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Abstract

We propose a novel approach for modeling, tracking, and recognizing facial expressions on a low-dimensional expression manifold. A modified

Lipschitz embedding is developed to embed aligned facial features in a low-dimensional space, while keeping the main structure of the manifold.

In the embedded space, a complete expression sequence becomes a path on the expression manifold, emanating from a center that corresponds to

the neutral expression. As an offline training stage, facial contour features are first clustered in this space, using a mixture model. For each cluster

in the low-dimensional space, a specific ASM model is learned, in order to avoid incorrect matching due to non-linear image variations. A

probabilistic model of transitions between the clusters and paths in the embedded space is then learned. Given a new expression sequence, we use

ICondensation to track facial features, while recognizing facial expressions simultaneously, within the common probabilistic framework.

Experimental results demonstrate that our probabilistic facial expression model on the manifold significantly improves facial deformation

tracking and expression recognition. We also synthesize image sequences of changing expressions through the manifold model.

q 2005 Elsevier B.V. All rights reserved.
1. Introduction

Facial expression is one of the most powerful ways that

people coordinate conversation and communicate emotions

and other mental, social, and physiological cues. Compu-

tational facial expression analysis is an active and challenging

research topic in computer vision, impacting important

applications in areas such as human–computer interaction

and data-driven animation.

Facial expressions can be classified in various ways—in

terms of non-prototypic expressions such as ‘raised brows.’

prototypic expressions such as emotional labels (e.g. ‘happy’),

or facial actions such as the action units defined in facial action

coding system (FACS) [1]. Some psychologists claim that

there are six kinds of universally recognized facial expressions:

happiness, sadness, fear, anger, disgust, and surprise [2].

Existing expression analyzers [3–5] usually classify the

examined expression into one of the basic emotion categories.

These six basic categories are only a small subset of all facial

expressions expressible by the human face. For ‘blended’

expressions, it may be more reasonable to classify them

quantitatively into multiple emotion categories. Considering
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the intensity scale of the different facial expressions, each

person has his/her own maximal intensity of displaying a

particular facial action. It is useful to recognize the temporal

intensity change of expressions in videos. Some surveys [6,7]

gave a detailed review of existing methods on facial expression

analysis and recognition.

A key challenge in automatic facial expression analysis is to

identify a global representation for all possible facial

expressions that affords semantic analysis. In this paper, we

explore the space of expression images and propose the

manifold of expressions as a foundation for expression

analysis, using non-linear dimensionality reduction to embed

facial deformations in a low-dimensional space. Non-linear

dimensionality reduction has attracted attention for a long time

in computer vision and visualization research [8,9]. Images lie

in a very high-dimensional space, but a class of images

generated by latent variables lies on a manifold in this space.

For human face images, the latent variables may be the

illumination, identity, pose and facial deformations.

An N-dimensional representation of the face (where N could

be the number of pixels in the image or the number of

parameters in a face model, for example) can be considered a

point in an N-dimensional face space, and the variability of

facial expression can be represented as low-dimensional

manifolds embedded in this space. People change facial

expressions continuously over time. Thus all images of an

individual’s facial expressions represent a smooth manifold in
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Fig. 1. Illustration of a 3D expression manifold. The reference center is defined

by the neutral face. Image sequences from three different expressions are

shown. The further a point is away from the reference point, the higher is the

intensity of that expression.
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the N-dimensional face space with the ‘neutral’ face as the

central reference point. The intrinsic dimension of this

manifold is much lower than N.

On the manifold of expressions, similar expressions are

points in the local neighborhood on the manifold. Sequences of

basic emotional expressions become paths on the manifold

extended from the reference center, as illustrated in Fig. 1. The

blends of expressions lie between those paths, so they can be

defined analytically by the positions of the basic paths. The

analysis of the relationships between different facial

expressions is facilitated on the manifold.

It is a formidable task to learn the complete structure of the

manifold of expressions in a high-dimensional image space. To

overcome this problem, our core idea is to embed the non-

linear manifold in a low-dimensional space and recognize
Fig. 2. System
facial expression from video sequences probabilistically. Fig. 2

illustrates the overall structure of the system.

