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Abstract Classification domains such as those in medicine, national security and the envi-

ronment regularly suffer from a lack of training instances for the class of interest. In many

cases, classification models induced under these conditions have poor predictive performance

on the important minority class. Synthetic oversampling can be applied to mitigate the impact

of imbalance by generating additional training instances. In this field, the majority of research

has focused on refining the SMOTE algorithm. We note, however, that the generative bias

of SMOTE is not appropriate for the large class of learning problems that conform to the

manifold property. These are high-dimensional problems, such as image and spectral clas-

sification, with implicit feature spaces that are lower-dimensional than their physical data

spaces. We show that ignoring this can lead to instances being generated in erroneous regions

of the data space. We propose a general framework for manifold-based synthetic oversam-

pling that helps users to select a domain-appropriate manifold learning method, such as

PCA or autoencoder, and apply it to model and generate additional training samples. We

evaluate data generation on theoretical distributions and image classification tasks that are

standard in the manifold learning literature, and empirically show its positive impact on the

classification of high-dimensional image and gamma-ray spectra tasks, along with 16 UCI

datasets.
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1 Introduction

Problems such as radioactive threat classification, oil spill classification, gene function anno-

tation, and medical and text classification have challenging properties (Bellinger et al. 2015;

Kubat et al. 1998; Blondel et al. 2011; Akbani et al. 2004; Nguwi and Cho 2009). These

domains have a high level of complexity due to factors such as class overlap and multi-

modality. Moreover, the class distributions are imbalanced and the minority classes are rare.

The degree of rarity can be thought of as a function of the number of training examples

relative to the complexity of the domain.

Rarity creates a challenging learning scenario referred to as absolute imbalance. Learners

trained on absolutely imbalanced data are known to produce error prone predictions (He

and Garcia 2009). For an arbitrary dataset, the specific threshold below which a domain is

said to be absolutely imbalanced is unclear, but the outcome is not. It breaks the general

assumption of machine learning that demands a representative set of instances from each

class. An absolutely imbalanced training set leads to the induction of a decision boundary

that is biased in favour of the majority class, thereby causing weak classification accuracy

(Jo and Japkowicz 2004; Weiss 2004; He and Garcia 2009).

Given the practical importance, and the significant challenge posed by domains of this

nature, class imbalance has been identified as one of the essential problems in machine

learning (Yang et al. 2006) and has spawned workshops, conferences and special issues to

discuss and develop strategies to manage class imbalance (Japkowicz 2000; Chawla et al.

2003, 2004; Chawla and Zhou 2009; Wang et al. 2017).

The most obvious solution to the problem of class imbalance is more training samples.

Unfortunately, we cannot sample the data directly due to domain properties, such as acqui-

sition cost and class probability. Thus, we turn to the data-driven generation of synthetic

instances. Within class imbalance, this is known as synthetic oversampling, and was origi-

nally achieved by interpolating new instances at random distances between nearest neighbours

in the minority class; this is the classic SMOTE algorithm (Chawla et al. 2002).

SMOTE has been very successful in reducing the impact of class imbalance, and as such, it

has seen wide-spread application. Nonetheless, many studies have also found that it does not

always generate synthetic instances that produce the desired performance gains (Drummond

and Holte 2003; Van Hulse et al. 2007; Wallace et al. 2011). In turn, these studies have lead

to the development of new variations on the standard algorithm, such as boosting, post-hoc

cleaning and better methods for selecting the instances to be used for generation by SMOTE

(Chawla et al. 2003; Han et al. 2005; Bunkhumpornpat et al. 2009).

In spite of the various proposed alterations, the SMOTE algorithm and its derivatives

suffer from a particular and identifiable weakness on a great number of domains that are of

particular importance in modern machine learning, such as those involving text, speech, video,

image, radiation spectra and RNA. Each of these domains, and many more like them, are

of high-dimensionality. Methods, such as the SMOTE algorithm, that rely on calculations

of the straight-line distance between points in high-dimensional spaces are known to be

error prone. These error prone distances lead to inaccurate nearest neighbour selection, and

thus, the generation of noisy synthetic instances. These negatively impact the performance

of the induced classifier. Removing and/or avoiding these noisy instances is the focus of

the previously mentioned derivatives of the SMOTE algorithm. The outstanding problem,
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however, is that it is difficult to determine which approach is ideal, and more importantly,

none of these directly deals with the core of the problem.

We argue that a superior means of synthesizing instances for high-dimensional class

imbalance tasks is to take advantage of the intrinsic structure of the data. In particular, we

note that the class probability mass is not spread widely throughout the high-dimensional

space, but rather embedded in a much lower-dimensional manifold-space (Chapelle et al.

2006). Harnessing the intrinsic manifold property has been key to improving performance in

many high-value machine learning domains, such as image, speech, and text classification,

human action and emotion recognition in audio and video, and is necessary to advance

performance on related imbalanced domains (Tuzel et al. 2007b, 2008; Lui et al. 2010; Liu

et al. 2013; Slama et al. 2015).

The explicit weakness of SMOTE, and its related algorithms, is that it operates in the

fog of the higher-dimensional data-space. The curvature of the embedded manifold causes

orthogonal instances to appear deceptively close whilst their geodesic distance along the

manifold is, in fact, great. The direct consequence of this is that non-manifold-based synthetic

oversampling of domains that conform to the manifold property will inherently lead to noisy

instances that negatively impact performance.

On the surface, feature selection can seem like a reasonable alternative to manifold learn-

ing. Feature selection methods, such as subset selection, choose a subset of the d-dimensions

to represent the data (Alpaydin 2014). This is not an effective means of solving problems in

domains that conform to the manifold property because the probably density resides in an

embedded space. This cannot be recovered by extracting a subset of features from the feature

space. Moreover, many selected features methods themselves can be biased by the skewed

distribution.

Indeed, through our practical experience in applying synthetic oversampling methods

to gamma-ray spectral classification problems, we were able to identify that SMOTE and

other synthetic oversampling methods perform poorly when the target data conforms to the

manifold property. In particular, they have the tendency to synthesize noisy instances that

are realized as distorted images and unrealistic gamma-ray spectra.

To address this, we propose a framework for synthetically oversampling data that conforms

to the manifold property. The schema for the four component framework is presented in Fig. 1.

In brief, the framework evaluates the conformance of the domain to the manifold property

to determine an appropriate means of synthetic oversampling. Based on this outcome, an

appropriate manifold learning method can be selected and applied to the data. The synthetic

instances are then generated in the manifold-space and reverse mapped back to the feature

space to be added to the training set.

The contributions of this work are to: (a) demonstrate the weakness of existing methods

when the data conforms to the manifold property, (b) develop a framework for manifold-

based synthetic oversampling that can utilize any manifold learning algorithm, (c) propose

and evaluate methods for quantifying conformance to the manifold property to determine

when manifold-based synthetic oversampling is ideal, (d) demonstrate two formalizations

of the framework (autoencoder and PCA) and suggest others, and (e) empirically show the

benefits of the framework on high-dimensional, real-world data that conforms to the mani-

fold property. In particular, our experiments include high-dimensional image classification

and gamma-ray spectra classification tasks, along with 16 benchmark UCI datasets. These

contributions bring together and further elaborate on results that we have previously reported

(Bellinger et al. 2015, 2016).

In this work, our proposed method for testing the conformance of datasets to the manifold

property is added to improve the usability of the framework. It determines if manifold-based
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Fig. 1 General framework for synthetic oversampling

synthetic oversampling is ideal for the target domain. Moreover, it offers the potential to

aid in the choice of which manifold learning method to utilize. These are two fundamental

questions that were left unanswered in our previous work.

2 Related work

Random undersampling is one of the simplest ways to deal with class imbalance. It adjusts

the class distribution by producing a training set S = {Smin ∪ E}, where E is a set of random

samples drawn without replacement from Smaj . The weaknesses of this method are well

documented. In particular, it is known to suffer from high variance and has the potential

to discard valuable information from the majority class, whilst still risking overfitting the

minority class (Han et al. 2005). Bagged random undersampling was proposed to deal with

the high degree of variance (Wallace et al. 2011). This does not, however, address the sig-
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nificant loss of information. In the case of absolute imbalance, for example, the amount of

undersampling needed would risk the majority class also becoming rare.

