkδNj +NjNkδQ
jk/2]/N decays as 31 1/r2ǫ.

It follows that δ ~B′( ~N) = 0 and

κδB′(N) = κδEADM, EADM =

∫

S2

√
det(Q)Qjk

[
−dSj Γm

mk + SkδΓ
k
jk

]
(5.5)

reduces to the variation of the ADM energy. The correct Hamiltonian is given by

H = EADM +

∫

S
d3σ H(σ) . (5.6)

It is reassuring that in the asymptotically flat context, we have automatically a boundary term in the Hamil-
tonian, which is just the ADM energy. The additional bulk term comes from the dust energy density and
does not vanish on the constraint surface.

29With the substitutions S ↔ X , Qjk ↔ qab, P jk ↔ pab, Ξ ↔ ξ, Π ↔ π implied.
30We could more generally have imposed that δNj falls off like 1/rǫ at spatial infinity.
31The choice ǫ = 1/2 seems to be appropriate in order to reproduce the asymptotic Schwarzschild decay for dynamical lapse

and shift. However, this is not the case here, because we are automatically in a freely falling (dust) frame and τ is eigentime.
Hence, gττ = −N2 + QjkNjNk − 1, whatever choice for Nj is made, it is independent of τ .
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Before we close this section, let us also mention the physical Hamiltonian system under consideration
there exists a Lagrangian from which derives by Legendre transformation on the phase space defined by the
physical observables. Curiously, the corresponding effective action turns out to be non-local in dust space
but local in dust time. It can be computed via a fixed point equation to any order in the spatial derivatives
of the fields. Details can be found in appendix C.

6 Linear, Manifestly Gauge Invariant Perturbation Theory

In section 4 we derived the (manifestly) gauge invariant second order equation of motion for the scalar field
Ξ and the three metric Qjk. Now we want to consider small perturbations around a given background whose
corresponding quantities will be denoted by a bar, namely Ξ, Qjk. The linear perturbations are then defined

as δΞ := Ξ − Ξ and δQjk := Qjk − Qjk, respectively. Note that these perturbations are also (manifestly)
gauge invariant because they are defined as a difference of two gauge invariant quantities. Consequently,
any power of δΞ and δQjk will also be a (manifestly) gauge invariant quantity such that in the framework
introduced in this paper gauge invariant perturbation theory up to arbitrary order is not only possible, but
also straightforward. This is a definite strength of our approach compared to the traditional one, see section
7 for a detailed discussion.

However, in this section we will restrict ourselves to linear (manifestly) gauge invariant perturbation theory.
That is any function F (Qjk,Ξ) will be expanded up to linear order in the perturbations δΞ and δQjk. We
denote by δF the linear order term in the Taylor expansion of the expression F (Qjk,Ξ) − F (Qjk,Ξ). A
calculation of higher order terms will be the content of a future publication. Usually, in cosmological per-
turbation theory one chooses an FRW background and considers small perturbations around it. Here we
will derive the equations of motion for the linear perturbations assuming an arbitrary background. In our
companion paper, we will specialise the results derived here to the case of an FRW background and show
that we can reproduce the standard results as presented, e.g., in [7]. The reader who is only interested in
the final form of the perturbed equation of motions should go directly to section 6.3, where a summary of
the results is provided.

6.1 Derivation of the Equation of Motion for δΞ

Let us go back to the second order equation of motion for Ξ shown in equation (4.24). Since its perturbation
involves several terms we will, for reasons of book keeping, split this equation into several parts and consider
the perturbation of those parts separately. Comparing the equation of Ξ with the one for Qij in equation
(4.25), we realise that in both equations the first term on the right-hand side includes an identical term,
namely the expression in the square brackets. Therefore it is convenient to derive its perturbation in a
closed form such that the result can then also be used for the derivation of the equation of motion of δQij .
Throughout this section we will repeatedly need the perturbation of

√
detQ and its inverse, given by

δ
√

detQ =
1

2

√
detQ Q

ij
δQij

δ
( 1√

detQ

)
= −1

2

1√
detQ

Q
ij
δQij . (6.1)

Next, considering the definition of the lapse functions given by N = C/H and the definition of H =√
C2 −QijCiCj we obtain N =

√
1 +QijNiNj . Thus, as mentioned before, N is not an independent

variable, but can be expressed in terms of Qij and the shift vector, which itself is a function of the elementary
variables Ξ, Qij. However, as shown in our companion paper [15], the perturbation of Nj is again a constant
of motion, that is δṄj = 0. For this reason it is convenient to work with δQjk, δΞ and δNj , although, strictly
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speaking, δNj is not an independent perturbation. Keeping this in mind the perturbation of N yields

δN =
[
− N

2

(N j
N

k

N
2

)]
δQjk +

[
N
N

j

N
2

]
δNj . (6.2)

From the explicit form of δN and δ
√

detQ we can derive the following expressions which we will need below:

δ
(Ṅ
N

)
=

[
− ∂

∂τ

1

2

(N j
N

k

N
2

)]
δQjk +

[(N j

N
2

)̇ ]
δNj (6.3)

δ
(
−
(√

detQ
)̇

√
detQ

)
=

[
− ∂

∂τ

1

2
Q

jk
]
δQjk.

Here the derivative with respect to τ is understood to act on everything to its right, including the perturba-
tions. We also used that δNj is a constant of motion, so the term proportional to δṄj does not contribute.
In order to calculate the perturbation of the Lie derivative term occurring in the square brackets in eqn.
(4.24), we compute

δ
( N√

detQ

)
=

[
−
( N√

detQ

)1

2

(
Q

jk
+
N

j
N

k

N
2

)]
δQjk +

[N j

N
2

]
δNj

δ
(√detQ

N

)
=

[(√detQ

N

)1

2

(
Q

jk
+
N

j
N

k

N
2

)]
δQjk +

[
−
√

detQ

N

N
j

N
2

]
δNj . (6.4)

The Lie derivative term yields then

δ
((

L ~N

√
detQ

N

))
=

[
L~

N

(√detQ

N

1

2

(
Q

jk
+
N

j
N

k

N
2

))]
δQjk

+
[
− L~

N

√
detQ

N

(N j

N
2

)]
δNj

+
(
L

δ ~N

√
detQ

N

)
.

(6.5)

Similar to the τ -derivative, the Lie derivative L ~N
acts on all terms to its right, including the linear pertur-

bations. For the moment we keep the Lie derivative with respect to δ ~N in the compact form above. At a
later stage we will write down these terms explicitly and express them in terms of δQjk and δNj . Having
calculated the variations of all components of the first square bracket in eqn. (4.24), we can now give the
final result:

δ
[Ṅ
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+
N√
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δQjk

+
[( ∂
∂τ

− L~
N

)N j

N
2
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δNj

+
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δ ~N

√
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)
.

The last term in this equation can be written explicitly in terms of δQmn and δNm as

N√
detQ

(
L

δ ~N

√
detQ
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)
=

[
− N√

detQ

∂

∂xm
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k
)]
δQjk

+
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∂

∂xk

(√detQ

N
Q

jk
)]
δNj .

(6.6)
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As the terms in equation (6.6) are multiplied by (Ξ̇−(L ~N
Ξ)) in equation (4.24), we also need the perturbation

of the latter term. It is given by

δ
(
Ξ̇ −

(
L ~N

Ξ
))

=
( ∂
∂τ

− L~
N

)
δΞ −

(
L

δ ~N
Ξ
)
. (6.7)

Next we determine the perturbation of QjkΞ,k which enters the second term on the right-hand side of
equation (4.24):

δ
(
QjkΞ,k

)
=

[
−Q

jm
Q

kn
Ξ,k

]
δQmn +

[
Q

jk ∂

∂xk

]
δΞ. (6.8)

The perturbation of the term that is multiplied with QjkΞ,k yields

δ
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δNj .

We will split the third term occurring on the right-hand side of equation (4.24) into N2 and the remaining
part given by (∆Ξ + [Qjk],jΞ,k − 1

2v
′(Ξ)). Their respective perturbations are

δN2 = 2NδN =
[
−N

j
N

k
]
δQjk +

[
2N

j
]
δNj (6.10)
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]
δΞ.

Finally, we have to calculate the perturbation of the last three terms in equation (4.24), involving Lie
derivatives of Ξ and Ξ̇, respectively. We obtain

δ
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.
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Adding up all the contributions and factoring out the linear perturbations δΞ, δQjk and δNj , we can rewrite
order EOM as

δΞ̈ =
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Here we used that the last term occurring in equation (4.24), which involves the Lie derivative with respect
to δ ~N , can again be expressed in terms of the perturbations δQjk and δNj , explicitly given by
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Analogously, the last term on the right hand side of equation (6.6), which also involves a Lie derivative with
respect to δ ~N , can be expressed as
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(6.15)
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Moreover
(
L

δ ~N
Ξ
)

occurring in equation (6.7) is given by

(
L

δ ~N
Ξ
)

=
[
−Q

jm
Ξ,mN

k
]
δQjk +

[
Q

jk
Ξ,k

]
δNj . (6.16)

We would like to emphasise again that the partial and Lie derivatives act on everything to their right and
therefore also on the perturbations. That is the reason why for instance δΞ̇ and δQ̇jk have not been factored
out separately. This finishes our derivation of the second order equation of motion for the scalar field
perturbation δΞ. In the next section we will discuss the corresponding equation for the metric perturbation
δQjk.

6.2 Derivation of the Equation of Motion for δQjk

Similar to the derivation of the second order equation of motion for δΞ we will also split the equation for Q̈jk

in equation (4.25) into several terms whose perturbations are then considered separately. More precisely,
we will split the equation into seven separate terms, with the three terms involving Lie derivatives in the
last line counted as one. Starting with the first term on the right-hand side, we recall that the perturbation
of the sum of terms in the square brackets has already been computed during the derivation of the equation
for δΞ̈. Thus, we can take over those results, as shown in equation (6.6). The perturbation of the term
(Q̇jk − (L ~N

Q)jk) is given by
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whereby
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Consequently, we have all ingredients needed for the perturbation of the first term. However, we will not
present the final expression in the main text since it is quite lengthly. Nevertheless, the interested reader
can find the explicit form in appendix G in equation (6.17). The perturbation of the second term on the
right-hand side yields
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The perturbation of the third term occurring on the right-hand side requires a bit more work, because it
involves C = Cgeo + Cmatter. Thus we will perform this calculation in two steps. First we will ignore the
explicit form of δC in terms of δQjk, δΞ and δNj . The resulting expression looks like
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Due to its length, the explicit calculation of δC can be found in appendix G. However, when actually
inserting the expression of δC into equation (6.20), some of the terms in the expression for δC cancel with
existing terms in equation (6.20). As a result, the final expression for the perturbation of the third term in
equation (6.21) is slightly less involved. It is given by
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(6.22)

Proceeding with the next term on the right-hand side of equation (4.25), we obtain for its perturbation the
following result:
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For this calculation we used the fact that the perturbation of the Ricci tensor can be expressed in terms of
the perturbations δQjk. The explicit relation reads
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The next term in equation (4.25) includes covariant derivatives. Therefore we will have to consider the
perturbation of the Christoffel symbols Γm

jk. These can again be written in terms of metric perturbations as
shown below
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Q
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Using this we end up with
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Note that covariant derivatives surrounded by round bracket such as (DjDk...) act on the elements inside the
round brackets only. By contrast, covariant derivatives not surrounded by round brackets act on everything
to their right, including also the perturbations.