Non-linear embedding methods such as ISOMAP [10], local

linear embedding (LLE) [11], charting a manifold [12], and

global coordinate of local linear models [13] are promising in

handling high-dimensional non-linear data. Recently, research-

ers have applied manifold methods to face recognition [14–16]

and facial expression representation [17–19].

Rather than working in the image space (which is very

sensitive to illumination changes), we describe the face as a set

of points along facial feature contours, as shown in Fig. 3. We

applied a modified Lipschitz embedding [20,21] to embed the

face contour representation in the high-dimensional space into

a low-dimensional space, while keeping the main structure of

the manifold. Lipschitz embedding leads to good preservation

of clusters in practical cases [22,23].

After the embedding, the expression sequences in the

gallery become paths emanating from the center, which is

defined by the neutral expression. In an offline training stage,

a Gaussian mixture model is applied to cluster data in the low-

dimensional expression space. For each cluster, a specific ASM

model is learned to allow more robustness with respect to non-

linear image variations. We learn the probabilistic model of

transition between those paths from the gallery videos.

Given a probe video sequence, based on our learned model,

we track facial features using ICondensation [24], while

recognizing facial expressions in the same probabilistic

framework. The probe set includes videos of random

expression changes, which may not begin or end with a neutral

expression. The duration and the intensity of the expressions

are varied. The transition between different expressions is

represented as the evolution of the posterior probability of the

basic paths. Our empirical study demonstrates that the

probabilistic approach can recognize expression transitions

effectively. We also synthesize image sequences of changing

expressions through the manifold model.

Differing from traditional methods that consider expression

tracking and recognition in separate stages, we address these
diagram.



Fig. 3. The shape model, defined by 58 facial landmarks.
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tasks in a common probabilistic framework, which enables

them to be solved in a cooperative manner.

The remainder of this paper is organized as follows. In

Section 2 we discuss related work. We then discuss the

properties of Lipschitz embedding in Section 3. Section 4

covers the learning of our proposed representation, while

Section 5 describes the framework to track and recognize facial

deformation. In Section 6, we show how to synthesize facial

expressions using our model. Section 7 reports our experimen-

tal results, and Section 8 presents conclusions and future work.
2. Related work

In the past decade, many techniques have been proposed to

automatically classify expressions in still images, using

methods based on Neural Networks [25,26], Gabor wavelets

[5,27] and rule-based methods [3], to mention just a few.

However, in recent years, more attention has been given to

modeling facial deformation in dynamic scenarios [28–30],

which allows the integration of information temporally across

the video sequence, potentially increasing recognition rates

over single-image approaches. Bassili [31] suggested that

motion in the image of a face would allow expression to be

identified with minimal information about the spatial arrange-

ment of features. Cohen et al. [28] proposed a new architecture

of HMMs to segment and recognize facial expression from

video sequence automatically. Probabilistic video analysis has

gained significant attention since the seminal work of Isard and

Blake [24]. They introduced a time series state space model

parameterized by a tracking motion vector. For such dynamic

scenarios, current methods work in two separate stages:

tracking and recognition. The tracking module extracts features

over time, while the recognition module processes this

information for expression classification.

Many researchers have explored the nature of the space of

facial expressions. Schmidt and Cohn [32] measured 195

spontaneous smiles from 95 individuals through facial

electromyographic (EMG) data and found consistency in

zygomaticus major muscle activity over time. Zhang et al.

[5] used a two-layer perceptron to classify facial expressions.

They found that five to seven hidden perceptrons are probably
enough to represent the space of feature expressions.

Tenenbaum and Freeman [33] talked about separating style

and content by using symmetry or asymmetry bilinear models.

Chuang et al. [34] also showed that the space of facial

expression can be modeled with a bilinear model. They fit two

formulations of bilinear models, asymmetric and symmetric, to

facial expression data.