Alternatively, cost-sensitive learning does not necessitate the discarding of information. It

aims to assign misclassification costs in a manner that promotes the induction of a classifier

with improved accuracy on the minority class. The idea is that if you skew the misclassification

costs towards the minority class, the classifier learns to make minority class predictions that

it might not make otherwise. The set of cost-sensitive methods can be roughly separated into

those that apply misclassification costs to the training data, those that utilize cost-sensitivity

in conjunction with ensemble methods, and those that incorporate cost-sensitivity into the

learning algorithms themselves (He and Garcia 2009). In practice, these methods can be

challenging to apply due to their algorithmic forms and the need to estimate costs.

A more significant issue with cost-sensitive learning is that it relies on misclassifications

during the inductive process to adjust the decision boundary. If no training instances are

classified incorrectly, the cost adjustment has no impact on the induced classifier (Wallace

et al. 2011). This scenario is not as improbable as it may seem. When the minority class is

rare and/or the data is high-dimensional, it is possible that a decision boundary can easily

be found that separates the two classes. Due to rarity, this decision boundary is unlikely to

accurately represent the latent distribution, thus, leaving an inaccurate classifier in place.

Random Oversampling produces a training set S = {E ∪ Smaj }, where E is a set of

minority training instances sampled with replacement. It rebalances the training distribution

and avoids discarding informative majority class instances; however, it does not prevent

overfitting (Batista et al. 2004a). Synthetic oversampling was envisioned as a means of

avoiding overfitting by generating synthetic instances to populate the minority class rather

than by simply replicating instances (Chawla et al. 2002). Therefore, it does not necessitate

the discarding of useful instances from the majority class, and when an appropriate bias is

selected, it offers the potential to accurately adjust the decision boundary regardless of the

separability of the training set.

The state-of-the-art methods in synthetic oversampling are primarily based on the SMOTE

algorithm, which applies a generative bias that assumes the best place to generate synthetic

instances is between nearest neighbours in the minority class. As a result, the synthetic set

is generated entirely within the convex hull formed by these instances. There are two major

criticisms of SMOTE. The first is that the instances are erroneously generated within the

majority space. This causes the inductive process to overcompensate for the prediction bias

of the classifier. The other, contradictory, criticism is that it does not generate instances close

enough to the majority class. As a result, the prediction bias is not sufficiently reduced. The

properties of the data domain determine which of these criticisms applies to SMOTE for a

given domain.

A series of ad-hoc modifications to SMOTE have been proposed in an attempt to manage its

weaknesses. Post-hoc methods have been described that attempt to remove minority instances

generated in the majority space (Batista et al. 2004a; Han et al. 2005; Stefanowski and Wilk

2007). Other methods have been developed that aim to promote the generation of instances

close to the majority space (Batista et al. 2003; He et al. 2008).

Nonetheless, the weaknesses of SMOTE and its derivatives relate to its generative bias,

i.e., whether the convex hull formed via straight-line measurements in the feature space

accurately covers the minority class. This is a reasonable assumption for many low- and

medium-dimensional domains. As the dimensionality and corresponding sparsity increases,

however, SMOTE becomes a limiting choice. To this end, our research shows that the existing

means of synthetic oversampling are inappropriate for data that conforms to the manifold

property, and that manifold-based synthetic oversampling should be applied.
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3 Problem overview

Our research was originally inspired by our collaboration with the Radiation Protection

Bureau at Health Canada, where we applied machine learning for safety in regards to radia-

tion. The primary challenges were the high-dimensionality of the domain and the degree of

imbalance. These are features that are common to a large number of classification domains,

such as global climate change, image recognition, human identification, text classification

and spectral classification.

We recognized that domains with this property can often be better represented in a lower-

dimensional embedded space. This concept takes advantage of the reality that instances

are not spread throughout the feature space but are concentrated around a lower-dimensional

manifold. A simple example of a manifold in machine learning comes from handwritten digit

recognition, where the digits are recorded in a high-dimensional feature space, but can be

effectively represented in a lower-dimensional embedded space (Domingos 2012). Manifold

learning provides a gateway to the embedded space in which all possible handwritten digits

can be encoded.

Somewhat similar to the variations caused by an individuals style of writing on the shape

and orientation of handwritten digit, the data distribution representing a particular isotope

of interest, such as cobalt-60, is impacted by a combination of factors. When measured

with a gamma-ray spectrometer, a pure isotope sample produces a very specific signature

in the gamma-ray spectra. This clear signal, however, is altered and eroded by the amount

of radioactive material, the degree to which it is shielded, the amount of the background

radiation, and the distance between the source and the gamma-ray spectrometer. Different

combinations of these aspects may affect a signal at any given time. The various combinations

that may occur in the high-dimensional space can be imagined as forming a dense, low-

dimensional structure in the embedded space.

Inducing a manifold representation of the training data provides a gateway to an embedded

space that concisely represents the various forms of gamma-ray spectra that may occur in

the class of interest. These include combinations of its different degraded and eroded states.

If you can imagine taking a walk along the induced manifold, as you travel from one end

to the other, you would be traveling along a continuum representing the transition between

the different aspects that affect the spectra, including the degree of shielding, amount of

radioactive material, distance to the source, etc.

A significant amount of research has been dedicated to the development of manifold

learning methods (Huo et al. 2007; Ma and Fu 2011). The resulting algorithms utilize a

diverse set of assumptions and biases, such as the complexity of the curvature of the manifold

and the nature of the noise. Classic methods, such as PCA and MDS, are simple and efficient.

These are guaranteed to determine the structure of the data on or near the embedded manifold.

These traditional methods assume a linear manifold (Tenenbaum et al. 2000). Other, more

algorithmically complex methods, such as kernel PCA and autoencoding, enable the induction

of non-linear manifolds. Manifold learning has demonstrated great potential in clustering,

classification and dimension reduction (Belkin and Niyogi 2003; Tuzel et al. 2007a; Zhang

and Chen 2005; Roweis and Saul 2000). In spite of its potential, manifold learning methods

have gone unconsidered in problems of class imbalance. We address this gap in the literature

with a framework for manifold-based synthetic oversampling. This enables the user to select

the most appropriate manifold learning strategy, be it a simple and efficient linear approach

like PCA or local linear embedding, or more sophisticated non-linear methods such as the

autoencoder.
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3.1 Limitations of SMOTE on manifolds

Chawla et al. presented Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla

et al. 2002) as a general purpose synthesizer to overcome the limitation of random oversam-

pling. SMOTE augments the minority training set by interpolating points between nearest

neighbours in Smin . For each xi ∈ Smin , a synthetic instance is created at a random point on

the edge connecting xi to a random instance x j in its kNN set, x j ∈ k N N (xi ). Given xi , x j

and a random number δ = [0, 1], the synthetic point is calculated as

xnew = xi + (x j − xi ) × δ. (1)

To reduce the risk of synthesizing instances too deep inside the majority space, post-

hoc processing to remove instances that form Tomek links has been proposed for SMOTE

(Batista et al. 2003, 2004b). A pair (xi , x j ) is considered to be a Tomek link if ¬∃xk s.t.

dist (xi , xk) < dist (xi , x j ) nor dist (x j , xk) < dist (xi , x j ) and xi ∈ Smin, x j ∈ Smaj . If

xi and x j form a Tomek link, then either xi or x j are noise or they are on the class border,

and as such they are deleted. This has the effect of shifting the convex hull away from the

majority class. Alternatively, it is sometimes desired that the convex hull be shifted towards

the majority class. Borderline SMOTE has been proposed to do this (Han et al. 2005). It finds

a subset S′
min ∈ S such that the elements of S′

min are on the border of the majority class.

SMOTE is then applied to the instances in the subset S′
min .

The two major issues with SMOTE on manifold data are that (a) it is applied in the fog

of the higher-dimensional feature-space, and (b) it applies a straight-line distance, typically

calculated with the Minkowski distance, to find nearest neighbours. This is error prone for

absolutely imbalanced data because the instances are expected to be far apart in the fea-

ture space. In Fig. 2, we illustrate the weaknesses of SMOTE by using a one-dimensional

manifold embedded in a two-dimensional space. In the demonstration, we use the general

version of SMOTE. This is warranted because the more recent adaptations apply the same

bias, they suffer from the same weaknesses on data that conforms to the manifold prop-

erty.