Next we deal with the three terms on the right-hand side of equation (4.25) that include Lie derivatives
with respect to δ ~N . Those Lie derivatives are again functions of δQjk, δNj , and partial derivatives thereof,
because we have δNm = −Qmr

Q
ns
N sδQrn + Q

mn
δNn. In this section, however, we will work with the

following compact form only:

δ
(
2
(
L ~N

Q̇
)
jk

+
(
L

~̇N
Q
)
jk

−
(
L ~N

(
L ~N

Q
))

jk

)
=

[
L~

N

( ∂
∂τ

−L~
N

)
+

∂

∂τ
L~

N

]
δQjk (6.25)

+
(
LδN

( ∂
∂τ

− L~
N

)
+
( ∂
∂τ

− L~
N

)
LδN

)[
Qjk

]
.

In the next section, we will rewrite the second order equation of motion in a more concise form, using
coefficient functions. That will allow us to include the Lie derivative term with respect to δ ~N in the
following, more explicit form:
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Another term which includes Lie derivatives with respect to δ ~N appeared previously as part of equation
(6.19). Performing the Lie derivative also in this case, we end up with
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The other two terms that include Lie derivatives with respect to δ ~N are parts of the perturbation of the
first term. Their explicit expressions are given in equation (6.6) and equation (6.18), respectively. Note that
these terms are written out explicitly in appendix G, where the final form of the perturbation of the first
term is calculated.
Finally, we consider the last remaining term from equation (4.25). It involves the Hamiltonian density H,
which we found out to be a constant of motion in section (3.4). In our companion paper [15] we show that
also δNj and δH are constants of motion. Therefore, in complete analogy to the case of δNj , we will factor
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out δH. We thus obtain
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(6.29)

Here we used that
δGjkmn = −GjkrsGmntuδ[G

−1]rstu. (6.30)

Now we have finally derived all the individual parts that are needed in order to write down the equation of
motion for δQjk. However, by just looking at the various individual terms, it is clear that they are already
considerably more complicated than for the corresponding case of the matter equation of motion for δΞ.
Nevertheless, we decided to present the final equation in detailed form on the next page, in particular to
convey a sense of how much more involved the geometrical part of the perturbed equations is compared to
the matter part. In the next section we will rewrite both equations of motion, the one for δΞ as well as the
one for δQjk, in a more transparent form where all the complicated background coefficients in front of the
perturbations are hidden in certain coefficient functions. In our companion paper, we will then specialise
those coefficient functions to the case of an FRW spacetime and show that the general equations derived
in the last two subsection are (up to small correction caused by our dust clock) in agreement with the
well-known perturbation equations as discussed, e.g., in [7]. Note that we still kept the compact form of
the Lie derivative with respect to δN in equation (6.31), because we wanted to present this equation on one
page only.
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6.3 Summary of the Equations of Motion for δΞ and δQjk

In the last two sections we derived the second order equations of motion for δΞ and δQjk. The results of
our calculations can be found in equation (6.12) and equation (6.31), respectively. However, these equations
are quite complex and not very transparent in that form. For this reason, we want to rewrite them in
a form where we can still recognize their general form but where they take a much simpler form. We
will hide the precise details of the various background quantities that occur as coefficients in front of the
linear perturbations in certain coefficient functions that will be introduced below. These coefficients will
be operator valued since they also involve objects such as partial or Lie derivatives, as can be seen from
eqns. (6.12) and (6.31). As explained before, apart from the elementary perturbations δQjk and δΞ, the
second order equations of motion contain also the perturbation of the shift vector δNj and the (physical)
Hamiltonian density δH. Both are functions of δQjk and δΞ, and therefore not independent perturbations.
However, it turns out that these two quantities are constants of motion, so it is convenient to keep them in
the equations.
Starting with the second order equation for δΞ, its general structure is of the kind
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Note that all partial and Lie derivatives act on all terms to their right, including the linear perturbations.
This is also the reason why terms as for instance Ξ̈ or Q̇jk do not occur in the simple form of equation
(6.32).
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The third coefficient is given by
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As was to be expected, the corresponding equation for the perturbation of the three metric δQjk includes
more than just three terms. It is of the form

[CQ]δQjk = [AQ]ijδΞ + [BQ]ijδH + [CQ]m(kδQj)m + [CQ]mn
jk δQmn + [CQ]mjkδNm (6.36)

The various coefficients introduced in the equation above are given as follows:
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Here we use the notation that covariant derivatives surrounded by round bracket such as (DjDk...) act on
the elements inside the round brackets only. By contrast, covariant derivatives not surrounded by round
brackets act on everything to their right, including also the perturbations. The coefficient for δΞ can be
explicitly written as

[AQ]jk :=
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For the coefficient belonging to the linear perturbation of the Hamiltonian density δH we get:

[BQ]jk :=
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The coefficient [CQ]m(k takes the form:
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The last two coefficients are the ones for δQmn and δNm. These are the most complicated ones for the
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second order equation of motion of δQjk. We will list them below:
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Note that the coefficient for δQmn in equation (6.31) and the one above are different due to the presence
of the last two lines in the equation above. The reason for this is that now we used the explicit expression
for the Lie derivatives with respect to δ ~N , which were derived in equation (6.28) and (6.26) and lead to
additional terms in δQmn and δNm.
Finally, we present the coefficient for δNm. Similarly to the case of δQnm, we also get additional terms
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coming from the Lie derivatives in the last line of equation (6.31).
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Although the form of the perturbed equations is quite complicated, they simplify drastically for special
backgrounds of interest. For the case of FRW, for instance, all terms proportional to N j vanish, since
N j = −Cj/H = 0 for FRW. This is due to the geometry and matter parts of the diffeomorphism constraint
vanishing both separately in that case. Furthermore, all terms in the coefficients that contain spatial deriva-
tives applied to background quantities vanish also. Other backgrounds where considerable simplification
will occur include Schwarzschild spacetime.

7 Comparison with Other Frameworks

We now proceed to compare our work with other approaches to general relativistic perturbation theory found
in the literature. In the following we will restrict ourselves to discussing works that treat perturbation theory
around general backgrounds. Approaches which deal exclusively with cosmological perturbation theory will
be looked at in our second paper, specifically dedicated to that topic.

The central point of comparison is how gauge-invariance is handled in the various approaches. As that
notion often acquires different meanings, especially in the context of general-relativistic perturbation theory,
it seems prudent to recall the precise mathematical setting underlying most works. It was developed by
Sachs [27] and Stewart and Walker [28], and recently given a very general and elegant formulation by Bruni,
Sonego and collaborators [29, 30, 31]. The starting point consists of two spacetime manifolds M0 and M ,
which represent the background spacetime around which one perturbs and the actual physical spacetime,
respectively. It is important to keep in mind that M0 is only an artificial construct. Perturbations of
geometric quantities are then defined by comparing their values in M0 and M , respectively. This procedure
is highly ambiguous, however, in that there is a great freedom inherent in the choice of points where one
compares background and ”real” quantities to define the perturbations. Note that this freedom is in addition
to the usual coordinate gauge freedom in general relativity. For that reason, Sachs termed it gauge invariance
of the second type [27]. Making such a choice, which mathematically amounts to choosing a so-called point
identification map between M0 and M , is therefore nothing but a choice of gauge. Correspondingly, gauge-
invariant perturbations are those quantities whose values do not depend on the choice of point identification
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map. The actual condition for a perturbed quantity to be gauge-invariant to first order in this sense was
already derived in [27], fully proved in [28] and finally generalized to arbitrary order n in [29]. The result
can be succinctly summarised as follows: a geometric quantity T - such as a tensor - is invariant to order n
iff all its perturbations to order n− 1 are either vanishing, (spacetime) constant scalars or a combination of
Kronecker deltas. This result is often known as the Stewart&Walker lemma. Clearly, the only case of actual
interest is the first. An example is given by curvature tensors in linear perturbation theory around Minkowski
space. As they vanish in the background, they are gauge-invariant to first order. These insights have been
the backbone of most attempts to construct gauge-invariant quantities to various orders in perturbation
theory or even non-perturbatively. We will now discuss two of them.

In a series of papers [2, 3, 4] Nakamura has used these principles to develop formulas for gauge-invariant
quantities to second and third order around an arbitrary background. They encompass the invariant parts of
various metric and curvature, as well as matter perturbations. These general formulas are, however, implicit
only to the extent that Nakamura derives them from the assumption that the corresponding linear order
perturbations can be decomposed into gauge-invariant and gauge-variant parts. Consequently, while the
construction is, in principle, valid for arbitrary backgrounds, in practice only backgrounds with sufficient
symmetries to perform that split at linear order explicitly can be used. Luckily, that applies, of course, to
several cases of great interest, such as cosmological and spherically symmetric backgrounds. The latter case
is explicitly treated in [4].

A distinctly different approach - let us call it the EB approach - is based on seminal work by Ellis and
Bruni [32], which has since inspired a multitude of other works [33, 34, 35]. Although the discussions in
these papers is geared towards applications in cosmology, the framework itself can be applied to arbitrary
spacetimes, in principle, which is why we decided to discuss it here. The basic idea is to use a 1 + 3-
approach by employing covariant quantities connected to a family of flow lines or ”fundamental observers”.
The prime reason is that these quantities are much more closely related to what one actually measures in
astrophysics. Furthermore, by a simple application of the Stewart-Walker lemma, they are automatically
gauge-invariant if the corresponding quantities in the background spacetime vanish. Unlike in the more
common metric-based formalism, these quantities are defined in the physical, perturbed spacetime. As a
result, they are fully non-perturbative and in that sense their gauge-invariance extends to all orders. The
connection to the standard perturbative approach based on perturbations in the background spacetime can
be made by suitably expanding the physical quantities to the desired order, see [33]. This approach enjoys
a clear geometric and physical interpretation of the quantities used, as well as the advantage of basing
perturbation theory on non-perturbative variables.

Comparing the works mentioned so far to ours, a first obvious difference is that we work in a canonical
setting versus the covariant setting used by the others. The motivation is first that gauge issues become
particularly clear in the canonical picture and second our view towards quantization. The more important
difference, however, is our use of dust as a dynamically implemented coordinate system. Our dust clocks
serve a twofold purpose: on the one hand they enable us to construct background observables and therefore
to solve the standard gauge problem in general relativity. On the other hand they also serve as the point
identification map and thus eliminate the gauge freedom of ”second type”. In that sense they represent a
logical extension to perturbation theory of the initial conceptual idea by Brown and Kuchar [12] to use dust
as a physical and therefore preferred coordinate system.