More recently, Seung and Lee [9] suggested representing

the variability of images as low-dimensional manifolds

embedded in image space. Tenenbaum et al. [10] introduced

Isomap to find meaningful low-dimensional structures hidden

in the high-dimensional data that is guaranteed to converge

asymptotically to the true structure. Roweis and Saul [11]

showed that locally linear embedding is able to learn the global

structure of non-linear manifolds, such as those generated by

images of faces with only pose and illumination change. Elad

and Kimmel [35] used the invariant signature of manifolds for

object recognition.

Lyons et al. [27] conducted a quantitative low-dimensional

analysis from image features for coding facial expressions.

They used non-linear non-metric multidimensional scaling of

Gabor-labelled elastic graphs. Wang et al. [36] demonstrated

the importance of applying non-linear dimensionality

reduction in the field of non-rigid object tracking. In fact,

representing the object state as a globally coordinated low-

dimensional vector improves tracking efficiency and reduces

local minimum problems in optimization. They learn the

object’s intrinsic structure in a low dimension manifold with

density modeled by a mixture of factor analyzers. Our work

also models the intrinsic structure of facial expressions for

tracking, but extends it to include recognition in a unified

probabilistic framework.

Many systems obtain facial motion information by

computing dense flow between successive image frames. But

flow estimates are easily disturbed by the variation of lighting

and non-rigid motion, and they are also sensitive to the

inaccuracy of image registration and motion discontinuities

[29]. Model-based approaches, such as active shape models

(ASM) [37] and active appearance models (AAM) [38], have

been successfully used for tracking facial deformation. The

ASM method detects facial landmarks through a local-based

search constrained by a global shape model, statistically

learned from training data. The AAM algorithm elegantly

combines shape and texture models, assuming a linear

relationship between appearance and parameter variation.

Both methods, however, tend to fail in the presence of non-

linear image variations such as those caused by large facial

expression changes. In our approach, we use specific ASM

models for each cluster in the embedded space. On-line model

selection is done probabilistically in a cooperative manner with

expression classification, thus improving tracking reliability.

Zhou et al. [39] proposed a generic framework to track and

recognize human faces simultaneously by adding an identity

variable to the stale vector in the sequential importance

sampling method. The posterior probability of the identity

variable is then estimated by marginalization. Their work,

however, does not consider tracking and recognition of facial
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deformation, the main focus of this paper. We were also

inspired by the work of Lee et al. [14], who present a method

for modeling and recognizing human faces in video sequences.

They use an appearance model composed of pose manifolds

and a matrix of transition probabilities to connect them. In our

work, we consider transition probabilities among clusters in the

embedded space, effectively capturing the dynamics of

expression changes and exploiting the temporal information

for recognition.

3. Lipschitz embedding

Lipschitz embedding [20,21] is a powerful embedding

method used widely in image clustering and image search. For

a finite set of input data S, Lipschitz embedding is defined in

terms of a set R of subsets of S, RZ{A1,A1,.,Ak}. The subsets

Ai are termed the reference sets of the embedding. Let d(o;A) be

an extension of the distance function d to a subset A3S, such

that dðo;AÞZminx2Afdðo; xÞg. An embedding with respect to R

is defined as a mapping F such that F(o)Z(d(o;A1); d(o;A2);.,

d(o;Ak)). In other words, Lipschitz embedding defines a

coordinate space where each axis corresponds to a subset

Ai3S of the objects, and the coordinate values of object O are

the distances from O to the closest element in each of Ai.

With a suitable definition of the reference set R, the distance

of all pairs of data points in the embedding space is bounded

[40]. So Lipschitz embedding works well when there are

multiple clusters in the input data set [22,23]. In our algorithm,

we preserve the intrinsic structure of the expression manifold

by combining Lipschitz embedding and the main feature of

Isomap [10]. Given a video gallery covering six basic facial

expressions, there are six ‘paths’ from the neutral image to the

six sets of images with the basic expressions at apex on the

manifold. In Fig. 1, the apex sets in 3D space are illustrated as

the points within the circles. Each path is composed of many

small steps (the difference between consecutive frames).

Different paths contain information on how the expressions

evolve. The comparative positions between those paths

correspond to the relationship between different expressions.

