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1 Introduction

A large number of data such as images and characters under varying intrinsic
principal features are thought of as constituting highly nonlinear manifolds
in the high-dimensional observation space. Visualization and exploration of
high-dimensional vector data are therefore the focus of much current machine
learning research. However, most recognition systems using linear method are
bound to ignore subtleties of manifolds such as concavities and protrusions,
and this is a bottleneck for achieving highly accurate recognition. This prob-
lem has to be solved before we can make a high performance recognition
system.

Recent years have seen progress in modeling nonlinear manifolds. Rich
literature exists on manifold learning. On the basis of different representations
of manifold learning, this can be roughly divided into four major classes:
projection methods, generative methods, embedding methods, and mutual
information methods.

1. The first is to find principal surfaces passing through the middle of data,
such as the principal curves [1][2]. Though geometrically intuitive, the
first one has difficulty on how to generalize the global variable–arc-length
parameter– into higher-dimensional surface.

2. The second adopts generative topology models [3] [4] [5], and hypothesizes
that observed data are generated from the evenly spaced low-dimensional
latent nodes. And then the mapping relationship between the observation
space and the latent space can be modeled. Resulting from the inherent
insufficiency of the adopted EM (Expectation-Maximization) algorithms,
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nevertheless, the generative models fall into local minimum easily and
have slow convergence rates.

3. The third is generally divided into global and local embedding algorithms.
ISOMAP [6], as a global algorithm, presumes that isometric properties
should be preserved in both the observation space and the intrinsic em-
bedding space in the affine sense. And extensions to conformal mappings
is also discussed in [7]. On the other hand, Locally Linear Embedding
(LLE) [8] and Laplacian Eigenamp [9] focus on the preservation of local
neighbor structure.

4. In the fourth category, it is assumed that the mutual information is a
measurement of the differences of probability distribution between the
observed space and the embedded space, as in stochastic nearest neigh-
borhood (henceforth SNE) [10] and manifold charting [11].

While there are many impressive results about how to discover the intrin-
sical features of the manifold, there have been fewer reports on the practical
applications in manifold-learning, especially on object recognition. Some lit-
erature even makes negative conclusion that LLE is only useful for small
numbers of dimensions, whereas the classifiers performs better for large num-
bers of dimensions on PCA-mapped data [12]. A possible explanation is that
the practical data includes a large number of intrinsic features and have high
curvature both in the observation space and in the embedded space, whereas
present manifold learning methods strongly depends on the selection of pa-
rameters. Furthermore, we also found that if data of different classes belong
to similar category, for example, face images, recognition can be implemented
under the same subspace with manifold learning approaches. Otherwise, data
(for example, character) should be mapped into the different subspace for
further recognition.

Assuming that data are drawn independent and identically distributed
from the underlying unknown distribution, we propose two recognition algo-
rithms for processing the above-mentioned two cases in section 2. Experiments
on image and character data show the advantages of our proposed recognition
approaches. Finally, we discuss potential problems and further researches.

2 Manifold Learning Algorithm

2.1 dimensionality reduction

To establish the mapping relationship between the observed data and the
corresponding low-dimensional data, the locally linear embedding (LLE) algo-
rithm [8] is used to obtain the corresponding low-dimensional data Y (Y ⊂ R

d)
of the training set X (X ⊂ R

N , N ≫ d). And then the dataset (X, Y ) is used
for modeling the subsequently mapping relationship.

The main principle of LLE algorithm is to preserve local order relation of
data in both the embedding space and the intrinsic space. Each sample in the
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observation space is a linearly weighted average of its neighbors. The basic
LLE algorithm based on local covering numbers can be described as follows:

Step 1: define

ψ(W ) =‖ xi −

K∑

j=1

Wijxij ‖2 (1)

Consider the constraint
∑

j=1 Wij = 1, and if xi and xj are not in the same
neighbor, Wij = 0, compute the weighted matrix W according to the least
square.