We should also point out that while our framework employs the metric and its perturbations as funda-
mental variables, we could equally well use the dust clocks to build a gauge-invariant perturbation theory
based on the same variables used in the EB approach. In fact, it seems worthwhile to look a bit more closely
at the relationship between the two approaches. Both are non-perturbative in the following sense: they con-
struct quantities which are gauge-invariant (with respect to gauge transformations of the second type). Only
then perturbation theory is applied, which means that gauge-invariance is then automatically guaranteed
in each order of perturbation. The difference arises when one looks at the role of gauge transformations of
the first kind. The EB approach uses idealized observers that are comoving with the physical matter in the
model. Thus the theory is not deparametrized and gauge freedom with respect to the background spacetime
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remains, as illustrated by the presence of constraints as part of the equations of motion. In our case, the
observers are represented by the dust, a component added to the physical matter content of the theory.
They are thus dynamically included in the theory via the dust contribution to the Lagrangian, in addition
to all the other matter. This allows for a complete deparametrization of the non-dust system with respect
to the dust. Time evolution for this subsystem becomes unconstrained and a physical Hamiltonian emerges.
The price to pay for this is that the dust contributes to the energy-momentum tensor of the deparametrized
system, the size of which is small, however. One might well argue that, for practical purposes at the classical
level, the choice between the two approaches is a matter of taste. Our approach, however, offers a clear
advantage if one is interested in quantization, eventually. All programs aiming at a quantization of gravity
that have been pursued, so far, use the metric as a fundamental building block. It is not obvious to us how
to attempt a quantization based on the covariant variables used in the EB approach.
Another argument in favour of our framework is the following: A test observer which by definition does
not have any impact is only a mathematical idealisation. Physically much more realistic is a dynamically
coupled observer fluid like the dust considered here which in particular takes into account the gravitational
backreaction.

To summarise: the crucial difference between our approach and the others discussed here is that the latter
deal only with gauge freedom of the second type. This can be seen from the fact that they use background
variables which are not gauge-invariant and is evidenced, e.g., by the presence of constraint equations in
addition to evolution equations. Our treatment, by contrast, deals with all variables at all orders in a unified
manner. Furthermore, in our opinion the framework developed here allows for a much more straightforward
implementation at higher orders. Another advantage is that it allows to treat arbitrary backgrounds in
practice, without the high degree of symmetry necessary for approaches based on the Stewart-Walker lemma
to work. Recall that the latter require finding non-trivial quantities that vanish in the background manifold.
Only in symmetric backgrounds such as homogeneous spacetimes is that a fairly tractable problem.

Finally, we should briefly discuss the recent work in [25], which is close to ours in terms of motivation
and conceptual underpinnings. The authors there also use the general gauge invariant framework of [11],
however, with two differences: First of all, they do not use dust matter to achieve gauge invariant completions
of geometry and matter variables. This prevents them from bringing the constraints into a deparametrised
form [9] and thus there is no time independent physical Hamiltonian. Secondly, while they can develop higher
order cosmological perturbation theory, their perturbations of gauge invariant quantities are still expanded
in terms of the perturbations of the the gauge variant quantities which is what we never do. Therefore the
basic perturbation variables are different in the two schemes: In our scheme we never care how our gauge
invariant variables are assembled from gauge variant ones, they and their perturbations are fundamental for
us and n’th order quantities are n’th order expressions in those. In contrast, in [9] n’th order means n’th
order in the gauge variant quantities. In particular, the n’th order perturbed variables are only invariant
with respect to the n’th order constraints up to terms of higher order. In contrast, our perturbed variables
are always first order and always fully gauge invariant, it is only in the Hamiltonian that higher orders of
gauge invariant variables appear. It would no doubt be fruitful to translate the schemes into each other and
to see which differences and similarities arise.

8 Conclusions and Open Questions

This is a long and technically involved paper. The reader rightfully will ask why one should dive into its
details and what exactly is novel as compared to the existing literature. The following remarks are in order:

1. Non perturbative gauge invariance
To the best of our knowledge, there exists no generally accepted notion of gauge invariance at n-th
order of perturbation theory in General Relativity. Moreover, at each order of perturbation theory
one has to repeat the analysis for how to preserve gauge invariance to the given order. Given those
difficulties, it is natural to try to invent a scheme which separates the issue of gauge invariance from
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the perturbation theory. Hence, one must treat gauge invariance non perturbatively. This is exactly
what we managed to do in this paper.

Thus, one only deals with the exact observables of the theory. All the equations of the theory have to
be written in terms of those gauge invariant quantities. Given such a gauge invariant function O on
the full phase space, we evaluate it on a certain background (data) which is an exact solution to our
equations of motion and get a certain value O0. The perturbation of O is then defined as δO = O−O0.
We never care to expand δO in terms of the perturbations of the gauge variant degrees of freedom
(although we could). However, all the equations are expanded directly in terms of the perturbations
of those physical observables.

2. Material reference system
In General Relativity it is well known that in order to meaningfully talk about the Einstein equations
and to have them describe something observable or measurable, one has to suppose that spacetime is
inhabited by (geodesic) test observers. By definition, a test observer has no effect whatsoever on the
system. This is of course mathematically convenient but physically worrysome because a test observer
is a mathematical idealisation. Every real observer interacts at least gravitationally and does leave
its fingerprint on the system. One of the achievements of the seminal work [12] of Brown & Kuchař,
which in our mind is insufficiently appreciated in the literature, is to have overcome this shortcoming.
The authors of [12] have identified a generally covariant Lagrangian which comes as close as possible
to describing a non – self interacting, perfect and geodesically moving fluid that fills out spacetime
(congruence). It does leave its fingerprint on the system and thus is physically more realistic than the
test observer fluid.

In this paper we have driven the work of [12] to its logical frontier and have asked the question
whether the dust when added to the geometry – matter system really accomplishes the goal of keeping
the approximate validity of the usual interpretation of the Einstein equations. We have verified that
it does which in our mind is an intriguing result.

3. Solving the Problem of Time
Since General Relativity is a generally covariant or reparametrisation invariant theory, it is not
equipped with a natural Hamiltonian. Rather, the “dynamics” of the non observables is described
by a linear combination of constraints which really generate gauge transformations rather than phys-
ical evolution. Observable quantities are gauge invariant and therefore do not evolve with respect to
the “gauge dynamics”. Therefore it is conceptually unclear what to do with those observables. The
achievement of [10, 11] is to have invented a scheme that in principle unfreezes the observables from
their non motion. However, in general that physical motion is far from uniquely selected, there are
in general infinitely many such physical notions of time and none of them is preferred. Moreover, the
associated Hamiltonians are generically neither preserved nor positive or at least bounded from below.

When combining the frameworks of [12] and [10, 11] we find the remarkable result that there is
a preferred Hamiltonian which is manifestly positive, not explicitly dependent on physical time and
gauge invariant. It maps a conceptually complicated gauge systems into the safe realm of a conservative
Hamiltonian system. The physical Hamiltonian drives the evolution of the physical observables. It
reproduces the Einstein equations for the gauge invariant observables up to corrections which describe
the influence of the dust.

4. Counting of the Physical Degrees of Freedom
The price to pay is that one has to assume the existence of the dust as an additional matter species
next to those of the standard model32. It would maybe be more desirable to have matter species of

32 Curiously, what we have done in this paper bears some resemblance with the Stueckelberg formalism. There one also adds
additional matter to Maxwell theory. One can then make the longitudinal mode gauge invariant and thus finds a theory with
one more degree of freedom. This is one way to arrive at the Proca theory and more generally at massive vector boson theories
via the Higgs mechanism.
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the standard model or geometry modes playing the role of a dynamical test observer33 . In principle
this is possible, however, the resulting formalism is much more complicated and it does not lead
to deparametrisation. Thus a conserved physical Hamiltonian would then not be available and the
equations of motion would become intractable.

It is true that the dust variables disappear in the final description of the observables which are com-
plicated aggregates built out of all fields. However, the theory has fundamentally four more physical
degrees of freedom than without dust and that might eventually rule out our theory if those additional
degrees of freedom are not observed.

The truly remarkable feature of the dust is that it replaces the initial value constraints of General
Relativity which are reponsible for having less physical degrees of freedom than one would naively
expect, by four conservation laws. That is, in any given solution of our equations of motion, the
physical observables must physically evolve with respect to each other in such a way that the conserved
quantities do not change. This effectively acts like a constraint and therefore reduces the number of
independently evolving observables by four, in agreement with the counting of the degrees of freedom
without dust. Thus, at least as long as the value of those conserved quantities is sufficiently small, we
will not be able to see those additional degrees of freedom. It is this fact which makes it possible that
one effectively does not see more degrees of freedom than in the standard treatment.

As a final objection against our formalism one might raise the fact that the dust contributes with the
wrong sign to the matter energy momentum tensor. However, the formalism not only forces us to do
this as we would otherwise have a negative definite Hamiltonian, moreover, as already remarked in
the introduction, it is completely acceptable since here we talk about the energy momentum tensor of
non observables. The energy momentum tensor of the observables in the final Einstein equations does
satisfy the usual energy conditions.

5. Complexity of the Equations of Motion
Since General Relativity is a highly non linear, complicated self – interacting theory, experience from
much less complicated integrable systems suggests that its Invariants, that is, the gauge invariant
observables, satisfy a tremendously complicated Poisson algebra and that the equations of motion are
intractable. Surprisingly, this is not at all the case. The observable algebra is almost as simple as the
algebra of non observables and the equations of motion can be solved almost as easily as in the usual
gauge variant formalism. Key to that is the presence of the already mentioned conserved current.

In this first paper we have developed the general gauge invariant formalism and linear perturbation theory
about general backgrounds. In the companion paper we apply the general results to flat and FRW back-
grounds and find agreement with usual linear perturbation theory for linearly invariant observables. This
is a first consistency test that our theory has passed. Thus we hope to have convinced the reader that the
present framework has conceptual advantages over previous ones and that it is nonetheless technically not
much more complicated. Actually, the pay – off for having a manifestly gauge invariant approach will really
come in at higher order where we believe that our equations of motion will be simpler.

There are many lines of investigations that one can follow from here. An obvious one, the specialization
to the all-important case of an FRW background is presented in a companion paper as already mentioned.
Investigating perturbations around backgrounds of astrophysical interest, such as Schwarzschild spacetime,
is also valuable. Again, for all these cases it should also prove very interesting to go beyond the linear to
higher orders. Predictions from second-order perturbation theory, e.g. the issue of non-Gaussianity in cos-
mological perturbations, are the topic of current research and could soon be testable by future experiments
such as PLANCK, see [38]. On a more technical and conceptual level, our framework might prove useful
to settle the issue of under what conditions general-relativistic perturbation theory is consistent and stable.