The top left graphic in Fig. 2 shows the manifold in red with samples from the man-

ifold appearing as black circles. Each instance can be represented by its one-dimensional

coordinate m in the manifold space. In machine learning, we often have data in the

fog of a higher-dimensional feature space, not the embedded space. Manifold learning

induces a model of the embedded space, and from this we can focus the generation of

instances in high probability regions. This is visualized in the top right graphic, where

the blue shading illustrates the probability mass being spread along the manifold. In

the subsequent section, we demonstrate how this is achieved with our proposed frame-

work.

The bottom graphics demonstrate the result of synthetic oversampling using SMOTE

with k = 7 and k = 3. The first thing that we note is that the synthesized instances are

clustered in many small pockets for the smaller k-value. This value results in the creation of

a set of small, dense and disjunct convex hulls. These clusters fail to add much information

specifically because they are tightly clustered around training instances that are already

available. The larger k-value creates one large, uniformly populated convex hull. This results

from the fact that for larger k-values the algorithm must search increasingly greater distances

to find so-called nearest-neighbours. In our example, we provide a simple demonstration of

the fact that when the k-value is increased and the convex hull becomes large, it tends to

spread more and more away from the manifold. This analysis applies to all of the variations
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Fig. 2 Top left: One-dimensional non-linear manifold. Top right: spread of instances along the manifold.

Bottom: spread of SMOTE-based synthesization away from the manifold with K=7 and K=3

of the SMOTE algorithm because the base algorithm does not account for geodesic distance

along the manifold.

The weakness of SMOTE is due to the topological structure of a manifold; it will only

produce an accurate kNN set if the query instances are close together (Gauld 2008). Similarly,

a straight-line distance will only be accurate on a manifold when it is applied to measure the

distance between instances in the same local neighbourhood. For this to occur, the training

data must be dense and well sampled. When xi and x j are in different areas of the manifold,

as we might expect on sparse imbalanced learning problems, the edge connecting them in

the Hilbert space is likely to span regions of the data-space that do not belong to the minority

class; however, this is precisely where SMOTE will generate instances!

4 Framework

4.1 Overview

Figure 1 presents the four components of our manifold-based synthetic oversampling frame-

work. The framework that we proposed in our previous work has been extended here to first

enable the evaluation of conformance to the manifold property.

Based on the design for the framework, we can assume that it will work well when the data

conforms to the manifold property. However, it is often not clear if a domain conforms to the

property. The first component of the framework assists in this determination. In addition, when

it is established that the domain conforms to the manifold property, it offers the potential to

empirically aid in the decision of which manifold learning method to utilize in the framework

for the target data.
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The determination of conformance to the manifold property has not been directly consid-

ered within the machine learning literature. We can, however, approach the question more

generally from the perspective of the implicit dimensionality. This allows us to develop a

conformance test that takes advantage of other areas of science, such as psychology and

economics, that are interested in this question. The details of our proposed test are discussed

in the subsequent section.

A large number of manifold learning methods, such as PCA, kernel PCA, autoencoding,

local linear embedding, etc., have been studied within the machine learning literature. Indi-

vidually, they incorporate a diverse set of assumptions and biases. For this reason, we have

designed the framework that can take advantage of the wealth of manifold learning methods

rather than designing a manifold-based synthetic oversampling algorithm that is restricted

to a single manifold learning method. In the second element of the framework, the selected

manifold learning method is formalized to induce a manifold representation of the minority

class.

In general, the selection of a specific manifold learning method for a given problem will be

guided by a number of factors. The most prominent amongst these are the number of training

examples and the complexity of the latent manifold. If the learning objective involves a linear

manifold, or the training data is extremely rare, a linear method is appropriate. Alternatively,

non-linear problems with more training data are well-suited for methods that can represent

the complexity.

In Sect. 4.3, we have selected PCA and DAE from the large number of manifold learning

methods to demonstrate the framework. These two formalizations reinforce the steps required

to implement the framework. In addition, they illustrate both a linear method and a non-linear

method (PCA and DAE respectively). PCA is arguably the simplest, best known, and most

widely applied manifold learning method. In addition, it can be seen to represent a reasonable

baseline that more complex methods should beat, because it can be conceived as being at

the origin of a line or perhaps the bottom of a partial order. Alternatively, we have selected

DAE to demonstrate a non-linear formalization because its highly flexible structure renders

it a reasonably generic method that can represent a wide variety of manifolds. Moreover,

autoencoders offer the most natural means of sampling the induced manifold. Therefore, it

is a good generic choice. However, in the spirit of our general framework, we encourage the

consideration of alternative manifold learning methods.

Data is synthesized along the induced manifold during the second phase of the framework.

For each manifold learning method, the details of the generation process will differ. The

common objective, however, is to generate novel instances along the induced manifold to

inflate the minority class. Our empirical results indicate that applying random transformations

along the manifold works best.

We believe that random transformations produce a better synthetic set from the perspective

of classifier induction because they reduce the likelihood that the samples are drawn from

the extreme ends of the manifold. This advantage results from the fact that the generation

process starts from points on the manifold where we have the most evidence that samples

exist, and shift outward along the manifold to produce samples.

The final phase maps the synthesized data to the original feature space and returns it to the

user. The reverse mapping is dependent on the selected algorithm. When selecting a manifold

learning method, we must consider the ability to perform this mapping. It is more challenging,

and perhaps not possible, for some approaches. Both PCA and DAE offer straightforward

means for reversing the mapping.
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4.2 Testing conformance to the manifold property

The flexibility of the proposed framework enables it to be widely applicable to datasets with

various degrees of conformance to the manifold property. Nonetheless, the performance is

expected to increase with the conformance to the property. Thus, it is desirable to have a metric

to test for conformance when selecting between manifold-based synthetic oversampling and

SMOTE. Typically when deciding whether or not to use manifold learning, researchers have

relied on their experience and intuition. A key component of this comes from the expectation

that high-dimensional domains are likely to conform to the manifold property. Part of our

research is to examine more quantitative approaches.

We propose that a metric for conformance to the manifold property should have the

following attributes:

– It should produce a continuous score that can be used to rank datasets; and,

– Given an independent random sample of datasets, the corresponding ranks should be

approximately uniformly distributed so that datasets with various levels of conformance

are accurately and evenly spread over the range of scores.

With a metric of this nature, we can experimentally select a threshold below which manifold-

based synthetic oversampling learning should be applied. We look to the established field of

factor analysis in order to develop this metric. Factor analysis is a toolbox of methods for

estimating the implicit dimensionality of a dataset. Given a factor analysis method F(·) and

a dataset D, an integer y is returned that indicates the implicit dimensionality as y = F(D).

Conformance to the manifold property assumes that the probability density of the data

distribution resides in a lower dimensional space. Therefore, we can say that conformance

to the manifold property increases as implicit dimensionality decreases relative to the cor-

responding feature space. Based on this, we measure conformance to the manifold property

as:

m(D) = F(D)/dim(D). (2)

We use the ratio of the implicit over the actual dimensionality of the dataset to give preference

to datasets having a relatively smaller implicit dimensionality.

Factor analysis methods are particularly popular in the social sciences where the latent

variables associated with the topic are either unknown or hard to measure directly. An impor-

tant question from the field is how to best estimate the number of factors to retain (Courtney

and Ray 2013). The methods are generally based on principle component analysis and prin-

ciple factor analysis, and the insight of Cattell (1966) that eigenvalues, when plotted in

descending order of magnitude against their factors, ‘level off’ at the point where the factors

are primarily measuring random noise. Thus, the general goal is to find the elbow in the curve

so as to keep all of the components that are not associated with random noise. In our terms,

those above the elbow can be thought of as representing the manifold.

The traditional approaches to answering this question utilize the Kaiser criterion and the

scree test (Kaiser 1960; Cattell 1966). Given the practical importance of factor analysis to

the field, the research continues to evolve. Simulation studies have shown that methods such

as parallel analysis (Horn 1965), minimum average partial procedure (Garrido et al. 2011)

and comparison data (Ruscio and Roche 2012) can be more accurate than the scree test and

Kaiser criterion. Within machine learning, Zhu and Ghodsi (2006) proposed an alternate

means of estimating the implicit dimensionality using the profile likelihood.