The distance function in Lipschitz embedding reflects the

distance between points on the manifold. The crucial property

that we aim to retain is proximity; i.e. which points are close to

each other and which are far from each other. Due to the

essential non-linear structure of the expression manifold, the

classical approaches of multidimensional scaling (MDS) [41]

and PCA fail to detect the true degrees of freedom of the face

data set. Tenenbaum et al. [10] seek to preserve the intrinsic

geometry of the data by capturing the geodesic manifold

distance between all pairs of data points. For neighboring

points, input-space distance provides a good approximation to

geodesic distance. For distant points, geodesic distance can be

approximated by adding up a sequence of ‘short hops’ between

neighboring points. This shortest path can be computed

efficiently by the Dijkstra Algorithm [42]. The details of

geodesic distance computation can be found in [10].

For our experiments, we used six reference sets, each of

which contains images of only one kind of basic facial
expression at its apex. The embedded space is six-dimensional.

The distance function is the geodesic manifold distance. After

we apply the modified Lipschitz embedding to the gallery set,

there are six basic paths in the embedded space, emanating

from the center that corresponds to the neutral image. The

images with blended expression lie between the basic paths. In

the embedded space, expressions can be recognized by using

the probabilistic model described in Section 5.
4. Learning dynamic facial deformation

We are interested in embedding the facial deformations of a

person in a very low-dimensional space, which reflects the

intrinsic structure of facial expressions. From training video

sequences of different people undergoing different expressions,

a low-dimensional manifold is learned, with a subsequent

probabilistic modeling used for tracking and recognition. The

goal of the probabilistic model is to exploit the temporal

information in video sequences. Expression recognition is

performed on the manifold constructed for each individual.
4.1. The training database

For preliminary testing, we collected data from two subjects

who were asked to perform six basic facial expressions

multiple times. To reduce the influence of illumination

variation, we preprocessed the training data video sequence

by detecting a set of 2D facial landmarks in each image, which

defines the shape of a face in each particular frame. We use the

active shape model algorithm to accomplish this task. With a

good manual initialization and separate training models

prepared specifically for each expression image set, we can

extract the face shape precisely. Fig. 3 shows the facial points

in our shape model. The detailed facial deformation such as

wrinkles and dimpling are ignored. But the positions of the

feature points still provide plenty of information to recognize

expression correctly based on our experiments. We expect

better recognition results for a facial model with higher spatial

resolution when more details of facial deformation can be

captured.

The whole training dataset, comprising different video

sequences of different people undergoing different facial

expressions, is then specified by a set XZ{x1,.,xn}, where

xi2R2D denotes a set of D facial points in a particular frame,

and n denotes the total number of images in the training data.

Unlike traditional manifold embedding methods, where data

can be in any temporal order, our training images are

temporally ordered according to the video sequences, thus

allowing the learning of dynamics on the manifold, as we will

show later.

To embed the high dimension data set XZ{x1,.,xn} with

xi2R2D to a space with low dimension d!2D, we use our

modified Lipschitz embedding algorithm, as described in the

previous section. Our goal is to find the latent variable YZ{y1,

y2,.,yn}, where yi2Rd. This latent variable encodes the

knowledge of the data set and controls the data variations.
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4.2. Mixture model on the embedded space

In the lower dimensional embedded space, we describe the

distribution of the data using a Gaussian mixture model

(GMM). The expectation maximization (EM) algorithm is used

to estimate the distribution. The following equation describes

the density model, where p(y) is the probability that a point in

the low-dimensional space is generated by the model, k is the

number of Gaussians, p(uZi) constitutes the mixture

coefficients and N(mi, Ci) describes each Gaussian distribution

with mean mi and covariance matrix Ci:

pðyÞZ
XK
iZ1

pðuZ iÞNðmi;CiÞ (4.1)

Fig. 4 shows the result of projecting our training data (set of

facial shapes) onto a three-dimensional space using our

modified Lipschitz embedding.