33This would be similar to technicolour theories which declare the Higgs scalar field not as an independent degree of freedom
but as a compound object built from the bosons of the electroweak theory. Here one would build four independent scalars e.g.
from the geometry field.
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Finally, with a view towards facilitating the search for physically relevant predictions from approaches to
quantum gravity, a quantization of our gauge-invariant formulation of general relativity, together with the
development of the corresponding perturbation theory at the quantum level strikes us as a highly desirable
goal. See [24] for first steps.
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A Second Class Constraints of the Brown – Kuchař Theory

In this section we provide the calculational details of the constraint analysis of the Brown – Kuchař theory
discussed in section 2. In particular we want to show that no tertiary constraints arise. Our starting point
is equation (2.25) which we display once again below for the convenience of the reader

z,t = {Hprimary, p} = −ctot

za,t = {Hprimary, pa} = −ctota

Z,t = {Hprimary, I} =
n

2
[− P 2

√
det(q)ρ2

+
√

det(q)(qabUaUb + 1)] =: c̃

Zj
,t = {Hprimary, I

j} = −µjP − nρ
√

det(q)qabUaS
j
,b + PSj

,an
a

Zj,t = {Hprimary, Pj +WjP} = µjP − (na − nρ
√

det(q)

P
qabUb)PWj,a (A.1)

The last two equations involve the Lagrange multipliers µj and µj and can be solved for them. In contrast
we observe that the first three equation are independent of the Lagrange multipliers, they are secondary
constraints. We will now proceed with the constraint analysis and show that when the Poisson brackets
between the primary Hamiltonian Hprimary and the secondary constraints are consideres no new constraints
are generated. Recall that the primary Hamiltonian density was given by

hprimary = µjZj + µZ + µjZ
j + νz + νaza + n′ctot + n′actota (A.2)
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whereby the single constraints are shown below

ctot = cgeo + cmatter + cD

ctota = cgeoa + cmatter
a + cDa

κcgeo =
1√

det(q)
[P abPab −

1

2
(P a

a )2] −
√

det(q) R(3) + 2Λ
√

det(q)

λcmatter =
1

2
[

π2

√
det(q)

+
√

det(q)
(
qabξ,aξ,b + v(ξ)

)
]

cD =
1

2
[

P 2

√
det(q)ρ

+
√

det(q)ρ(qabUaUb + 1)]

κcgeoa = −2DbP
b
a

λcmatter
a = πξ,a

cDa = P [T,a −WjS
j
,a] (A.3)

We begin with the calculation of the Poisson bracket of Hprimary and the smeared constraint

~ctot(~n) :=

∫
d3x na(x)ctota (x) (A.4)

{Hprimary,~c
tot(~n)} =

∫
d3x

∫
d3y
(
{µj(y)Zj(y), n

a(x)ctota (x)} + {µ(y)Z(y), na(x)ctota (x)}

+{µj(y)Z
j(y), na(x)ctota (x)} + {ν(y)z(y), na(x)ctota (x)} + {νb(y)zb(y), n

a(x)ctota (x)}
+{n′(y)ctot(y), na(x)ctota (x)} + {n′b(y)ctotb (y), na(x)ctota (x)}

)
(A.5)

For the single Poisson brackets that occur in the equation above we obtain the following result:

∫
d3x

∫
d3y{µj(y)Zj(y), n

a(x)ctota (x)} =

∫
d3xnaPµjWj,a (A.6)

∫
d3x

∫
d3y{µ(y)Z(y), na(x)ctota (x)} = 0

∫
d3x

∫
d3y{µj(y)Z

j(y), na(x)ctota (x)} = −
∫
d3xPµjS

j
,an

a

∫
d3x

∫
d3y{ν(y)z(y), na(x)ctota (x)} = 0

∫
d3x

∫
d3y{νb(y)zb(y), n

a(x)ctota (x)} = ~ctot(~ν)
∫
d3x

∫
d3y{n′(y)ctot(y), na(x)ctota (x)} = ctot(L~nn

′) + c̃(L~n′ρ) +

∫
d3xρn′ na

√
det(q)qbcUb

(
Wj,aS

j
c −Wj,cS

j
,a

)

∫
d3x

∫
d3y{n′b(y)ctotb (y), na(x)ctota (x)} = ~c(L~n~n

′) −
∫
d3x
(
n′anb − nan′b

)
PSj

,aWj,b
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Consequently we can rewrite equation (A.5) as

{Hprimary,~c
tot(~n)} = ctot(L~nn

′) + c̃(L~nρ) +

∫
d3xρnna

√
det(q)qbcUb

(
Wj,aS

j
c − wj,cS

j
a

)

−
∫
d3xµjPS

j
an

a +

∫
d3xµjPwj,an

a + ~c(L~n~n
′) + ~ctot(~ν)

−
∫
d3x
(
n′bna − n′anb

)
PWj,aS

j
,b

≈
∫
d3xna

(
Sj

a

(
Pn′bWj,b − ρn

√
det(q)qbcUbwj,c − µjP

)

+Wj,a

(
− Pn′bSj

,b + ρn
√

det(q)qbcUbS
j
,c + µjP

))
(A.7)

Hence, the result above involves the Langrange multipliers µj and µj and can be solved for them such that
no new constraints arise from ctota . Proceeding with ctot whereby the smeared constraint is given by

ctot(n) :=

∫
d3xn(x)ctot(x) (A.8)

Thus we get

{Hprimary, c
tot(n)} =

∫
d3x

∫
d3y
(
{µj(y)Zj(y), n(x)ctot(x)} + {µ(y)Z(y), n(x)c̃(x)}

+{µj(y)Z
j(y), n(x)ctot(x)} + {ν(y)z(y), n(x)ctot(x)} + {νb(y)zb(y), n(x)ctot(x)}

+{n′(y)ctot(y), n(x)ctot(x)} + {n′b(y)ctotb (y), n(x)ctot(x)}
)

(A.9)

For the single Poisson brackets that occur in the equation above we obtain the following result

∫
d3x

∫
d3y{µj(y)Zj(y), n(x)ctot(x)} = −

∫
d3x
√

det(q)n ρµjqabUbWj,a (A.10)
∫
d3x

∫
d3y{µ(y)Z(y), n(x)ctot(x)} =

∫
d3xµ

n

n′
c̃

∫
d3x

∫
d3y{µj(y)Z

j(y), n(x)ctot(x)} =

∫
d3xµjρn

√
det(q)qbcUbS

j
,c

∫
d3x

∫
d3y{ν(y)z(y), n(x)ctot(x)} = ctot(ν)

∫
d3x

∫
d3y{νb(y)zb(y), n(x)ctot(x)} = 0

∫
d3x

∫
d3y{n′(y)ctot(y), n(x)ctot(x)} = ~ctot(q−1[n′dn− ndn′])

∫
d3x

∫
d3y{n′b(y)ctotb (y), n(x)ctot(x)} = −ctot(L~n′n) − c̃(L~n′ρ)

−
∫
d3xρnn′a

√
det(q)qbcUb

(
Wj,aS

j
c −Wj,cS

j
,a

)
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Reinserting these results into equation (A.9) yields

{Hprimary, c
tot(n)} = −

∫
d3x
√

det(q)nρµjqabUbWj,a +

∫
d3xµ

n

n′
c̃+

∫
d3xρnµj

√
det(q)qbcUbS

j
,c

+ctot(ν) + ~ctot[q−1(n′dn− ndn′]) − ctot(L~n′n) − c̃(L~n′ρ)

−
∫
d3xρnn′a

√
det(q)qbcUb

(
Wj,aS

j
c −Wj,cS

j
,a

)

≈
∫
d3x
√

det(q)nρqbcUb

(
Wj,c

(
n′aSj

,a − µj − ρn′

P

√
det(q)qdeUdS

j
,e

)

Sj
,c

(
µj −Wj,an

′a +
ρn′

P
qdeUdWj,e

))

+

∫
d3x
√

det(q)nρqbcUb
ρn′

P

√
det(q)qdeUd

(
Wj,cS

j
,e −Wj,eS

j
,c

)

=

∫
d3x
√

det(q)nρqbcUb

(
Wj,c

(
n′aSj

,a − µj − ρn′

P

√
det(q)qdeUdS

j
,e

)

Sj
,c

(
µj −Wj,an

′a +
ρn′

P
qdeUdWj,e

))
(A.11)

Here we used in the last step that the last integral in the line before the last line one vanishes, because
Wj,cS

j
,e −Wj,eS

j
,c is antisymmetric in e, c and multiplied by qbcqdeUbUd which is symmetric in the indeces

c, e.
These are again the equation involving the Lagrange multipliers that we have seen before in the calculations
for ctota .

Finally, let us consider the Poisson bracket of Hprimary and the secondary constraint c̃ whose smeared
version is given by

c̃(u) :=

∫
d3xu(x)c̃(x) (A.12)

where u is an appropiate smearing function. We obtain

{Hprimary, c̃(u)} =

∫
d3x

∫
d3y
(
{µj(y)Zj(y), u(x)c̃(x)} + {µ(y)Z(y), u(x)c̃(x)}

+{µj(y)Z
j(y), u(x)c̃(x)} + {ν(y)z(y), u(x)c̃(x)} + {νb(y)zb(y), u(x)c̃(x)}

+{n′(y)ctot(y), u(x)c̃(x)} + {n′b(y)ctotb (y), u(x)c̃(x)}
)

(A.13)

In this case we do not need to compute all the individual Poisson bracket in order to convince ourselves that
no constraints arise, because the Poisson bracket of Z(µ) and c̃(u) yields

∫
d3x

∫
d3y{µ(y)Z(y), u(x)c̃(x)} =

∫
d3xµu

nP 2

ρ3
√

det(q)
(A.14)

which is a new term invloving the Lagrange multiplier µ. Thus, we can solve the equation {Hprimary, c̃(u)} = 0
for µ.
It follows that no new terms are produced not involving µj, µj , µ in this second iteration step. Consequently,
the full set of (primary and secondary) constraints is given by ctot, ctota , c̃, Zj , Z

j , Z, za and z and it remains
to classify them into first and second class. Obviously,

{Zj(x), Zk(y)} = P δj
k δ(x, y) ,

{Z(x), c̃(y)} =

nP 2

ρ3√
det(q)

δ(x, y) , (A.15)
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does not vanish on the constraint surface defined by the final set of constraints, hence they are second class
constraints. Since n appears only linearly in c̃ and na does not appear at all, it follows that z, za are first
class.
Let us consider the linear combination

c̃tota ≡ I ρ,a + Ij Wj,a + P T,a + Pj S
j
,a + p n,a + L~n pa + ca

= ctota + Z ρ,a + Zj Wj,a + Zj S
j
,a + z n,a + L~n za (A.16)

where
ca ≡ cgeoa + cmatter

a (A.17)

is the non-dust contribution to the spatial diffeomorphism constraint ctota . Since all constraints are scalar or
covector densities of weight one and c̃tota is the generator of spatial diffeomorphisms, it follows that c̃tota is
first class. Finally, we consider as an Ansatz the linear combination

c̃tot ≡ ctot + αj Zj + αj Z
j + α Z , (A.18)

and determine the phase space functions αj , αj , α such that c̃tot has vanishing Poisson brackets with
Zj, Z

j , Z up to terms proportional to Zj , Z
j, Z.