In the 1950s, Henry Kaiser famously proclaimed, “solving the number of factors problem

is easy, I do it everyday before breakfast. But knowing the right solution is harder.” He was

recognizing that even at that early stage, there were a wide variety of methods available
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Table 1 Factor analysis methods

Acronym Summary References

PL Profile likelihood: searches for the scree by finding the λn that

maximizes the difference between the distribution of 1 . . . n

and n + 1 . . . m, where n is the number of eigenvalues

Zhu and Ghodsi

(2006)

Fact Factors: compares the scree of factors of the observed data with

that of a random data matrix. Reports the number of factors

with eigenvalues > eigenvalues of random data

Revelle (2013)

Comp Components: compares the scree of components of the observed

data with that of a random data matrix. Reports the number of

components with eigenvalues > eigenvalues of random data

Revelle (2013)

MAP Velicer’s minimum average partial criterion: applies principal

components analysis and follows this by examining a series

of matrices of partial correlations

Revelle and Rocklin

(1979)

VSS Very simple structure criterion: compares the original

correlation matrix to that reproduced by a simplified version

of the original factor matrix

Velicer (1976)

BIC Bayesian information criterion: chooses the most likely model

from a set of models

Schwarz (1978)

ABIC Sample size adjusted BIC: chooses the most likely model from

a set of models

Schwarz (1978)

PA Parallel analysis: creates a random data matrix and compares

the eigenvalues values calculated on it to the eigenvalue

calculated on the target domain. All components with

eigenvalues greater than the mean of the eigenvalues for the

random data are kept

Humphreys and

Montanelli (1975)

CD Data comparison: variant on PA that reproduces the observed

correlation matrix rather than generating random data

Ruscio and Roche

(2012)

λ > μ λ > mean(λ): selects the end of the scree as the point where

the eigenvalues become less than the mean of the eigenvalues

Revelle (2013)

OC Optimal coordinate: determines the location of the scree by

measuring the gradients associated with eigenvalues and their

preceding coordinates

Raiche et al. (2006)

AF Acceleration factor: numerical solution for determining the

coordinate where the slope of the curve changes most abruptly

Raiche et al. (2006)

and no single method seemed to offer a clear advantage for all datasets and all objectives.

Rather, the choice of a method is largely experimental that depends on the domain and the

overarching objective of the research. For this reason, we evaluate a wide variety of methods

with various degrees of complexity in order to empirically select the most suitable approach

for our application. These are listed in Table 1.

4.3 Instantiations

4.3.1 Instantiations with PCA

PCA is a linear mapping from the d-dimensional input space to a k-dimensional embedded

space where k ≪ d . The standard process is a result of calculating the leading eigenvectors

E corresponding to the k largest eigenvalues λ from the sample covariance matrix � of the

target data.
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In the PCA realization of the framework, a model pca = {μ,�, E, λ} of the d-

dimensional target class T with m instances is produced. We produce a synthetic set S

of n instances in the manifold-space by randomly sampling n instances from T ′ = T × E (T

in the PCA-space) with replacement. In order to produce unique samples on the manifold,

we apply i.i.d. additive Gaussian noise N
(

0, D
)

to each sampled instance prior to adding

it to the synthetic set S. The covariance matrix for the Gaussian noise is a diagonal matrix

with each σi,i specified by βλi , where β is the scaling factor applied to the eigenvalues. This

controls the spread of the synthetic instances relative to the manifold, and can be thought of

as a geometric transformation of points along the manifold, thereby producing new synthetic

samples on the manifold. Finally, we map the synthetic instances S into the feature space as

S′ = S × E−1 and return them to the user for use in classifier induction.

4.3.2 Instantiations with autoencoders

Autoencoders are a form of artificial neural networks commonly used in one-class classifi-

cation (Rumelhart et al. 1986; Japkowicz 2001). They have an input layer, a hidden layer and

an output layer, with each layer connected to the next via a set of weight vectors and a bias.

The input and output layers have a number of units which is equal to the dimensionality of

the target domain, and the user specifies an alternate dimensionality for the hidden space.

The learning process involves optimizing the weights used to map feature vectors from the

target class into the hidden space, and those used to map the data from the hidden space back

to the output space.

A manifold bias is incorporated in the autoencoding process through its mapping from

the feature space to the hidden-space and back via fθ (·) and gθ ′(·), where:

fθ (x) = s(Wx + b)

gθ ′(y) = s′(W′y + b′).
(3)

Here, x is a d-dimensional input vector, and θ and θ ′ represent the induced encoding and

decoding parameter set, respectively. Specifically, W is a d × d ′ weight matrix and b is

a d ′-dimensional bias vector, where d ′ is the number of hidden units. The function s is a

non-linear squashing function, such as the sigmoidal. In the decoding parameter set, W′

and b′ represent the weight matrix and the bias vector that cast the encoded vector back to

the original space. The s′ function is typically linear in autoencoders. As is standard with

artificial neural networks, the weights are learnt using backpropagation and gradient descent.

In addition, we utilize denoising with additive Gaussian noise during the training process

as a form of regularization to promote the learning of key aspects of the input distribution

(Vincent 2010). We add Gaussian noise to the input and the network learns to reconstruct the

clean instances.

The learning processes prioritizes the dual objective of a reconstruction function g( f (·))

that is as simple as possible, but capable of accurately representing neighbouring instances

from the high-density manifold (Alain and Bengio 2014). This promotes accurate recon-

struction of points on the manifold, whilst the reconstruction error |x − g( f (x))|2 rises

quickly for examples orthogonal to the manifold. Given a point, p, on the manifold, the

output g( f (p)) remains on the manifold in essentially the same location. Conversely, when

an arbitrary point, q , is sampled from off the manifold, the output f (q) is mapped orthog-

onally to the manifold. Therefore, g( f (q)) returns a representation of q on the high-density

manifold. This is the inspiration for the DAE sampling method, and is demonstrated in Step
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Fig. 3 Three steps of synthesization for the autoencoder formalization with generic points and handwritten

4s

3 of Fig. 3 as g( f (x̃)) → x , where x̃ is a point off the manifold, with the manifold depicted

in red.

Whilst the encoding-decoding function g( f (·)) is typically considered as a single unit,

for the purpose of our framework they are treated separately. The encoding induces the

lower-dimensional manifold representation and is used to generate samples and the decoding

function performs the reverse mapping. Specifically, we take an arbitrary minority class

instances x and apply a non-orthogonal mapping. This shifts it off the implicit manifold

x → x̃ . It is then orthogonally mapped back to the manifold via f (x̃) → y. The result is

a transformation along the implicit high-density manifold from a training instance x to a

synthetic instance y. This is illustrated graphically in steps 1–3 of Fig. 3. The non-orthogonal

mapping is produced by adding noise to the training instance x . A greater amount of noise

leads to a larger transformation along the manifold. By sampling n instances from the minority

class with replacement and performing the random transformation, we produce the synthetic

set. The decoding function g(·) maps the synthetic instances on the manifold in the hidden

space to their corresponding points on the implicit manifold in the feature space. Algorithm

1 formalizes the method.

Algorithm 1 dae-SyntheticOversampling(X , D AE{W,b}, n, σ )

Input:

i) X , an m by d dimensional data matrix.

ii) DE A{W,b}, a trained denoising autoencoder with weight matrix W and bias b.

iii) n, the number of instances to synthesize.

iv) σ , variance of the Gaussian sample initiation noise.

Output:

i) Y , the synthetic samples.

Method:
1: X ′: column normalization of X between [−1, 1].

2: norm Params: column normalization parameters of X .

3: Z: normalized X plus sample initiation noise N (0, σ ).

4: Y ′ = D AE{W,b}(Z): samples Y ′ from the induced manifold.

5: Y: denormalization of Y based on norm Params.

6: Return(Y)
End Algorithm
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Parameter selection is an important task in machine learning. Prior to calling Algorithm 1,

we perform model selection by randomly searching the parameter space for a predetermined

number of iterations with the objective of minimizing the reconstruction error on the minority

training data X . This is simple and efficient, and it alleviate us of the task of hand tuning the

model. The ability to do this is a very nice feature of PCA and autoencoders. This method

works very well, as is demonstrated by our results.

The size of the parameter search space should be kept small by limiting the upper bound

of the epochs and number of hidden units. We do this to limit the complexity of the model and

avoid overfitting the small amount of training data that is available. For the 250-dimensional

spectra data, we searched 5–30 hidden units with fewer than a thousand epochs of training.