The appearance of different subjects could be aligned

through a common 3D face model. Currently, we build a

separate manifold for each subject. These manifolds share a

similar ‘skeleton’ shape, but vary in reference set positions and

path directions. With warped appearance data, the subjects

from different subjects can be aligned through linear or non-

linear alignment [17].
4.3. Cluster-based active shape models

If we were to train an active shape model from all the

images in a data set together, the significant variation in the

data set would not be modeled well and the tracking

performance would be poor. Instead, we train a set of ASM

models for each image cluster; that is, for each set of images

corresponding to a mixture center (with a defined covariance)

of the GMM in the embedded space.
Fig. 4. An expression manifold projected on its first three dimensions. Points with d

green; fear, blue; sad, cyan; smile, pink; surprise, yellow. The black points represe
We also propose a method to select and probabilistically

integrate the ASM models in the ICondensation framework.

We will show in Section 5 that online model selection allows

tracking to be robust under large expression variations.

In ASM, a shape vector S is represented in the space

spanned by a set of eigenvectors learned from the training data.

As a result, S may be expressed as:

SZ �SCUs (4.2)

where �S is the mean shape, U is the matrix consisting of

eigenvectors and s constitutes the shape parameters, which are

estimated during ASM search. In Section 4, we will describe

how tracking is achieved using the learned ASM models.
4.4. Learning dynamics on the manifold

Based on the manifold representation, we can learn a

dynamic model, defined as the transition probability p(ytjytK1).

Let u2{1,.,k} be a discrete random variable denoting the

cluster center and let r2{1,.,nr} be a discrete random

variable denoting the expression class. For this work, nrZ6,

meaning that r can assume six basic expressions. We have been

using the prototypical universal expressions of fear, disgust,

happiness, sadness, anger and surprise, though the method does

not depend on this particular grouping.

The dynamic model can be factorized in the following way:

pðytjytK1ÞZ
X
wt

pðytjytK1;utÞpðutjytK1Þ

Z
X
ut ;utK1

pðytjytK1;utÞpðutjutK1ÞpðutK1jytK1Þ (4.3)

where

pðutjutK1ÞZ
X
rtK1

pðutjutK1; rtK1ÞpðrtK1Þ
ifferent colors represent images with different expression. Anger, red; disgust,

nt the mixture centers.
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This assumes that ut and ytK1 are conditionally independent

given utK1.

For each state of rtK1 (i.e. each expression class), the cluster

transition dynamics P(utjutK1, rtK1) can be learned from the

training data. P(ytjytK1, ut) is the dynamic model for a known

cluster center. Thedynamics inafixedcluster are similar for each

expression. Since the intra-cluster variations are much smaller

than the inter-cluster variations, we approximate the truth by

assuming the dynamics in a fixed cluster is the same for each

expression. If each cluster contains only one point, the difference

between our approximation and the truth becomes zero.

Similar to Wang et al. [36], we also model the within cluster

transition as a first order Gaussian auto-regressive process

(ARP) by:

pðytjytK1;utÞZNðAut
ytK1 CDut

;BBTÞ (4.4)

which can be represented in generative form as

yt ZAut
ytK1 CDui

CBwk (4.5)

where Aut
and Dut

are the deterministic parameters of the

process, BBT is the covariance matrix, and wk is independent

random white noise.

For ARparameter learning, we use the samemethod as Blake

and Isard [44]. Combining Eqs. (4.3), (4.4) and (4.5), we get:

pðytjytK1ÞZ
X

ututK1rtK1

pðytjytK1;utÞpðutjutK1; rtK1ÞpðrtK1ÞpðutK1jytK1Þ

Z
X
ut

NðAut
ytK1 CDut

;BBT Þaðut; ytK1Þ ð4:6Þ

where

aðut; ytK1ÞZ
X

utK1;rtK1

PðutjutK1; rtK1ÞPðrtK1ÞPðutK1jytK1Þ (4.7)