We have

{c̃tot(x), Zj(y)} = {ctot(x), Zj(y)} + αk(x){Zk(x), Zk(y)}
= {ctot(x), Zj(y)} + αj(x)P (x)δ3(x, y). (A.19)

where we used equation (A.15) in the last line. Solving this equation for αj we end up with

αj(x) = −
∫
d3y

1

P (y)
{ctot(x), Zj(y)} =

(
1

P

√
det(q) ρ qabUbWj,a

)
(x) (A.20)

which is a sensible expression since {ctot(x), Zk(y)} ∼ δ3(x, y). For the Poisson bracket involving Zj we get

{c̃tot(x), Zj(y)} = {ctot(x), Zj(y)} + αk(x){Zk(x), Zj(y)}
= {ctot(x), Zj(y)} − αj(x)P (x)δ3(x, y) (A.21)

such that this equation can be solved for αj explicitly given by

αj(x) =

∫
d3y

1

P (y)
{ctot(x), Zj(y)} =

(
1

P
ρ
√

det(q)qbcUbS
j
,c

)
(x). (A.22)

Finally, for Z we obtain

{c̃tot(x), Z(y)} = {ctot(x), Z(y)} ∼ c̃ ≈ 0 (A.23)

Hence this Poisson bracket vanishes weakly. Considering now the Poisson bracket between c̃ and c̃tot we get

{c̃tot(x), c̃(y)} = {ctot(x), c̃(y)} + αj(x){Zj(x), c̃(y)} + αj(x){Zj(x), c̃(y)} + α(x){Z(x), c̃(y)}
(A.24)

The results of the last three individual Poisson brackets occurring above are listed below

{Zj(x), c̃(y)} =
(
n
√

det(q)qabUaWjP
)
(y)

∂

∂yb
δ3(x, y) (A.25)

{Zj(x), c̃(y)} = −
(
n
√

det(q)qabUaPS
j
,b

)
(y)δ3(x, y)

{Z(x), c̃(y)} =

(
nP 2

ρ3
√

det(q)

)
(y)δ3(x, y)
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Now, we can solve equation (A.23) for α which yields

α(x) = −
∫
d3y

ρ3
√

det(q)

nP 2
(y){ctot(x), c̃(y)} (A.26)

−
(
ρ3
√

det(q)

nP 2

[
n
√

det(q)qabUaWjP
)]

,b

1

P
ρ
√

det(q)qbcUbS
j
,c

)
(x)

−
(
ρ3
√

det(q)

nP 2

(
n
√

det(q)qabUaPS
j
,b

) 1

P

√
det(q) ρ qabUbWj,a

)
(x) (A.27)

Here we reinserted the expressions for αj and αj derived before. The final step which includes the construc-
tion of the Dirac bracket can again be found in the main text.

B Comparison with Symplectic reduction

The spatial diffeomorphism invariant quantities

(
ξ̃(σ), π̃(σ)

)
,
(
T̃ (σ), P̃ (σ)

)
,
(
q̃ij(σ), p̃ij(σ)

)
(B.1)

shown in equation (3.30) are also obtained in [12] through symplectic reduction which is an alternative
method to show that the pairs in (3.30) are conjugate.
To see how this works, we compute

d

dt
T̃ (σ) =

d

dt

∫

X
d3x det(∂S/∂x) δ(S(x), σ)T (x)

=

∫

X
d3x det(∂S/∂x)

(
δ(S(x), σ)

[
d

dt
T (x)

]
+ Sa

j (x)

[
d

dt
Sj

,a(x)

]
δ(S(x), σ) T (x)

+

[
d

dt
Sj(x)

] [
∂δ(σ′, σ)

∂σj′

]

σ′=S(x)

T (x)

)

=

[
d

dt
T (x)

]

S(x)=σ

+

∫

X
d3x det(∂S/∂x)

[
d

dt
Sj(x)

] (
−Sa

j (x)∂a [δ(S(x), σ) T (x)]

+

[
∂

δ(σ′, σ)
∂σj′

]

σ′=S(x)

T (x)

)

=

[
d

dt
T (x)

]

S(x)=σ

−
∫

X
d3x det(∂S/∂x) δ(S(x), σ)

[
d

dt
Sj(x)

]
Sa

j (x)T,a(x)

=

[
d

dt
T (x) − (

d

dt
Sj(x)) Sa

j (x)T,a(x)

]

S(x)=σ

(B.2)

where we have used ∂a[S
a
j det(∂S/∂x)] = 0. Exactly the same calculation reveals

d

dt
ξ̃(σ) =

[
d

dt
ξ(x) −

(
d

dt
Sj(x)

)
Sa

j (x)ξ,a(x)

]

S(x)=σ

d

dt
q̃jk(σ) =

[
d

dt
qjk(x) −

(
d

dt
Sl(x)

)
Sa

l (x)qjk,a(x)

]

S(x)=σ

(B.3)
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Using (B.2) and (B.3) we can now rewrite the symplectic potential in terms of the spatially diffeomorphism
invariant variables as follows ˙(.) := d

dt
(.) and J = det(∂S/∂x))

Θ =

∫

X
d3x

[
ξ̇ π + Ṫ P + Ṡj Pj + q̇ab p

ab
]

=

∫

X
d3x

[
ξ̇ π + Ṫ P + Ṡj Pj +

(
d

dt

(
qjk S

j
,a S

k
,b

))
pab

]

=

∫

X
d3x

[
ξ̇ π + Ṫ P + Ṡj Pj + q̇jk(S

j
,a S

k
,b P

ab) + 2qjkṠ
j
,aS

k
,b pab

]

=

∫

X
d3x

[
ξ̇ π + Ṫ P + Ṡj Pj + q̇jk(S

j
,a S

k
,b p

ab) − 2Ṡj∂a(qjkS
k
,b pab)

]

=

∫

X
J d3x

[
ξ̇
π

J
+ Ṫ

P

J
+ q̇jk

Sj
,a Sk

,b p
ab

J

]
+

∫

X
d3x Ṡj

[
Pj − 2∂a(qbcS

c
j pab)

]

=

∫

S
d3σ π̃

[[
ξ̇
]
S(x)=σ

+ P̃
[
Ṫ
]
S(x)=σ

+ p̃jk
[
q̇jk
]
S(x)=σ

]
+

∫

X
d3x Ṡj

[
Pj − 2∂a(qbcS

c
j pab)

]

=

∫

S
d3σ

[
˙̃
ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj

[
Pj + Sa

j

(
π ξ,a + PT,a + pbcSk

,bS
l
,cS

a
j qkl,a

)
− 2∂a(qbcS

c
j pab)

]

=

∫

S
d3σ

[
˙̃
ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj

[
Pj + Sa

j

(
π ξ,a + PT,a + pbcSk

,bS
l
,c∂a

(
Se

kS
f
l qef

))
− 2∂a

(
qbcS

c
j pab

)]

=

∫

S
d3σ

[
˙̃ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj

[
Pj + Sa

j

(
π ξ,a + PT,a + pbc

(
qbc,a + 2qecS

k
,bS

e
k,a

))
− 2∂a

(
qbcS

c
j pab

)]

=

∫

S
d3σ

[
˙̃
ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj

[
Pj + Sa

j

(
π ξ,a + PT,a + −2

[
qab∂cp

bc +
1

2

(
2qa(b,c) − qbc,a

)
pbc

])]

=

∫

S
d3σ

[
˙̃
ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj

[
Pj + Sa

j (π ξ,a + PT,a + −2qabDcp
bc)
]

=

∫

S
d3σ

[
˙̃ξ π̃ +

˙̃
T P̃ + ˙̃qjkp̃

jk
]

+

∫

X
d3x Ṡj Sj

ac
tot
a (B.4)

where we used
Sa

j S
k
,bS

e
k,a = −Sa

j S
k
,baS

e
k = −Sa

j S
k
,abS

e
k = Sa

j,bS
k
,aS

e
k = Se

j,b (B.5)

as well as the definition of the Christoffel symbol in the second to last step (notice that pab is a tensor
density so that Dbp

ab = ∂bp
ab + Γa

bcp
bc).

Formula (B.4) means that on the full phase space we can switch to the new canonical pairs (B.1) on X
and the canonical pair (Sj , P ′

j = Sa
j c

tot
a = ctotj ). The pairs (B.1) are thus ctotj invariant while Sj is pure gauge.

The symplectic reduction of the full phase space with respect to ctotj is therefore precisely coordinatised by
(B.1) which is identical to equation (3.30) in the main text.
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C Effective Action and Fixed Point Equation

The aim of the present section is to derive, at least in implicit form, the Lagrangian that corresponds
canonically to the physical Hamiltonian. This can be done by calculating the inverse Legendre transform34

and leads to a fixed point equation, which can be solved order by order, in principle. Interestingly, the
Lagrangian turns out to be local in dust time, but will be non–local in dust space. However, the Hamiltonian
description is completely local.

The inverse Legendre transform requires to solve for the momenta P jk(σ), Π(σ) in terms of the corre-
sponding velocities Vjk(σ), Υ(σ), respectively, defined by 35

Vjk(σ) ≡ Q̇jk(σ) = {H, Qjk(σ)}
Υ(σ) ≡ Ξ̇(σ) = {H,Ξ(σ)} . (C.1)

This can be done by using the first order equations of motion for Qjk(σ), Ξ(σ), derived from the physical
Hamiltonian H. From the physical Hamiltonian H we obtain the Lagrangian

L[Q,V ; Ξ,Υ] =

∫

S
d3σ L(σ) =

∫

S
d3σ

[(
1

κ
P jkVjk +

1

λ
ΠΥ

)
− H[Q,P ; Ξ,Π]

]

(C.1)

(C.2)

where it it is understood that the solution of (C.1) for P jk, Π has to be inserted.
With the dynamical lapse and shift given by N = C/H, Nj = −Cj/H, respectively, we obtain for P jk

P jk =

√
det(Q)

2N
[G−1]jkmn

(
Q̇mn − (L ~N

Q)mn

)
=
√

det(Q)[G−1]jkmnKmn , (C.3)

with Kmn denoting the extrinsic curvature. This leads to the following expression for the velocities Vjk and
Υ:

Vjk = 2
[
N Kjk +D(jNk)

]
and Υ =

N√
det(Q)

Π +QjkNj DkΞ . (C.4)

We conclude

L =

∫

S
d3σ

[
1

κ
VjkP

jk +
1

λ
ΥΠ −H

]
(C.5)

=

∫

S
d3σ

[
2

κ

(
NKjk +D(jNk)

)
P jk +

(
N

Π

λ
√

det(Q)
+N jDj

Ξ

λ

)
Π −H

]

=

∫

S
d3σ

[
N
( 2

κ
KjkP

jk +
Π2

λ
√

det(Q)

)
+N jCj −H

]

=

∫

S
d3σ

1

H

[
C

(
2

κ
KjkP

jk +
Π2

λ
√

det(Q)

)
−QjkCjCk −H2

]

=

∫

S
d3σ

C

H

[
2

κ
KjkP

jk +
Π2

λ
√

det(Q)
− C

]

=

∫

S
d3σ N

[
2

κ

√
det(Q)(KjkK

jk − (Kj
j )

2) +
Π2

λ
√

det(Q)
− C

]

=

∫

S
d3σ N

√
det(Q)

[
1

κ

(
KjkK

jk − (Kj
j )

2 +R(3)[Q] − 2Λ
)

+
1

2λ

(
Π2

det(Q)
− [QjkΞ,jΞ,k + v(Ξ)]

)]

=

∫

S
d3σ N

√
det(Q)

[
1

κ

(
KjkK

jk − (Kj
j )2 +R(3)[Q] − 2Λ

)
+

1

2λ

(
(∇uΞ)2 − (QjkΞ,jΞ,k + v(Ξ))

)]
.

34 This is possible because the Legendre transform is regular.
35 Note that Q̇jk and Ξ̇ must be treated as independent variables in addition to Qjk and Ξ.
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In the third step we performed an integration by parts and in the fourth step we substituted the expressions
for dynamical lapse and shift, in the sixth we rewrote P jk in terms of Kjk, in the seventh we substituted
for C and in the last we introduced the vector field u = 1

N
(∂τ −N j∂σj ).