Indeed, overfitting is the primary risk of poorly selected parameters. In terms of manifold

learning on sparse data, this is realized in the form of an induced manifold with wildly

unrealistic curvature. As we have specified, however, denoising during training and limiting

the upper bound of the hidden space in the autoencoder minimizes the risk of overfitting.

5 Demonstration

In this section, we visualize the results of both manifold-based synthetic oversampling and

non-manifold-based synthetic oversampling on four domains that are commonly utilized

in the manifold learning literature. In particular, the demonstrations in the following two

subsections utilize theoretical manifold distributions involving points on a three-dimensional

helix and Swiss roll (Xue and Chen 2007; Wei et al. 2008; Goldberg et al. 2009; Silva and

Tenenbaum 2003; Weinberger et al. 2004a). These lead into two subsections with more

realistic image classification domains. Specifically, the third and fourth experiments utilize

high-dimensional datasets composed of images of a rotating teapot and of handwritten digits

(Weinberger et al. 2004b; LeCun et al. 1998).

The objective of these experiments is to demonstrate that non-manifold-based synthetic

oversampling has an elevated risk of generating instances in low probability regions of the

data space that are orthogonal to the embedded manifold, whilst manifold-based approaches

spread the synthetic instances along the manifold. The weaknesses of the non-manifold-

based approaches result from the error-prone means by which they identify nearby instances.

Specifically, the failure to account for the geodesic distance between points (Belkin and

Niyogi 2004). The implications of this are presented pictographically in Fig. 4. Here, the

Fig. 4 (Left) SMOTE styled generation that ignores the geodesic distance. (Right) Generation along the

manifold between geodesically near instances
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distances measured on the planes spanning points (y, z) and points (y, q) are the same.

Thus, to SMOTE these points are equivalently valid candidates from which to generate

synthetic training instances. When observed with respect to the curvature of the manifold,

however, q is significantly closer than y. It is erroneous equivalences such as these that

cause non-manifold-based methods to synthesize instances in low probability regions that

are orthogonal to the manifold.

For each demonstration, we use 25 random samples to train and generate novel synthetic

instance from. The denoising autoencoder and PCA implementations of the manifold-based

synthetic oversampling framework are employed. In addition, we demonstrate the generative

capabilities of SMOTE and kernel-based synthetic oversampling. The kernel-based method

divides the data space into hypercubes and uses Parzen-windows to estimate the density in the

hypercubes. These densities are smoothed using a Gaussian kernel. Although, kernel-based

methods are not widely applied, they have seen some attention (Gao et al. 2012).

To summarize, each subsection below takes a dataset that conforms to the manifold prop-

erty and demonstrates that the existing approaches generate instances that spread away from

the latent embedded density, whilst our proposed method generates instances that spread

along the embedded structure. Based on this, we claim that manifold-based synthetic over-

sampling has the best chance of producing instances to improve the performance of the target

classifier. This latter result is shown in Sect. 7.

5.1 Helix

The helix distribution is consistently utilized for demonstration purposes in manifold learning.

In order to increase the difficulty of the modelling task, and to emphasize the strength of

the proposed framework, a dataset of the form H = h(·) + N (·), where h(·) samples a

pure helix and N (0, 0.1) samples a Gaussian distribution with zero mean and 0.1 standard

deviation, is employed. The pure helix is defined as x1 = rcos(t); x2 = rsin(t); x3 = ct ,

where t ∈ [0, 2pi), r is the radius of the helix and 2πc is a constant specifying the vertical

separation of the loops.

Figure 5 plots the training data and the synthetic data produced by the denoising autoen-

coder and PCA formalizations of the framework along with SMOTE and the kernel-based

method. The circles in the figure represent the training data and the triangles are the instances

synthesized by each method; the colouration of the points is simply to emphasize the relative

positions. The red boxes highlight the weaknesses of each method.

It is clear from the figure that the kernel-based solution performs the worst. It produces

synthetic instances that are wildly spread around the manifold. SMOTE offers a clear improve-

ment to the kernel-based method; however, its failings are still apparent. The most prominent

issue in its generation is that it synthesizes some points far from the manifold, and in general,

has a lot of variance orthogonal to the manifold. In addition, SMOTE produces dense clusters

of instances along the manifold and leaves vast empty spaces between them.

As we expect, the manifold-based methods are good at synthesizing instances along the

manifold. The data that they synthesize have slightly different properties due to the difference

in biases. Visually, the denoising autoencoder generates a sprinkling of instances along the

manifold, much like a Canadian snowplow traveling down the road, spreading salt crystals

after an ice-storm. PCA has more orthogonal variance relative to DAE. Continuing with the

metaphor, we can imagine PCA spreading the salt, with some of it bouncing off the roadway

and onto the shoulder.
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Fig. 5 From top to bottom, helix

data synthesized by DAE, PCA,

SMOTE and kernel-based

methods. The colouration in these

plots merely provides perspective

on the relative distance between

points. The shape of the point

specify whether it is a synthesize

instance (triangle) or real

instances (circle)
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5.2 Swiss roll

Like the helix, the swiss roll is a common dataset in the manifold learning literature. Its

shape is reminiscent of the Central European pastry. The swiss roll is a plane defined in a 3-

dimensional space as x1 = y1cosy1; x2 = y1sin(y1); x3 = y2; y1 ∈ [ 3π
2

, 9π
2

]; y2 ∈ [0, 15].

The training and synthetic swiss roll data are presented in Fig. 6; the kernel-based method

has been omitted due to its poor results. The training instances are plotted as small turquoise

(light grey) circles and the synthetic instances are the larger orange circles (dark grey).

The advantage of the manifold-based methods is once again very clear here. Specifically,

SMOTE synthesizes points in the vast vacant regions that are not part of the swiss roll.

Three instances are, for example, synthesized in the void that is the center of the swiss

roll. In addition, many synthetic instances span the empty region between the inner and

outer layer of the swiss roll. In both cases, SMOTE is clearly placing synthetic instances

in regions of the data space that are not part of the target distribution. Alternatively, the

instances synthesized with the manifold-based synthetic oversampling framework via PCA

and the denoising autoencoder stay within the regions reasonably occupied by the swiss roll

distribution.

When we take a macro-scale view of the synthesized data, we see that instead of a swiss

roll, SMOTE has produced two clusters of synthetic instances. These are circled and marked

by C1 and C2 in the figure. It generated a small cluster on the left of the data space. This

cluster represents a small area of the swiss roll. The other cluster is much larger in terms of the

area of the population. It occupies much of the central and upper left region of the plot, and

sparsely covers both the swiss roll and the void spaces in-between the layers of the roll. The

manifold-based synthetic oversampling framework, however, synthesizes instances along the

manifold. Therefore, we see that the synthetic instances are sprinkled over all regions of the

swiss roll in a manner that is consistent with the target distribution.

5.3 Handwritten fours

Handwritten 4s from the MNIST dataset provide a practical manifold learning task. Each

training 4 is drawn from a 28×28 grey-scale image. Image learning problems, such as facial

recognition and character recognition, conform to the manifold assumption in the sense that

the target object exists in a subspace of the M × N pixel image. To understand this, consider

that there are infinitely many random combinations of grey-scale pixels in the feature space

that do not make 4s. The task of the manifold learner is to infer the subspace where the fours

exist. This is the space that encodes the various, legitimate shifts, rotations and skews in the

target digit. In this space, we are much more likely to synthesize fours correctly.

A random selection of 16 fours that were generated by each synthetic oversampling method

are presented in Fig. 7. This includes the generators of primary interest; manifold-based

synthetic oversampling framework using the denoising autoencoder and PCA instantiations,

SMOTE and kernel-based oversampling. Each of these systems was trained on the same 25

handwritten fours. The objective is to synthesize instances that look like well constructed

4s and to synthesize distinct synthetic 4s. Producing replicas of a single, very nice, four is

not sufficient. The kernel-based approach is clearly shown to be a poor generator of fours.

Though the shape of the fours can be seen, they are very blurry. This blurriness of the fours

indicates a spreading away from the manifold resulting from the fact that modelling and

synthesization is performed in the fog of the feature space rather than in the clarity of the

manifold space.
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Fig. 6 From top to bottom, swiss

roll data synthesized by

denoising autoencoder (DAE),

PCA SMOTE-based methods
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Fig. 7 From left to right, handwritten fours synthesized by DAE, PCA, SMOTE and kernel-based methods

Twelve of the sixteen fours produced by SMOTE are well constructed. Many of these,

however, are skewed to the left. We refer to the style of the 4s in the exceptionally bad cases

as stacked 4s. We demonstrate this in the figure as generating a new four by placing two

very different fours on top of each other. These fours occur when SMOTE generates new

instances between two training instances that are far apart. The vector connecting the two

training instances along which SMOTE produces synthetic instances does not follow the

curvature of the manifold. The longer the vector connecting the nearest neighbours, the more

likely it is that the vector will deviate from the manifold. Therefore, the synthesized instances

along this vector are not accurate 4s.