Step 2: define

ϕ(Y ) =‖ yi −
K∑

j=1

W ∗
ijyij ‖2 (2)

where W ∗ = arg minw ψ(W ). Consider the constraint
∑

i yi = 0 and
∑

i yiy
T
i /n =

I, where m is the number of local covering set. Calculate Y ∗ = arg minY ϕ(Y ).
Step 2 of the algorithm is equivalent to approximate the nonlinear manifold

around point xi by the linear hyperplane that passes through its neighbors
{xi1, . . . , xik}. Considering that the objective ϕ(Y ) is invariant to translation
in Y , constraint term

∑
i yi = 0 is added in the step 2. Moreover, the other

term
∑

i yiy
T
i /n = I is to avoid the degenerate solution of Y = 0. Hence, step

2 reduces to an eigenvector decomposition problem as follows:

Y ∗ = arg min
Y

φ(Y )

= ‖ yi −
K∑

j=1

W ∗
ijyij ‖2

= arg min
Y

‖ (I − W )Y ‖2

= arg min
Y

Y T (I − W )T (I − W )Y (3)

The optimal solution of Y ∗ in Formula (3) is the smallest eigenvectors of
matrix (I − W )T (I − W ). Obviously, those eigenvalues which are zero need
be removed. So we need to compute the bottom (d + 1) eigenvectors of the
matrix and discard the smallest eigenvector considering constraint term.

Thus, we obtain the corresponding low-dimensional dataset Y in embed-
ding space. And the completed set (X, Y ) is used for the subsequent modeling
of the mapping relationship.

A disadvantage of LLE algorithm is that it is difficult to compute the
mapping of test samples due to the computational cost of eigenmatrix. With
respect to weiestrass approximation theorem, we use the following gaussian
RBF kernel to approximate the relationship:

y′ =
n∑

i=1

αiK(xi, x
′) (4)
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where K(xi, x
′) is:

K(xi, x
′) = exp(−

‖xi − x‖2

2σ2
) (5)

The parameter σ depends on the dimensionality and is usually predefined
by user, and αi can be directly computed with the complete data (X, Y ).
We name the procedure manifold learning algorithm (MLA) which means
the most manifold learning approaches can be employed for reducing high-
dimensional data into low-dimensional space.

3 Linear Discriminant Analysis

Assuming the data of different classes have the same or similarity categories,
for instance, facial images sampled from difference persons can be viewed as
having the same cognitive concept. So data of different classes can be re-
duce into the same subspace with manifold learning approaches. While MLA
is capable of recovering the intrinsic low-dimensional space, however, it may
not be optimal for recognition. When the two highly nonlinear manifolds are
mapped into the same low-dimensional subspace through MLA, for example,
there is no reason to believe that the optimal classification hyperplane also
exists between the two unravelled manifolds. If the principal axes of the two
low-dimensional mapping classes of manifolds have an acute angle, the classi-
fication ability may be impaired [13]. Therefore, linear Discriminant analysis
(LDA) is introduced to maximize the separability of data between different
classes.

Suppose that each class is equal probability of event, Within-class scatter
matrix is therefore defined as: Sw =

∑L

i=1

∑ni

j=1(yj − mi)(yj − mi)
T for ni

samples from class i with class means mi, i = 1, 2, . . . , L. For the overall mean
m for all samples from all classes, meanwhile, the between-class scatter matrix
is defined as Sb =

∑L

i=1(mi − m)(mi − m)T [13].
To maximize the between-class distances while minimizing the within-

class distances of manifolds, the column vectors of discriminant matrix W are
the eigenvectors of S−1

b Sw associated with the largest eigenvalues. Projection
matrix W play a role that which projects a vector in the low-dimensional face
subspace into discriminatory feature space.

With the combination of LLE and LDA (MLA+LDA), we therefore avoid
the problem of dimensionality curse and recognition task can be realized on
the basis of reduced dimensions.

4 Nonlinear Auto-Associative Model

If data to be classified have remarkable different categories (for example, char-
acters), MLA+LDA will be inefficient for recognition as these data can’t be
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commonly mapped into a single subspace with MLA. A corresponding strat-
egy is to extract the intrinsical principal features of these manifolds with some
dimensionality reduction methods separately, and then the unknown sample
can be auto-associated in light of the intrinsical principal features.

With light of Eq. (4), we can also construct the reconstructed formula of
manifold learning as follows:

x′ =

ni∑

j=1

βjk
′(yj , y

′) yj ∈ Z, y′ ∈ Rd (6)

k′(yj , y
′) = exp(− ‖ yj − y′ ‖2 /2(σ′)2) (7)

where B = {βj} is the N ×n weighted inverse mapping matrix or reconstruc-
tion matrix.