If lapse and shift would be independent variables, the final expression in (C.6) would coincide with the
3+1– decomposition of the Einstein – Hilbert term minimally coupled to a Klein – Gordon field with potential
v! Since Nj is a constant of the physical motion and N =

√
1 +QjkNjNk, we could, in particular, consider

the case Nj = 0, whence N = 1. In that case (C.5) would agree with the usual Lagrangian description on
dust space–time for a static foliation. However, fundamentally lapse and shift are not independent variables,
and we must use this fact in (C.1) in order to solve for P jk,Π. We now turn to this task.

By definition

Nj = −Cj

H
= −Cj

C

C

H
= −Cj/

√
det(Q)

C/
√

det(Q)

√
1 +QjkNjNk ,

Cj√
det(Q)

= −2

κ

(
DkK

k
j −DjK

k
k

)
+

1

λ
(∇uΞ)DjΞ ,

C√
det(Q)

=
1

κ

(
KjkK

jk −
[
Kj

j

]2
−R(3) [Q]

)
+

1

2λ

(
(∇uΞ)2 +QjkΞ,jΞ,k + v(Ξ)

)
,

Kjk =
1

2
√

1 +QjkNjNk

[
Vjk − 2D(jNk)

]
,

∇uΞ =
1√

1 +QjkNjNk

[
Υ −QjkNjDkΞ

]
. (C.6)

The set of equations (C.6), when inserted into each other, yields an equation of the form

Nj = Gj [Nk;Qkl, Vkl,Ξ,Υ] , (C.7)

where Gj is a local function of its arguments and their spatial derivatives up to second order (in particular,
second spatial derivatives of Nj). Since P jk,Π are known in terms of Qjk, Vjk,Ξ,Υ, once Nj (and thus N)
is known as a function of these arguments, we have reduced the task of performing the inverse Legendre
transform to solving the fixed point equation (C.7).

Unfortunately, (C.7) is not algebraic in Nj , so that a solution just by quadratures is impossible. Also,
it represents a highly nonlinear system of partial differential equations of degree two, so that linear solution
methods fail, as well. We leave the full investigation of this system for future research. However, the fact
that it is a system of fixed point equations suggests to look for a solution by perturbative or fixed point
methods:
1. If we make the Ansatz that Nj is small, in an appropriate sense, then we may expand Gj [Nk] around
Nk = 0 to linear order and solve the resulting linear system of PDE’s.
2. The fixed point method suggests to write the solution in the form

Nj = Gj(Gk1(Gk2(..(Gkn(..))..))) . (C.8)

If convergence is under control, then an n− th order approximation may be given in the form

N
(n)
j = Gj(Gk1(Gk2(..(Gkn(0))..))) , (C.9)

which consists in setting the starting point of the iteration at Nj = 0 (which is a reasonable guess if the
exact solution is indeed small in an appropriate sense, having a test clock in mind) and to iterate n times.
The expression (C.9) contains spatial derivatives of the metric of order up to 2(n + 1), but is only of first
order in τ–derivatives, thus establishing that the final Lagrangian is spatially non–local in dust space but
temporally local in dust time.
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D Two Routes to Second Time Derivatives of Linear Perturbations

In this appendix we consider a general Hamiltonian system with canonical coordinates (q, p) and standard
Poisson brackets {p, q} = 1 and a Hamiltonian function H(q, p). We will consider only one degree of freedom
but everything generalises to an arbitrary number of degrees of freedom.

Lemma D.1. Let (q0(τ), p0(τ)) be an exact solution of the Hamiltonian equations of motion

q̇0(τ) =
[
{H, q}(q, p)

]
q=q0(τ)
p=p0(τ)

ṗ0(τ) =
[
{H, p}(q, p)

]
q=q0(τ)
p=p0(τ)

(D.1)

Define the perturbations δq := q − q0(τ), δp := p − p0(τ). Let H(q, p) =
∑∞

n=0H
(n) be the expansion of

H(q, p) around q0(τ), p0(τ) in terms of the perturbations where H(n) is the n-th order term in terms of the
perturbations. Then
(i.) Expanding the full Hamiltonian equations of motion for q̇, ṗ to linear order is equivalent to using the
function H(2) as a Hamiltonian for the perturbations.
(ii.) Expanding the equation for q̈ to linear order is equivalent to the equations for δ̇q = δq̇, δ̇p = δṗ to linear
order.

Proof. Notice that q0(τ), p0(τ) do not carry any phase space dependence in contrast to δq, δp. Therefore
{δq, δq} = {δp, δp} = 0 and {δp, δq} = 1.
(i.)
Consider the full Hamiltonian equations of motion for a general solution (q(τ), p(τ))

q̇(τ) = H,p(q(τ), p(τ)) and ṗ(τ) = −H,p(q(τ), p(τ)) (D.2)

where H,q = ∂H/∂q, H,p = ∂H/∂p. We set δq(τ) = q(τ) − q0(τ) and δp(τ) = p(τ) − p0(τ). Subtracting
from (D.2) the equations for (q0(τ), p0(τ)) we obtain

δ̇q(τ) = H,p(q(τ), p(τ)) −H,p(q0(τ), p0(τ))

δṗ(τ) = −H,q(q(τ), p(τ)) +H,q(q0(τ), p0(τ)) (D.3)

which is still exact. Expanding the right hand side of (D.3) to first order in δq(τ), δp(τ) we find

δq̇(τ) = H,pq(q0(τ), p0(τ))δq(τ) +H,pp(q0(τ), p0(τ))δp(τ)

δṗ(τ) = −H,qq(q0(τ), p0(τ))δq(τ) −H,qp(q0(τ), p0(τ))δp(τ) (D.4)

On the other hand we have

H(2) =
1

2
H,qq(q0(τ), p0(τ))

[
δq
]2

+
1

2
H,pp(q0(τ), p0(τ))

[
δp
]2

+H,qp(q0(τ), p0(τ))
[
δq
] [
δp
]

(D.5)

Then it is trivial to check that (D.4) is reproduced by

δq̇(τ) = {H(2), δq} δq=δq(τ)
δp=δp(τ)

and δṗ(τ) = {H(2), δp} δq=δq(τ)
δp=δp(τ)

(D.6)

(ii.)
Let p(τ) = F (q(τ), q̇(τ)) be the solution of solving q̇(τ) = H,p(q(τ), p(τ)) for p(τ). Then

q̈(τ) = H,pq

(
q(τ), p(τ)

)
q̇(τ) +H,pp

(
q(τ), p(τ)

)
ṗ(τ)

= H,pq

(
q(τ), p(τ)

)
q̇(τ) −H,pp

(
q(τ), p(τ)

)
H,q

(
q(τ), p(τ)

)

= H,pq

(
q(τ), F (q(τ), q̇(τ))

)
q̇(τ) −H,pp

(
q(τ), F (q(τ), q̇(τ))

)
H,q

(
q(τ), F (q(τ), q̇(τ))

)

=: G
(
q(τ), q̇(τ)

)
(D.7)
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Equation (D.7) is what we mean by the q̈(τ) form of the quations of motion, i.e an equation only involving
q, q̇, q̈ but no longer the momentum. Subtracting from (D.7) the corresponding equation for q̈0(τ) and
expanding the right hand side to first order we obtain with G = G(q, v)

δ̈q(τ) = G,q(q0(τ), q̇0(τ))δq(τ) +G,v(q0(τ), q̇0(τ))δq̇(τ) (D.8)

Now

G,q(q, v) =
[
H,pqq(q, p)v −H,ppq(q, p)H,q(q, p) −

[
H,pp(q, p)H,qq(q, p)

]
p=F (q,v)

+
[
H,ppq(q, p)v −H,ppp(q, p)H,q(q, p) −H,pp(q, p)H,pq(q, p)

]
p=F (q,v)

F,q(q, v) (D.9)

G,v(q, v) = H,pq(q, p) +
[
H,ppq(q, p)v −H,ppp(q, p)H,q(q, p) −H,pp(q, p)H,pq(q, p)

]
p=F (q,v)

F,v(q, v)

Since v = H,p(q, F (q, v)) is an identity we obtain

1 = H,pp(q, F (q, v))F,v(q, v) and 0 = H,pq(q, F (q, v)) +H,pp(q, F (q, v))F,q(q, v) (D.10)

by taking the derivative with respect to the independent variables v, q respectively. This way we can eliminate
the derivatives of F

F,v(q, v) =
1

H,pp(q, F (q, v))
and F,q(q, v) = −H,pq(q, F (q, v))

H,pp(q, F (q, v))
(D.11)

Substituting (D.11) into (D.9) we obtain the simplified expressions

G,v(q, v) =

[(
H,ppqv −H,pppH,q

H,pp

)
(q, p)

]

p=F (q,v)

G,q(q, v) =
[
H,pqq(q, p)v −H,ppq(q, p)H,q(q, p) −H,pp(q, p)H,qq(q, p)

]
p=F (q,v)

−
[
H,ppq(q, p)v −H,ppp(q, p)H,q(q, p) −H,pp(q, p)H,pq(q, p)

]
p=F (q,v)

H,pq

H,pp
(D.12)

Now we invert the second equation in (D.4) for δp and obtain

δp(τ) =
δq̇(τ) −H,pq(q0(τ), p0(τ))δq(τ)

H,pp(q0(τ), p0(τ)
(D.13)

Taking the time derivative of the first equation in (D.4) and using (D.13) yields after some algebra

δq̈(τ) =

[
Ḣ,pq −H,ppH,qq −

H,pq(Ḣ,pp −H,ppH,pq)

H,pp

]
(q0(τ), p0(τ)) δq(τ)

+

[
Ḣ,pp

H,pp

]
(q0(τ), p0(τ)) δq̇(τ) (D.14)

where e.g. Ḣ,pp(q0(τ), p0(τ) := d
dτ
H,pp(q0(τ), p0(τ). Carrying out the remaining time derivatives in (D.14)

and comparing with (D.8) evaluated with the help of (D.12) at q = q0(τ), v = q̇0(τ) = H,p(q0(τ), p0(τ) we
see that the expressions coincide.

E Constants of the Motion of n’th Order Perturbation Theory

In this section we will show that for any fully conserved quantity F of a Hamiltonian sytem with Hamiltonian
H, when expanding both the equations of motion and F to order n then F is still a constant of motion up
to terms of order n+ 1.
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Let m0(τ) = (q0(τ), p0(τ)) be an exact solution of a Hamiltonian system with canonical coordinates
m = (q, p), non vanishing Poisson brackets {p, q} = 1 and Hamiltonian H = H(m) = H(q, p). Define
δm = m−m0(τ). Since m0(τ) is just a number (for fixed τ) we immediately have the non vanishing Poisson
brackets {δp, δq} = 1. For any function F on phase space we consider its Taylor expansion around m0(τ)
given by

F (m) =

∞∑

n=0

F (n)(m0(τ); δm) (E.1)

where F (n)(m0(τ); δm) is a homogeneous polynomial of degree n in δm whose coefficients depend explicitly
on the background solution m0(τ), that is

F (n)(m0(τ); δm) =
n∑

k=0

1

k! (n− k)!