PCA produces reasonable 4s. Only three of the examples are of lesser quality and none are

skewed in any way. All but one of the fours produced by the denoising autoencoder are well

constructed; moreover, denoising autoencoders produce a very good amount of diversity in

the set of 16 fours. These results illustrate the relative advantage of manifold-based synthetic

oversampling on a practical and high-dimensional domain.

5.4 Rotating teapot

The final demonstration domain involves the teapot dataset. This dataset includes 400 colour

images of a teapot from different angles; thus, the dataset appears as 400 snapshots of a

rotating teapot. The images have a resolution of 76 × 101 with each pixel involving 3 bytes
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Fig. 8 (Left) A subset of the 30 training instances. (Centre) SMOTE generated instances. (Right) Instance

generated via manifold-based oversampling

of colour information. Therefore, the dataset has 400 instances with 23,028 dimensions. For

training and synthetic generation purposes, 30 instances are taken at random. Given the high-

dimensionality, this is, indeed, a very small training set. In spite of the high-dimensionality,

however, this domain can effectively be represented with as little as a single degree of freedom

that accounts for the angle of rotation (Silva and Tenenbaum 2003). To this end, a synthetic

oversampling method that utilizes a manifold-based approach is expected to accurately syn-

thesize new instances even with a relatively small training set.

For this final demonstration we focus our attention on the DAE and SMOTE algorithms

alone as they have consistently been the best methods from the manifold-based and non-

manifold-based camps. A subset of the training instances along with instances generated with

the SMOTE and DAE algorithms are displayed in Fig. 8. The generated results on the teapot

dataset profoundly demonstrate the limitations of SMOTE on a high-dimensional domain

that conforms to the manifold property. Moreover, these results illustrate the effectiveness of

manifold based oversampling.

6 Experimental method

In order to validate the benefit of manifold-based synthetic oversampling, we apply it to

a wide variety of datasets with a diverse set of classifiers. The details are presented in the

following sections.

6.1 Datasets

6.1.1 Gamma-ray spectra

Gamma-ray spectral data are collected and analyzed for a wide variety of important experi-

mental and practical purposes, such as isotope classification in the lab (Olmos et al. 1991),

the analysis of mining ore (Yoshida et al. 2002) and the monitoring of ports of entry for

the importation of illicit nuclear materials (Kangas et al. 2008). In this work, two classes

of gamma-ray spectral data that were collected and analyzed by the Radiation Protection

Bureau at Health Canada are considered.

Health Canada is a federal department with the mandate to assist Canadians in maintain-

ing and improving their health.1 The Radiation Protection Bureau operates within Health

Canada’s mandate with the purpose of promoting and protecting the health of Canadians by

1 See http://www.hc-sc.gc.ca/ahc-asc/activit/about-apropos/index-eng.php.
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assessing and managing risks posed by exposure to radiation at home, work and in the broader

environment.2 To this end, the Radiation Protection Bureau has set up radiation monitoring

stations at key sites around the country, including within major cities and near nuclear power

plants and nuclear industries, such as medical isotope production facilitates.

The existing monitoring system involves a simple threshold on the dose rate, and/or a

threshold on regions-of-interest in the spectra, which are associated with particular isotopes.

The goal of this process is to monitor and flag isotopes of interest and detect any generally

anomalous events. Each spectra that is flagged by the system is then analyzed by a physicist

at the Radiation Protection Bureau to determine the source and ensure that the isotopes of

interest are being emitted in safe amounts and at an acceptable frequency. The threshold-

based system, however, flags a large number of false positives, which leads to a high cost in

terms of human analysis and a potential lag in evaluation.

The general work of our lab in conjunction with the Radiation Protection Bureau has been

to devise more sophisticated means of anomaly detection and classification of isotopes of

interest. The work in this article is particularly focused on the task of classifying a general

category of isotopes of interest. The complicating property of this data is the degree of

imbalance between the background class and the class of isotopes of interest.

In addition to the national monitoring stations, the Radiation Protection Bureau col-

laborates with various Canadian security agencies, such as The Canadian Nuclear Safety

Commission, Defence Research and Development Canada, Canadian Security Intelligence

Service, etc., to deploy gamma-ray spectrometers during high profile events. These agencies

deployed gamma-ray spectrometers in and around the Greater Vancouver Area during the

2010 Olympics in order to gather and monitor gamma-ray spectra for isotopes of interest that

may signify a person transporting a material that poses a radioactive threat to participants

and spectators at the Winter Games. Whilst the Games have long since closed, the data is

highly imbalanced and provides an excellent platform on which to evaluate our proposed

manifold-based synthetic oversampling framework.

Data collection Sodium Iodide detectors are utilized in the national monitoring system

and were deployed during the Vancouver 2010 Olympic Games (Vancouver). During the

Winter Games, response time was a clear priority, and as such the instruments recorded one

measurement per minute; the measurements are recorded as counts per photon energy (keV).

The Vancouver dataset has 512-dimensions and was recorded in one-minute samples. This

produced gamma-ray spectra that are very noisy. The data is composed of pure background

readings and a background plus isotopes of interest. The latter forms the minority class in

our experiments. There are 39,000 background instances and 39 minority class instances

involving Iodine, Thallium, Technicium and Caesium.

The environmental monitoring data is collected in fifteen-minute samples by the national

monitoring network of gamma-ray spectrometers. The vast majority of measurements are

solely affected by elements in the local background; these instances are considered to be

of no interest. Alternatively, non-background spectra that have been affected by specific

isotopes are to be detected and subsequently reviewed by physicists. We use data from two

locations in our experiments (Thunder Bay and Saanich). The Saanich, BC dataset has 19,068

background readings and 44 isotopes of interest. The Thunder Bay, Ontario dataset contains

11,573 background instances and 29 isotopes of interest. In each of these datasets, and the

Vancouver dataset, the classification task is made more difficult by the complexity of the

background, the decay of the isotope and the presence of heavy rain. Each of these obscures

the isotopes signature in the measured spectra.

2 See http://www.hc-sc.gc.ca/ahc-asc/branch-dirgen/hecs-dgsesc/sep-psm/rpb-br-eng.php.
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Table 2 UCI Datasets applied in

these experiments
Min class Dim

Breast Malignant 9

Diabetes Positive 8

Ecoli 1 7

Heart Statlog Present 13

Ionosphere B 34

Letter R 16

Musk 1 166

Opt Digits 4 64

Ozone One 1 72

Pen Digits 3 16

Satlog 4 36

Segmentation Brickface 19

Sonar Rock 60

Vehicle Saab 18

Wave 1 40

Yeast MIT 8

CIFAR-10 Horse 1024

6.1.2 Benchmark domains

The sixteen UCI datasets along with the high-dimensional image classification domain,

CIFAR-10, are presented in these experiments. These domains are specified in the first col-

umn of Table 2. The UCI datasets were selected to ensure a diverse range of dimensionalities

and complexities. When required, the datasets are converted to a binary task by selecting a

single class to form the minority class, and the remaining classes are merged into one.

The CIFAR-10 dataset is a high-dimensional image classification dataset that appears fre-

quently in the applied manifold and deep learning literature (Krizhevsky 2009). The dataset

includes 60,000 32 × 32 pixel colour images. The dataset has 10 classes associated with

different objects and animals. For the purpose of our experiments, we have artificially under-

sampled the horse class to render it a minority class. We selected the horse class because the

images are somewhat similar to the deer, dog and cat classes. Thus, the modified classification

task is of high complexity.

For each experiment, we train on 25 minority training instances and 250 majority training

instances; thus, we render each domain as an absolutely imbalanced classification task. We

have selected constant values for the training distribution of each dataset, rather then speci-

fying a percentage for the minority class, in order to ensure that the performance differences

between datasets are not the result of having access to different numbers of minority instances.