Wang et al. [36] pointed out that the equations above model a

mixture of Gaussian diffusion (MGD), whose mixture term is

controlled by the random variable ut. In our work, the mixture

term is also controlled by the expression recognition random

variable.
5. Probabilistic tracking and recognition

In the previous section, we showed how to learn a facial

expression model on the manifold as well as its associated

dynamics. Now, we show how to use this representation to

achieve robust online facial deformation tracking and

recognition. Our probabilistic tracking is based on the

ICondensation algorithm [24], which is described next,

followed by expression classification. Both tracking and

recognition are described in the same probabilistic frame-

work, which enables them to be carried out in a cooperative

manner.
5.1. ICondensation tracking

Our object state is composed of rigid and non-rigid parts,

defined by sZ(x,y,q,sc;y1.yd). The rigid part (x,y,q,sc)
represents the rigid face motion (position, orientation and

scale), while the non-rigid part (y1.yd) is the low-dimensional

representation of facial deformation obtained by our modified

Lipschitz embedding, as described in Section 3.

At time t, the conditional object state density is represented

as a weighted set of samples fðsðnÞt ;pðnÞ
t Þ; nZ1;.;Ng, where

sðnÞt is a discrete sample with associated weight pðnÞ
t , whereP

n p
ðnÞ
t Z1. Below we illustrate one step of a sample’s

evolution.

After this step, the state with largest weight describes the

tracking output in each frame, consisting of face pose (x,y,q,sc)
and deformation, which is obtained by projecting (y1.yd) back

to the original shape space, through a nearest-neighbor scheme.

Sequential importance sampling iteration:

Main objective: Generate sample set

StZ fðsðnÞt ;pðnÞ
t Þ; nZ1;.;Ng at time t from sample set StK1

ZfðsðnÞtK1;p
ðnÞ
tK1Þ; nZ1;.;Ng at time tK1.

Algorithm:

For each sample, nZ1 to N:

(1) Create samples ~snt

Choose one of the following sampling methods with a fixed

probability:

(1) Generate sample from initialization prior.

(2) Generate sample from importance resampling, where the

importance function is the posterior from time tK1;

(2) Predict snt from ~snt
(a) If ~snt was generated from the prior probability, choose

snt from ~snt adding a fixed Gaussian noise.

(b) If ~snt was generated from the posterior probability,

apply the dynamic model for prediction. For the rigid

state part, we use constant prediction, adding a small

Gaussian noise. For the non-rigid part, we use the

MGD noise model, where the weight of each

component is controlled by the cluster center

distribution p(ut) and expression classification distri-

bution p(rt).

(3) Update the set of samples. The measurement of the sample

snt is p
ðnÞ
t Zl

ðiÞ
t Mðsnt Þ, where l

ðiÞ
t is the importance sampling

correction term. M is the sample measurement function,

described in the next subsection.

(4) After all the samples are generated and measured,

normalize pðnÞ
t so that

P
n p

ðnÞ
t Z1 and store the sample

set as fðsðnÞt ;pðnÞ
t Þ; nZ1;.;Ng
5.1.1. Sample measurement

In order to measure a sample (function M in the algorithm

above), we proceed in the following way. For each mixture

center in the embedded space, a specific ASM model is

selected to measure image observation. This measure is given

by a residual error obtained after applying one step of ASM

search (we refer to Cootes et al. [37] for details on the search

process). Face pose initialization is given by the sample rigid

part (x,y,q,sc) and shape initialization is computed by
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projecting the non-rigid part (y1.yd) of the sample back to the

original shape space (using a nearest-neighbor scheme).

Once we have a residual error for each one of the mixture

centers, the desired sample measurement is obtained by a

weighted sum of these residuals, where the weights

corresponds to the likelihood of the sample non-rigid part

(y1.yd) in each Gaussian model.

This scheme allows tracking to be robust under large facial

expression changes, as we will show in Section 7. Next we

describe how to update expression classification in each frame,

using a common probabilistic framework.

5.2. Expression recognition updating

We have already showed that the distribution of the discrete

random variable r (the expression recognition variable) directly

affects tracking (see sample prediction and dynamic model

learning). Now we show how to update the posterior

probability p(rtjy0:t) in every frame to identify facial

deformation.

In the ICondensation tracking, by assuming statistical

independence between all noise variables, Markov property

and priors of the distributions p(u0jr0), p(r0jy0), p(ytjytK1), on

embedded space, our goal is to compute the posterior p(rtjy0:t).