[
∂bF

[∂q]k [∂p]n−k

]
(m0(τ)) [δq]k [δp]n−k (E.2)

Lemma E.1. The Poisson bracket {F,G} can be computed either by first expanding F,G as in (E.1) and
then using the Poisson bracket for δm or by using the Poisson bracket for m and then expanding the result
as in (E.1).

Proof. The proof is elementary: Since

F =

∞∑

k,l=0

1

k! l!

[
∂k+lF

[∂q]k [∂p]l

]
(m0(τ)) [δq]k [δp]l (E.3)

we have with the substitution of F by F,q

F,q =

∞∑

k,l=0

1

k! l!

[
∂k+l+1F

[∂q]k+1 [∂p]l

]
(m0(τ)) [δq]k [δp]l = F,δq (E.4)

and similarly F,p = F,δp. Since one computes Poisson brackets the first way by first expanding and then
taking derivatives with respect to δq, δp while the second way we compute Poisson brackets with respect to
q, p and then expand, the assertion follows.

Lemma E.2. Suppose we expand the Hamiltonian to n−th order in δm with n ≥ 1. Suppose also that F is
an exact constant of the motion with respect to the Hamiltonian H. Then:
(i.) The equations of motion up to order n for δm are generated by the Hamiltonian

Hn =

n+1∑

k=2

H(k) (E.5)

(ii.) The perturbation up to order n of F given by

Fn :=

n∑

k=1

F (n) (E.6)

is a constant of motion with respect to Hn up to terms of order at least n+ 1.

Notice that the Hamiltonian starts at order two and ends at order n+ 1.
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Proof.
(i.)
Let m(t) be any solution of the exact equation of motion. We have for example

q̇(τ) = [{H, q}]m=m(τ) (E.7)

Subtracting the same equation for m0(τ) and setting δq(τ) = q(τ) − q0(τ) we find

δq̇(τ) = [{H, q}]m=m(τ) − [{H, q}]m=m0(τ) =
∞∑

k=2

H
(k)
,δp (E.8)

from which the assertion follows immediately (the proof for δp is identical).
(ii.)
Using the explicit background dependence of F (k) = F (k)(m0(τ); δm(τ)) we have

d

dτ
F (k) =

∂F (k)

∂q0
q̇0(τ) +

∂F (k)

∂p0
ṗ0(τ) +

∂F (k)

∂δq
δq̇(τ) +

∂F (k)

∂δp
δṗ(τ)

=
∂F (k)

∂q0

∂H(1)

∂δp
− ∂F (k)

∂p0

∂H(1)

∂δq
+
∂F (k)

∂δq

∂Hn

∂δp
− ∂F (k)

∂δp

∂Hn

∂δq
(E.9)

where we used the first part of the lemma as well as the fact that H,q(m0) = H
(1)
,δq , H,p(m0) = H

(1)
,δp . All

Poisson brackets are with respect to the coordinates δq, δp.
Now observe the important fact

F (k)
,q0

=

k∑

l=0

1

l!(k − l)!

∂k+1F

[∂q]l+1 [∂p](k+1)−(l+1)
[δq]l [δp](k+1)−(l+1)

=
∂

∂δq

k∑

l=0

1

(l + 1)!((k + 1) − (l + 1))!

∂k+1F

[∂q]l+1 [∂p](k+1)−(l+1)
[δq]l+1 [δp](k+1)−(l+1)

=
∂

∂δq

k+1∑

l=1

1

l!(k + 1 − l)!

∂k+1F

[∂q]l [∂p]k+1−l
[δq]l [δp]k+1−l

=
∂

∂δq

[
F (k+1) − 1

(k + 1)!

∂k+1F

[∂p]k+1
[δp]k+1

]

= F
(k+1)
,δq (E.10)

and similarly F
(k)
,p0 = F

(k+1)
,δp .

Combining (E.9) and (E.10) we see that

dF (k)

dτ
= {H(1), F (k+1)} + {Hn, F

(k)} (E.11)

Hence
dFn

dτ
=

n∑

k=1

[
{H(1), F (k+1)} +

n+1∑

l=2

{H(l), F (k)}
]

(E.12)

We would like to show that the terms up to order n in (E.12) vanish identically. Since {H(l), F (k)} is of
order k + l − 2, for given k we can restrict the sum over l from l = 2 until n + 2 − k up to terms of order
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O(δn+1). Notice that n + 2 − k is at least 2 (for k = n) and at most n + 1 (for k = 1) for all values of k
which is the allowed range of l. It follows

dFn

dτ
+O(δn+1) =

n∑

k=1

[
{H(1), F (k+1)} +

n+2−k∑

l=2

{H(l), F (k)}
]

=

n∑

k=1

[
{H(1), F (k+1)} +

n∑

r=k

{H(r−k+2), F (k)}
]

=

n∑

r=1

[
{H(1), F (r+1)} +

r∑

k=1

{H(r−k+2), F (k)}
]

=

n∑

r=1

r+1∑

k=1

{H(r−k+2), F (k)} (E.13)

where in the second step we have introduced the summation variable r = k + l − 2 which for given k takes
range in k, .., n (lowest value for l = 2 and highest value for l = n + 2 − k) whence l = r − k + 2, in the
third step we have changed the order of the k and r summation in the second term (keeping in mind the
constraint 1 ≤ k ≤ r ≤ n) while the summation variable k was renamed by r in the first term and in the
fourth step we noticed that the first and second term can be combined by having the k summation extend
to r + 1.

Now we exploit the fact that F is an exact invariant, that is

0 = {H,F} =

∞∑

k,l=1

{H(l), F (k)} =

∞∑

r=0

[
r+1∑

k=1

{H(r−k+2), F (k)}
]

(E.14)

where in the second step we collected all terms of order r (notice that l = r − k + 2 ≥ 1 as required).
Since (E.13) is an identity on the entire phase space, the Taylor coefficients of [δq]k [δp]l have to vanish
separately for all k, l ≥ 0. The term corresponding to order r in (E.13) contains all terms of the form
[δq]s[δp]r−s, s = 0, .., r. Therefore we conclude

r+1∑

k=1

{H(r−k+2), F (k)} = 0 (E.15)

identically for all r. In particular, (E.13) implies

dFn

dτ
= O(δn+1) (E.16)

The only n for which the term O(δn+1) vanishes is for n = 1 as one can see from (E.12) since then
k = 1, l = 2 can only take one value which already contributes to order r = 1. Thus for n = 1 we even have

dF1

dτ
= 0 (E.17)

It is instructive to see how the background equations find their way into demonstrating the important result
(E.16) which ensures that an exact invariant expanded up to order n remains an invariant up to higher
orders for the equations of motion expanded up to order n, thus simplifying the task to integrate those
equations of motion.

68



F Generalisation to Other Deparametrising Matter

In this work dust was used as a reference frame in order to define a physical time evolution. We chose
dust because then, for the case of no perturbations, the induced physical Hamiltonian yields the exact FRW
equations used in standard cosmology. However, when perturbations of the metric and the scalar field are
considered, deviations from the standard FRW framework occur, which are, however, still in agreement with
observational data. Since General Relativity does not tell us which is the right clock to use for cosmology,
we chose a clock such that the resulting physical Hamiltonian is as close as possible to the FRW-Hamiltonian
in standard cosmology, where one uses the Hamiltonian constraint c as a true Hamiltonian. The physical
Hamiltonian used here, Hdust =

√
C2 −QijCiCj , reduces to HFRW

dust = C for an FRW universe, namely to
the gauge invariant version of the Hamiltonian constraint. However, the question arises how generic are the
results obtained from a dust clock and what changes do we expect when choosing other matter than dust
to reparametrise or even deparametrise the constraints of General Relativity. To illustrate this issue, let us
discuss the phantom clock introduced in [9] which leads to a physical Hamiltonian of the form

Hphan =

∫

χ

d3σHphan(σ), (F.1)

with the Hamiltonian density Hphan defined as

Hphan(σ) =

√
1

2
(F (C,Ci, Qij)) +

√
1

4
(F (C,Ci, Qij))

2 − α2Qij(σ, τ)CiCj(σ)Q(σ, τ) (F.2)

where
F (C,Ci, Qij) := C2(σ, τ) −Qij(σ, τ)CiCj(σ) − α2Q(σ, τ). (F.3)

Above we introduced the abbreviation Q = det(Qij), and α > 0 is for the moment an arbitrary constant
of dimension cm−2 that enters the phantom field action as a free parameter. Recall that the expressions
for C and Cj were given by the geometry and matter part of the total Hamiltonian and diffeomorphism
constraint, respectively, that is

C(σ, τ) = Cgeo(σ, τ) + Cmatter(σ, τ) and Cj(σ) = Cgeo
j (σ) + Cmatter

j (σ). (F.4)

From now on we will drop the τ dependence of C(σ, τ) and Qij(σ, τ) in the expression for Hphan and write
them explicitly only when confusion could arise otherwise.

For the dust Hamiltonian we saw that the first order equations of motion obtained for Ξ,Π and Qij , P
ij

look similar to the standard cosmological equations apart from the fact that in the case of a dust clock
we obtain a dynamical, that is phase space dependent, lapse function Ndust = C/Hdust and shift vector
N i

dust = N i/Hdust. Moreover, in the general equations there occurs a term proportional to N i
dustN

j
dust.

With respect to Hphan, we want to analyse now whether it produces a similar effect and leads to possi-
bly more serious deviations from the standard equations. Starting with the first order equation for Ξ we
obtain

Ξ̇(σ, τ) = {Hphan,Ξ(σ, τ)} (F.5)

=
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Introducing the dynamical lapse function Nphan and the dynamical shift covector N i
phan as

Nphan(σ) :=
C

Hphan
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2
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(C2 −QijCiCj + α2Q)(σ)
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 , (F.6)

we can rewrite the first order equation of motion for Ξ as

Ξ̇(σ, τ) = {Hphan,Ξ(σ, τ)} =

∫

χ

d3σ′
(
Nphan(σ′){Cmatter(σ′),Ξ(σ, τ)} +N i

phan{Cmatter
i (σ′),Ξ(σ, τ)}

)
. (F.7)

Hence, we realise that, similarly to the case of the dust clock, the effect of the phantom clock results in
the appearance of a dynamical lapse function and a dynamical shift vector. However, due to the more
complicated structure of Hphan as compared to Hdust, Nphan and N i

phan are not simply given in terms of
C/Hphan and −Cj/Hphan respectively. Now also terms occur which include higher than linear powers of
the constraints in the nominator and denominator. Since the quantities Π and obviously Qij also Poisson
commute with any function that does depend on Qij only, the calculation works analogously in these cases
and we obtain

Π̇(σ, τ) = {Hphan,Π(σ, τ)} =

∫

χ

d3σ′
(
Nphan(σ′){Cmatter(σ′),Ξ(σ)} +N i

phan{Cmatter
i (σ′),Π(σ, τ)}

)
(F.8)

and

Q̇ij(σ, τ) = {Hphan, Qij(σ)} =

∫

χ

d3σ′
(
Nphan(σ′){Cgeo(σ′), Qij(σ, τ)} +N i

phan{Cgeo
i (σ′), Qij(σ, τ)}

)
. (F.9)