If we set the minority portion to 10%, for example, then a dataset with 1000 instances would

have many more examples in the training set than a dataset with 200 instances.

6.2 Algorithms and evaluation

We utilize the SVM, MLP, kNN, naïve Bayes and decision tree classifiers in the following

experiments. Synthetic oversampling is performed by the autoencoder and PCA instantiations
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of our framework. These are compared to random oversampling (ROS), SMOTE, Borderline

SMOTE and SMOTE with the removal of Tomek links. For each variation of the SMOTE

algorithm, we test k-nearest neighbour with k ∈ {3, 5, 7}.

With respect to the gamma-ray spectra classification results in Sect. 7.1, we report the

mean five times twofold cross-validated AUCs. Five times twofold cross validation is used

in place of the more common tenfold version because it has been observed that it has a lower

probability of issuing a Type I error (Dietterich 1998). In addition, k-fold cross validation with

larger k values was established with small datasets in mind; the size of the datasets is not a

concern here. Because the classification objective is to select the best synthetic oversampling

method for each dataset, here we test for statistical significance of using manifold-based

synthetic oversampling versus SMOTE using the t test.

In order to further validated manifold-based synthetic oversampling and illustrate the

impacts of the manifold property on the standard methods of synthetic oversampling, we

perform an additional set of experiments on the benchmark datasets. We apply a different

experimental setup here as the datasets are diverse and our objectives are different.

In order to limit the impact of sampling during the preprocessing to create imbalanced

binary classification problems, we record mean AUC performance results over thirty trials for

the baseline classifiers and the classifiers aided by each synthetic oversampling method. Given

the large number of datasets and algorithms, we test our results for statistical significance

using the Friedman test and Nemenyi post-hoc test.

7 Results

7.1 Gamma-ray spectra

The results for the experiments on the Saanich, Thunder Bay and Vancouver dataset are

presented in Fig. 9. In each experiment, we report the mean AUC produced by the individual

classifiers with synthetic oversampling via the manifold method (DAE or PCA) and the

SMOTE-based methods.

The general results based on the application of the five classifiers on the three gamma-ray

spectra datasets demonstrate that both manifold-based oversampling and the SMOTE-based

algorithms are always better than random oversampling. Moreover, manifold-based synthetic

oversampling is nearly always better than the SMOTE-based algorithms.

Over the three datasets and five classifiers, manifold-based synthetic oversampling pro-

duces a greater improvement on 13 of the 15 cases. This shows that it has a stronger positive

impact than SMOTE on a wide range of classifiers. Moreover, the combination of manifold-

based synthetic oversampling with a classifier produces the best overall mean AUC for each

of the three dataset. This occurs with Naïve Bayes on Saanich, MLP on Thunder Bay and

kNN on Vancouver.

To summary, when applied to the gamma-ray spectral classification datasets, manifold-

based synthetic oversampling has a better impact on individual classifiers in general. More

importantly, it produced the best overall classifier in each case.

7.2 Benchmark datasets

In order to generalize our findings, we now shift to examine the impact of the manifold on

synthetic oversampling over benchmark datasets from the UCI repository and the CIFAR-10

image classification dataset. The mean of the AUC results are tabulated in Table 3.
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Fig. 9 AUC results on the

gamma-ray spectra datasets

broken down by classifier. The

plots listed from top to bottom

are for: Saanich, Thunder Bay

and Vancouver
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Table 3 AUC results on the

benchmark datasets for the

baseline, SMOTE, borderline

SMOTE, SMOTE with the

removal of Tomek links and the

two manifold-based methods

PCA and DAE

Base SMOTE BLS Tomek PCA DAE

Musk2 0.724 0.776 0.773 0.431 0.767 0.793

Opt Digits 0.828 0.830 0.834 0.581 0.850 0.916

Wave-form 0.657 0.725 0.735 0.547 0.733 0.755

Satlog 0.675 0.770 0.764 0.545 0.776 0.778

Ionospher 0.778 0.831 0.831 0.489 0.836 0.829

Sonar 0.724 0.733 0.729 0.496 0.742 0.740

Ozone One 0.625 0.710 0.711 0.561 0.709 0.702

Segment 0.864 0.889 0.895 0.541 0.879 0.960

Vehicle 0.581 0.657 0.656 0.445 0.665 0.667

Pen Digits 0.946 0.957 0.742 0.960 0.972 0.974

Breast 0.915 0.930 0.950 0.742 0.943 0.953

Yeast 0.602 0.703 0.705 0.539 0.707 0.653

Ecoli 0.887 0.937 0.710 0.509 0.950 0.923

Heart 0.755 0.782 0.764 0.627 0.776 0.770

Letter 0.762 0.936 0.764 0.545 0.878 0.870

Diabetes 0.569 0.709 0.637 0.445 0.662 0.652

CIFAR-10 0.528 0.522 0.529 0.510 0.533 0.555

Total Wins 0 3 1 0 4 9Bold values indicate the highest

AUC for each data set

The results show that performing synthetic oversampling prior to classifier induction

improves the AUC performance beyond the baseline on every dataset. Moreover, the benefit

of synthetic oversampling is large (greater than 0.1 AUC) in many cases, such as on the

optical digits, letter, yeast and diabetes datasets.

We use the Friedman test to evaluate the statistical significance in the performance of each

method. The null hypothesis states that there is no difference between the methods over all

datasets. These results show a statistically significant difference in the performance of the

methods with a p value of 2.213e−06. The Nemenyi multiple comparison test enables us to

identify where the differences exist. It indicates that each synthetic oversampling method is

statistically different than the baseline.

When we shift to examine the relative performance of the synthetic oversampling methods,

we see that manifold-based synthetic oversampling generally produces the largest increase

over the baseline. This occurs 13 out of the 17 times.

Figure 10 displays relative performance of manifold-based synthetic oversampling to the

SMOTE-based methods. In producing these results, we have selected the best manifold-based

method (M O SPC A or M O SD AE ) for each dataset from Table 2, and have done likewise

for the SMOTE-based methods. The results, AUC(M O S(D)−AUC(SM OT E(D))), are

plotted in decreasing order of the dimensionality of the datasets. This reveals the trend of

superiority for manifold-based synthetic oversampling on higher dimensional datasets. This

suggests that dimensionality can be used to determine when it is best to apply manifold-based

synthetic oversampling. Whilst dimensionality is often used as a proxy for conformance to the

manifold property, we recognize that conformance is much more complex. In the next section,

we explore the means introduced in Sect. 4.2 as better methods of assessing conformance to

the manifold property.

An additional observation from Table 3 is that there is a clear distinction between the

datasets that are well suited for M O SD AE and those that are better suited for M O SPC A.
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Fig. 10 Bar graphs displaying the relative difference in AUC between the best manifold-based synthetic

oversampling (MOS) method to the best SMOTE-based approach. The results are sorted by data dimensionality

in descending order

Specifically, on certain datasets, such as Ionosphere, Sonar and Ozone One, where the per-

formance of M O SD AE drops below SMOTE, the performance of M O SPC A becomes better

than M O SD AE .

On some datasets, even though M O SPC A is the better of the two formalizations of the

framework that were considered, it is not better than SMOTE. Here, the utilization of a third

manifold method might be more suitable. This is indicative of the benefit of developing a

framework that enables the user to select the manifold learning method that has the most

appropriate bias for the learning problem.

These results demonstrate that using manifold-based synthetic oversampling is generally

preferable to the application of SMOTE-based methods, and that the advantage increases

with dimensionality. Whilst the relationship between dimensionality and conformance to

the manifold property is often assumed, dimensionality is not necessarily the most accurate

metric for use in deciding which synthetic oversampling method to use. We are interested in

formalizing the relationship between the choice of synthetic oversampling algorithm and the

data. We examine this question in the following section.

7.2.1 Manifold conformance and the loss metric

In this section, we test our function for estimating conformance to the manifold property. The

objective is to define a function to assess which synthetic oversampling algorithm to apply to

a given dataset. The specific function was introduced as m(D) = F(D)/dim(D) in Eq. 2 in

Sect. 4.2. It ranks machine learning datasets according to their conformance to the manifold

property. In order to do this, it reports the ratio between the implicit dimensionality of the

data, as measured by a user-specified function, and the physical dimensionality of the data.