It is in fact a probability mass function (PMF) as well as a

marginal probability of p(rt,utjy0:t). Therefore, the problem is

reduced to computing the posterior probability p(r0:t,u0:tjy0:t).

pðr0:t;u0:tjy0:tÞ

Z pðr0:tK1;u0:tK1jy0:tK1Þ

!
pðytjr0:tK1;u0:tK1ÞpðrtjrtK1ÞpðutjutK1Þ

pðytjy0:tK1Þ

Z pðr0;u0jy0Þ
Yt
lZ1

pðyljrl;ulÞpðrljrlK1ÞpðuljulK1Þ

pðyljy0:lK1Þ
(5.1)

By marginalizing over u0:t and r0:tK1, we obtain:

pðrt Z ljy0:tÞZ

ð

u0

ð

r0

/

ð

utK1

ð

rtK1

ð

ut

pðr0;u0jy0Þ

!
Yt
lZ1

pðyljrl;ulÞpðrljrlK1ÞpðuljulK1Þ

pðyljy0:lK1Þ

dutdrtK1dutK1.du0dr0

(5.2)

This equation can be computed by prior distributions and the

product of the likelihood
Qt

lZ1 pðyljrl;ulÞ.
6. Synthesis of dynamic expressions

The manifold model can also be used to synthesize an image

sequence with changing expressions. Given expression r, rZ1,

.,6, we keep the cluster indexing l1,.,lk, and k is the number

of the clusters, such that:

pðul1 jr Z lÞ!pðul2 jr Z lÞ.!pðulk jr Z lÞ
For expression r, there are m gallery videos that begin from the

neutral expression, pass the apex, and end with the neutral

expression. We set the first video sequence as a template. Then

we apply dynamic time warping [43] to the following mK1

image sequences. Thus we have a standard time index for all m

videos. For every cluster along the path r, we can measure the

duration of the cluster by the range of time index of the images

within the cluster. Note we compute the time range for

increasing and decreasing expression separately since a cluster

may cover both types of images at the same time. The time

range for each cluster is wi, iZ1,.,k. The average time range

of all clusters is �w.
The algorithm for synthesizing an image sequence from

expression A to expression B is listed as following. The critical

part is to find a trajectory that maximizes the probability of the

transitions between the clusters Ar and Br. The optimal

trajectory is computed by dynamic programming [45]. The

correlations between consecutive frames are maximized

locally at the same time. To eliminate the jitter and redundancy

in the image sequence, we keep a cache for recently appeared

frames. If the same frame from the gallery appearances more

than twice in the passed n frames, it should be removed from

the final video sequence. n is an empirical window width.



Fig. 5. Sample frames of our output tracking and recognition result in a video

sequence.
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7. Experimental results

In this section, we present our experimental results on facial

deformation tracking and recognition.

7.1. Data set

To learn the structure of the expression manifold, we need

O(103) images to cover basic expressions for each subject and

to enable stable geodesic distance computation. Since there is

no database with a sufficiently large amount of subject data

available, we built our own small data set for the experiments.

In our experiments, two subjects were instructed to perform a

series of six kinds of prototypical facial expressions,

representing happiness, sadness, anger, surprise, fear, and

disgust. The subjects repeated the series seven times for the

gallery set. The probe set includes a long sequence (more than

104 frames) where the subject can change his/her expression

randomly. To simplify the problem, we assume constant

illumination and near frontal view pose. The sequences were

recorded at 30 fps and stored at a resolution of 320!240. All

results in this paper were obtained on a Xeon 2.8 GHz CPU.

The complete process, including alignment, embedding, and

recognition, runs at 5 fps.

To generate the shape sequence from the training data set,

we trained ten ASMmodels for different kinds of deformations.

We manually select the model in this offline stage to robustly

track facial deformation along the video sequences. The shape

space dimension is 90. We used our modified Lipschitz

algorithm to obtain a space with dimensionality dZ3.

We realized the difference between posed expression and

spontaneousexpressions in termsofamplitudeanddynamics[46].