For the dynamical variable P ij things look slightly different, because P ij does not Poisson commute with
functions depending on Qij. Therefore we get, as in the dust case, an additional contribution proportional to
the Poisson bracket {Qkl(σ′), P ij(σ, τ)}. Furthermore, since Hphan includes a term of the form α2Q, we also
obtain a term proportional to the Poisson bracket {Q(σ′), P ij(σ, τ)}. The explicit results for these Poisson
brackets are

{Qkl(σ′), P ij(σ, τ)} =
1

2
(QikQlj +QjkQil)(σ′, τ)δ3(σ′, σ)

{Q(σ′), P ij(σ, τ)} = −(QQij)(σ′, τ)δ3(σ′, σ). (F.10)

Inserting this back into the eqn. for Ṗ ij, we end up with

Ṗ ij(σ, τ) = {Hphan, P
ij(σ, τ)}

=

∫
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 (σ, τ). (F.11)
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The remaining Poisson brackets in the first order equations for the dynamical variables are the same Poisson
brackets that occur when Hdust is used as a Hamiltonian. Inserting the results obtained there into the
corresponding equations for the case of Hphan, we obtain the following final form of the first order equations:

Ξ̇(σ, τ) =
NphanΠ

Q
(σ, τ) +

(
L ~NphanΞ

)
(σ, τ)
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[
NphanQQ

ijΞ, i
]
,j
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2
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Π
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Q
(σ, τ) (GijmnP

mn) (σ, τ) +
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Q
)

ij
(σ, τ), (F.12)

where

Gijmn :=
1

2
(QimQjn +QinQjm −QijQmn) , (F.13)

with its inverse given by

[G−1]ijmn :=
1

2

(
QimQjn +QinQjm − 2QijQmn

)
. (F.14)

For the gravitational momentum we have
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 (σ, τ). (F.15)

One can see that the first order equations for Ξ,Π and Qij in equation (F.12) are identical to those for
the dust Hamiltonian Hdust, apart from the different definitions of the dynamical lapse function Nphan

and shift vector N i
phan in equation (F.6). However, the equation for Ṗ ij differs from the corresponding

dust Hamiltonian equation. The term in the second last line in equation (F.15) corresponds to the term
−1

2(HdustN
i
dustN

j
dust)(σ) in the equation for Ṗ ij derived from Hdust. In the present case this term looks a bit

more complicated, since we have to divide the whole expression by the term in the square brackets which
is identical to one in case of Hdust. The additional term in the last line of equation (F.15) comes from the
terms α2Q and α2QijCiCj in Hphan, which are absent in Hdust. Since in this term we cannot factor out C or
Ci but only α2, we are also not able to reexpress this term by means of the dynamical lapse function Nphan

and the dynamical shift vector N i
phan, respectively, as it was possible for the term in the second last line.

In summary, when using a phantom scalar field as a clock we also obtain deviations from the standard
treatment in which the Hamiltonian constraint is used as a true Hamiltonian. These deviations manifest
themselves in the appearance of a dynamical lapse function Nphan and a dynamical shift vector N i

phan, anal-

ogous to the case where dust is used as a clock. However, the explicit dependence of Nphan and N i
phan on the

dynamical variables is more complicated than for the corresponding quantities Ndust and N i
dust. Another

modification occurs in the equation for the gravitational momentum P ij . While it contains a term that
is second order in N i

phan, in complete analogy with the case of Hdust, it also features an additional term

proportional to α2.
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The Special Case of an FRW Universe

It is interesting to study the special case of FRW also for Hphan. Recall from [15] that by assuming
homogeneity and isotropy, Hdust, Ndust and N i

dust reduce to the following quantities

Ndust(σ)
FRW−→ 1, N i

dust(σ)
FRW−→ 0, Hdust(σ)

FRW−→ CFRW(σ), (F.16)

where

CFRW
dust (τ) = A3(τ)

( 1

κ

(
− 6
( Ȧ
A

)2
+ 2Λ

)
+

1

2λ

(
Ξ̇2 + V (Ξ)

))
(τ). (F.17)

Here A = A(τ) is a function of dust time τ and the dot refers to a derivative with respect to dust time. In
particular A(τ) can be understood as the gauge invariant extension of the ordinary scale factor a(t) used
in standard cosmology. The difference between the two is that A is gauge invariant and thus a physical
observable whereas a is not, since it does not commute with the Hamiltonian constraint of FRW.
The gravitational canonical variables are given by Qij = A2(τ)δij and P ij = −2Ȧ(τ)δij . We mentioned
previously that a consequence of this behaviour is that the unperturbed equations of motion for (Ξ,Π) and
(Qij , P

ij) agree with the FRW equations used in standard cosmology. In particular, the deviation from the
general standard equation of motion for P ij vanishes in the case of FRW, because it is quadratic in N i

dust.
For the phantom Hamiltonian Hphan things look slightly different. Here we have the following behaviour of
Hphan, Nphan and N i

phan, when a homogenous and isotropic universe is considered:

Nphan(σ)
FRW−→ NFRW

phan :=

(
CFRW

phan

HFRW
phan

)
(σ), N i

phan(σ)
FRW−→ 0, Hphan(σ)
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phan)2 − α2A6(σ)

(F.18)
with

CFRW
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(τ)
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(
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)2
+ 2Λ(NFRW

phan)2
)

+
1

2λ

(
Ξ̇2 + V (Ξ)(NFRW

phan)2
))

(τ). (F.19)

Hence, the dust clock and the phantom scalar field clock agree only if the parameter α is chosen to be tiny
compared to the Hamiltonian constraint CFRW

phan, e.g. αA3 ≪ CFRW
phan. Consequently, the equations of motion

generated by Hphan also deviate from the standard FRW equations. The significance of this deviation again
depends on the specific value of the parameter α, as was discussed in detail in [9]. For completeness we also
list the first order equations of motion here

Ξ̇(τ) =
(
NFRW

phan

Π√
Q

)
(τ) (F.20)

Π̇(τ) = −
(
NFRW
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√
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2
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)
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Q̇ij =
(
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2√
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)
(τ)

Ṗ ij = NFRW
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2P imP jn − P ijPmn

)
+
κ

2
QijCFRW

phan −Qij
√
Q(2Λ +

κ

2λ
V (Ξ))

)
(τ).

Taking into account that Qij = A2δij and using the first order equation for Qij, we solve for the momenta
P ij = −2Ȧ/NFRW

phanδ
ij in terms of Q̇jk = 2AȦ. In order to derive the corresponding FRW equation with

respect to the time generated by H
FRW
phan, we take the time derivative of the equation for Q̇ij and insert into

the resulting equation for Q̈ij the expression for P ij and Ṗ ij given above. This yields

( Ä
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(Ȧ
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)
. (F.21)
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Apart from the lapse functions in the equation above which are not present in the standard FRW equations,
we get an additional term including the time derivative of the lapse function. Using the explicit definition
of the lapse function, we can perform this time derivative, leading to

ṄFRW
phan

NFRW
phan

( Ȧ
A

)
=

3
(
(NFRW

phan)2 − 1
)

(NFRW
phan)2

(Ȧ
A

)2
. (F.22)

Consequently, equation (F.21) can be rewritten as
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(Ȧ
A

)2(1

2
−

3
(
(NFRW

phan)2 − 1
)

(NFRW
phan)2

)
+

1

2
(NFRW

phan)2Λ − κ

4λ

(1
2
Ξ̇2 − 1

2
(NFRW

phan)2V (Ξ)
)

+
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. (F.23)

The term (Ȧ/A)2 can be replaced by considering the energy conservation law ˙HFRW
phan = 0 , that is HFRW

phan = ǫ0,

from which we get CFRW
phan =

√
ǫ20 + α2A6. Solving this equation for (Ȧ/A)2 yields
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A

)2
= (NFRW

phan)2Λ +
κ

2λ

(1

2
Ξ̇2 +

1

2
V (Ξ)(NFRW

phan)2
)
− κ

2
(NFRW

phan)2α

√
1 +

ǫ0
α2A6

= (NFRW
phan)2Λ +

κ

2λ
(NFRW

phan)2
(
ρmatter + ρphan

)
, (F.24)

where we used in the last line

ρmatter =
1

2

1
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2
V (Ξ) and ρphan = −α

√
1 +
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. (F.25)

Reinserting equation (F.24) into equation (F.23), we obtain the phantom FRW equation given by

3
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))

− κ
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pmatter(N
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, (F.26)

whereby we introduced

pmatter =
1

2

1

(NFRW
phan)2

Ξ̇2 − 1

2
V (Ξ). (F.27)

That this equation agrees with the one derived in [9] can be seen when expressing (NFRW
phan)2 in terms of the

deviation parameter x := ǫ0/α
2A6 used there, resulting in (NFRW

phan)2 = 1 + 1/x.

In general, choosing one clock or the other might have significant effects on the equation of motion. Gen-
eral Relativity does not tell us which clock is convenient to work with, hence additional physical input is
needed. The results of the application of this framework for FRW in [15] show that choosing dust as clock
reproduces the standard FRW equations. Thus we could call the dust clock the FRW-clock. Since so far
an (approximate) FRW universe is in agreement with observational data, dust seems to be a good choice.
However, the α parameter in H

FRW
phan can be chosen such that the resulting equation of motion also do not

contradict present experiments. Therefore, based on experimental constraints, none of the two clocks is
excluded, nor is one of them preferred. From a theoretical point of view, the choice of a clock is mainly
guided by the requirement that the constraints can be deparametrised, that is, they can be written in the
form C = pclock + Hclock. Here the Hamiltonian density Hclock must not depend on the clock variables
anymore, and furthermore it should be positive definite. Additionally the structure of Hclock should not be
too complicated such that calculations of, for instance, the equation of motions are still possible.
However, in principle, we have a large amount of freedom to choose a clock, as long as the induced equations
of motion do not contradict experiments.
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G Linear Perturbation Theory: Some Calculations in More Detail

In section 6.2 we derived the second order equation of motion for the linear perturbation of the (manifestly)
gauge invariant three metric δQjk. For that we needed the perturbation of the geometry and matter part
of the gauge invariant Hamiltonian constraint, denoted by Cgeo and Cmatter, respectively, as these terms
occur in the third term on the right-hand side of the unperturbed equation of motion for Qjk, equation
(4.25). We omitted the details in the main text due to their length, and also because it turns out that
several terms cancel when inserted back into the expression of the perturbation of the third term, shown in
equation (6.20). For the interested reader, however, the detailed perturbations of the constraints are given
below.
The perturbed geometry constraint δCgeo is given by
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Here we used that the perturbation of the Ricci scalar can be written as

δR =
[
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]
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For the perturbed matter part of the constraint δCmatter we obtain
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Since the perturbation of δC = δCgeo + δCmatter occurs in equation (6.20) multiplied by a factor of κN
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2
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,

we will present it here already with this factor in front
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Going back to the second order equation of motion for Qjk shown in equation (4.25), we remind the reader
that the perturbation of the first term on the right-hand side involves a term that we had already calculated
for the equation of motion of δΞ. For this reason, we presented in the main text only the perturbation of
the remaining term (Q̇jk − (L ~N

Q)jk), not the final result for the full first term. For those interested in more
detail, we display it here:
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