As discussed in Sect. 4, there has been very little work within machine learning aimed

at assessing the implicit dimensionality of a dataset. Outside of machine learning, however,
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Table 4 Correlation between

difference

AUC(M O S)−AUC(SM OT E)

and mF (·)

COMP FACT MAP BIC ABIC DC λ > μ

DIFF −0.51 −0.51 0.35 −0.14 −0.26 0.38 −0.01

PA OC AF PL Dim

DIFF −0.45 −0.38 −0.52 −0.31 0.14

this is a thriving area of study. This work reports this first large scale study of these methods

from the perspective of manifold learning in a machine learning context.

We tested each function F in the set of methods discussed in Sect. 4 to evaluate their effec-

tiveness in the machine learning context. Moreover, we compared them to the standard, by a

more naïve, approach of assuming higher dimensional domains have greater conformance.

Our hypothesis is that selecting a good F(·) methods for use in mF (·)3 will produce a better

ranking of the datasets than dimensionality alone.

We use the UCI datasets and augmentation versions of the UCI datasets for these exper-

iments. The augmented versions increase the dimensionality of the data to embedded its

probability density in a lower space; this process is described in Bellinger (2016). Incorpo-

rating the augmented versions increases the sample size and the variance in the conformance

to the manifold property to produce a stronger assessment of the m(·) score.

For evaluation, we compare the relationship between mFi
(D j ) and dim(D j ) to

AUC(M O S(D j ))−AUC(SM OT E(D j )) for each dataset D j . For a good choice of mF (·),

we expect a negative correlation. This is because lower implicit dimensionality causes a lower

score, and the relative performance of manifold-based synthetic oversampling increases with

greater conformance. For dim(D j ), we expect a positive correlation because higher dimen-

sionality serves as a surrogate for greater conformance to the manifold property.

The primary question is, do the functions Fi , produce a better ranking than dimensional-

ity alone? We assessed this using correlation analysis with linear regression over mFi
(D j )

and AUC(M O S(D j ))−AUC(SM OT E(D j )), and dim(D j ) and AUC(M O S(D j ))−

AUC(SM OT E(D j )). The correlation results are reported in Table 4. From this, we see

that a few of the standard methods have a stronger correlation then dimensionality. The mF

score using F ∈ {C O M P, F ACT } have the strongest correlation with the relative perfor-

mance.

Figure 11 plots the performance differences between manifold-based synthetic oversam-

pling and SMOTE. The datasets are sorted according to their mFi
(·) score using COMP.

The datasets at the top of the plot have the greatest conformance to the manifold property

and those at the bottom have weak conformance. Manifold-based synthetic oversampling

produces better performance on roughly the top two-thirds of the datasets. This sorting sug-

gests that the mFi
(D j ) using COMP works quite well. FACT, the other method with a strong

correlation, produces a similar sorting, whereas using dim(D j ) is more mixed as suggested

by the correlation. We have omitted their bar graphs in the interest of brevity.

Using the ranking produced by mFi
(·) score, we can sort the datasets in a manner related to

the performance of the synthetic oversampling methods. This enables the setting of thresh-

old a τ to dichotomize datasets such that for ∀D : m(D) < τ , manifold-based synthetic

oversampling should be applied. Table 5 illustrates this for mFi
(·) score using C O M P . It

places 21 datasets below the threshold; manifold-based oversampling outperforms SMOTE

3 Note that we have added the subscript F to the m(·) score to signify the use of a specific function Eq. 2.
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Fig. 11 Bar plots of the performance difference AUC(M O S)−AUC(SM OT E) sorted by the top M(·)

methods

Table 5 Number of times each

method produced the top mean

AUC above and below the

mFi
(·) score threshold using

C O M P in the manifold

conformance analysis

Threshold Num DS Total Wins

PCA DAE MOS SMOTE

Comp

< 0.176 21 18 20 20 1

≥ 0.176 12 7 4 7 5

on 20 of these datasets. This provides an accurate indication of when to apply manifold-based

synthetic oversampling.

Finally, we note that there is also potential to use mFi
(·) to decide which manifold-based

synthetic oversampling method to apply. Table 6 shows that using FACT and COMP for this

task leads to the strongest correlation with the relative performance. Given the wide range of

manifold learning methods available in the literature with their various biases and resulting

complimentary strengths, it is very useful to have a method to select between them. This

requires additional experimentation. Nonetheless, these results provide a good indication

that mFi
(·) score can be used for this as well as generally deciding when to apply manifold

based oversampling.
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Table 6 Correlation between difference AUC(D AE)−AUC(PC A) and mF (·)

COMP FACT MAP BIC ABIC DC λ > μ

DIFF −0.53 −0.60 0.18 0.15 0.05 −0.28 −0.24

PA OC AF PL Dim

DIFF −0.50 −0.40 −0.46 −0.47 0.18

8 Future work

In constructing the framework, we recognized the depth of current research into manifold

learning and acknowledged that the biases and assumptions that are implicit in these methods

render them more or less suitable for the surfeit of manifold learning tasks. An important

aspect of future work involves understanding which properties make a manifold learning

algorithm ideal for inclusion in the framework, and performing meta-learning in order to

facilitate the suggestion of a specific manifold learning algorithm for a given dataset. In

addition, we continue to consider a general form of model selection for the framework. The

reconstruction error performed well for the denoising autoencoder formalization; however, it

is our expectation a model selection method designed specifically for synthetic oversampling

would be ideal.

We are interested in studying the effectiveness of manifold learning techniques that rely

on the local neighbourhood training points to produce their representation of the manifold.

Our intuition suggests that the small training sets available in imbalanced domains will limit

their effectiveness. Are, as we suspect, the more globally-based methods more effective in

our application, and can the trade-off be mathematically formulated? Generating samples

from a learnt model of the latent manifold is a novel and fascinating area for future research

resulting from this work. Taken in the context of class imbalance, our objective is to advance

our understanding of the data classes and the manifold, and devise means of sampling directly

from regions of the manifold that will be most impactful for ameliorating the negative impact

of class imbalance. We currently have theories regarding how best to do this for the denoising

autoencoder formalization, and continue to test this understanding and consider how to extend

it to alternate methods.

Given the prominence of multi-class classification, and the fact that many of these involve

class imbalance, an important next step for this research is to study how best to apply the

framework to multi-class problems. Can it be applied in an organic way rather than breaking

the task into a set of one versus one or one versus all problems, as is often done. Fecker

et al. (2013) proposed the use of Gaussian mixture models for modelling and generating

joint distribution of an imbalanced binary class problem. Their method involved modelling

and generating from the joint distribution, and then apply applying an assignment rule to

label the data for use in the induction of the classifier. Although their specific method was

proposed for binary classification and is inappropriate for data that conforms to the manifold

property, it suggests a potential means of extending our framework to imbalanced multi-class

classification.

Deep learning algorithms have been extremely successful in a wide variety of domains,

such as speech and object recognition, drug discovery and genomics. They has, indeed, been

at the nexus of exciting developments in machine learning for the last few years. To be

effective, however, deep learning algorithms require large datasets for training. This places
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a significant limit on where and when the power of deep learning can be leveraged. We

see manifold-based synthetic oversampling as having the potential to generate additional

training instances for deep learning, thereby broadening the scope of applicable domains.

Moreover, since many of the deep learning algorithms are based on artificial neural networks

that are related to DAEs, we question if the synthetic oversampling process cannot be built

into deep nets in a manner that enables bootstrapping based on examples that they themselves

generated.

9 Conclusion

Our research into the imbalanced classification of gamma-ray spectra with the Radiation

Protection Bureau at Health Canada led us to consider how to appropriately synthesize the

minority class for this particular domain. This study led us to understand the negative impacts

of conformance to the manifold property on the state-of-the-art in synthetic oversampling.

We have shown that ignoring this leads to instances being generated in erroneous regions of

the data space.

We proposed a general framework for manifold-based synthetic oversampling that first

assesses the conformance to the manifold property in order to aid in selecting an appropriate

method. The framework is then applied to model and generate additional training samples that

spread along the embedded probability density; this leads to more realistic synthetic samples.

As a result of the proposed framework, we were able to improve the AUC results on all three

of our key gamma-ray spectral classification domains. In addition, we demonstrated that our

method is highly beneficial to challenging image classification tasks that commonly appear

in the manifold learning and deep learning literature. Finally, we employed 16 benchmark

datasets from the UCI repository to show, generally, that our framework leads to improved

AUC results when the data conforms to the manifold property.
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