The future systemwill test on spontaneous expression of subjects.

7.2. Tracking and expression recognition

We verified that our probabilistic method is able to track and

recognize long sequences of subjects performing subtle and

large expression changes. Fig. 5 shows two frames from a

tracking and recognition test using a new video sequence. The

overlaid graphical bars for each expression label in the figure

indicate their respective recognition probabilities. A complete

output video sequence is available at http://ilab.cs.ucsb.edu/

demos/IVC-seq2.m2v.

We visualize the learned manifold at the same time at video

http://ilab.cs.ucsb.edu/demos/IVC-seq1.m2v. The embedded

vector of the current frame is represented as a black point.

During the expression transition, the black point ‘walks’ from

one expression path to another. The viewpoint of the manifold

is changed concurrently for better visualization. Fig. 6 shows

some sample images from the available video. The first image

is during a transition from fear to surprise. The second image is

during a transition from anger to disgust. The third image and

the fourth image are sadness and happiness respectively. The

bar figures indicate the expression transition correctly. The

quantitative measurement of expression recognition for every

frame is not available because the output is represented as the
posterior probability of basic expressions, and we do not have

ground truth for this kind of representation.

We also quantitatively analyze the performance of our

tracker with a standard ASM tracker. Fig. 7 shows a precision

comparison, considering as ground truth a manual labeling of

eye corners and lip corners. The same images were used to train

both trackers. The difference is that our method automatically

splits this data to train a set of models, which are

probabilistically selected during tracking. This allows more

robust performance under large facial expression changes.
7.3. Expression synthesis

With the manifold model, we synthesize image sequences of

aligned face appearances with changing expressions. There are

about 6000 images from 42 video sequences (seven for each

basic expression) in each gallery set. The lengths of

synthesized image sequences are around 200.

Figs. 8 and 9 show some selected images (every 20th frame)

from the synthesized sequences. The trajectories with the

maximum transition probability between clusters reflect the

expression change correctly.
8. Conclusions

We proposed a novel framework for dynamic facial

expression analysis. We now summarize our main

contributions:

(1) A new representation for tracking and recognition of facial

expressions, based on manifold embedding and probabil-

istic modeling in the embedded space. Our experimental

results show that manifold methods provide an analytical

way to analyze the relationship between different

expressions, and to recognize blended expressions.

(2) A robust method for facial deformation tracking based on a

set of ASM models, which are probabilistically selected

during tracking, improving reliability under large

expression changes.

(3) A probabilistic expression classification method, which

integrates information temporally across the video

sequence. In contrast with traditional methods that

http://ilab.cs.ucsb.edu/demos/IVC-seq2.m2v
http://ilab.cs.ucsb.edu/demos/IVC-seq2.m2v
http://ilab.cs.ucsb.edu/demos/IVC-seq1.m2v


Fig. 6. Facial expression recognition result with manifold visualization.

Fig. 8. Twelve frames selected from a transition from anger to happiness.

Fig. 9. Twelve frames selected from a transition from surprise to disgust.
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consider expression tracking and recognition in separate

stages, we address these tasks in a common probabilistic

framework, which enables them to be solved in a

cooperative manner.
Fig. 7. Comparison of tracking precision between an ASM tracker and our

method. We have obtained considerably improvement, mainly under the

presence of images with large expression changes.
The main limitation of the work is the 2D shape model

ignored the detailed facial deformation, such as wrinkles,

which will help recognize the nuances of facial expressions. 3D

morphable face model will provide more information for

robust expression recognition. The temporal approximation of

dynamics within the cluster can be improved by decreasing the

size of clusters with higher computational expense. We try to

achieve the best tradeoff between accuracy and speed. The

current data are directed expressions. We will test on the

spontaneous expression in the future system.

We will evaluate and quantify the results more system-

atically with many more subjects in future work. Another

future research direction is to consider variation on face pose

and illumination [47,48], which will add more degrees of

freedom to manifold of expression. How these factors affect the

intrinsic geometry of expression manifold will be a challenging

topic for future study.
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