By choosing appropriate Eq. (5) and (7), the data can be reasonably re-
constructed with the model representing the same category. For example, the
Frey face database (20*28 pixels, 1956 examples) [8] is also used to explain
our proposed method. Firstly, in the MLA learning stage, the 491 cluster
centers are extracted using vector quantization and mapped into 2-D space
using LLE. Then all the 1956 face examples are mapped into the 2-D space
based on the mapping learned in the first stage where σ2 = 100, as shown
in Figure 1(a). Thirdly, we randomly sample two points and use them as the
upper-left and lower-right corner points for a rectangle, and then sample 11
evenly spaced points along each of the boundary and diagonal lines of the rect-
angle, and these points are reconstructed with Eq.(6) and (7), as displayed in
Figure 1(b). We observe that a continuous expressional change in the vertical
axes and pose change from the right side to the left side. Therefore, we have
approximately recovered 2 intrinsic principal features, those of expression and
pose, for the FREY database using our proposed method. To compare the dif-
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(a) 1956 examples mapped to the 2-D
MLA subspace.

(b) The corresponding reconstruct faces

Fig. 1. 2-dimensional mapping and reconstruction of Frey Face data
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ference between the original images and the reconstructed images, 10 points
from 2-dim reduced data as in Figure 2(a) are randomly sampled and then
reconstructed via our proposed method where (σ′)2 = 1. The original facial
images are shown on the top of Figure 2(b), while the corresponding recon-
structed facial images at the bottom of Figure 2(b). It can be seen that our
proposed method effectively reconstructs these images.
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origin data
sampling data

(a) Two-dimensional samples

Origin Images 

Corresponding Reconstruction Images 

(b) The corresponding reconstruct faces

Fig. 2. 2-dimensional mapping and reconstruction of Frey Face data

This procedure has the foundation of cognitive sciences, namely, auto-
association, which argues that recalling objects or concepts is achieved through
preserving the underlying principal features of objects or concepts. Therefore,
we call our proposed model ”Nonlinear Auto-Associative modeling” (NAM).

It is obvious that the Frey data belong to one class. To implement recog-
nition with NAM, we assume that each NAMi represents the ith NAM of
the ith class so that we can model a total of L different NAMs, for example,
character ’a’ corresponds to the 1-th NAM, and ’b’ 2-th NAM, and so on.
Under the assumption, the data of different classes can be represented as

(X(1), Y (1)), (X(2), Y (2)), · · · , (X(L), Y (L))

Different from the MLD+LDA, each completed data (X(i), Y (i)), i = 1, · · · , L
is realized with MLA separately. Consider auto-associative properties of
NAMs, corresponding auto-associative sample through the NAM of the same
class than through those of the different class would have higher similarity
with the original sample. It is obvious that a variety of similarity measure
techniques can be adopted. In this paper, recognition can be achieved by
comparing the probability metric between each unknown sample and corre-
sponding auto-associative sample with different NAMs. Without loss of gener-
ality, the probability metric (in this paper, we use Gaussian function) between
each sample x′ and auto-associative sample x′(i) of the ith NAM is given by:

P (x′(i)|x′, NAMi) = exp(−‖x′−x′(i)‖2), x′, x′(i) ∈ RN , i = 1, · · · , L (8)
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where x′
i means the auto-associative sample through the ith NAM given un-

known sample x′. It is no difficult to see that when the reconstructed sam-
ple is the same as the original sample, P (x′(i)|x′, NAM(i)) is equal to 1,
whereas if the reconstructed sample is far away from the original sample,
P (x′(i)|x′, NAMi) will decreased to zero rapidly with respect to the proper-
ties of gaussian function.

To guarantee the consistency of probability metric, normalization is per-
formed. The corresponding equation is given by:

P (x′(i)|x′) =
P (x′(i)|x′, NAMi)∑L

j=1 P (x′(j)|x′, NAMj)

=
exp(−||x′ − x′(i)||2)

∑L

j=1 exp(−||x′ − x′(j)||2)
(9)

Consider Formula (9), the NAM where probability metric between auto-
associative samples and original sample is highest can be viewed as a criterion
of recognition. Hence, the equation for recognition is given by:

Cl(x′) = arg max
i

P (x′(i)|x′), i = 1, · · · , L (10)

Our proposed NAM has several obvious merits: Firstly, our propsed NAM
avoids the problems of local minimum and convergence rate. Secondly, the
proposed NAM is constructive, and geometrically intuitive. Thirdly, it can
find unlabeled sample through predefined threshold. This suggests ”semi-
supervised learning” characteristics where only partially labelled data are
needed for the learning. Finally, it can add new NAMs without redesigning
original NAMs.

5 Experiments

Experiments are performed using three object (face) databases (namely the
Olivetti database [14], UMIST database [15] and JAFFE database [16]) and
two character databases ((UCI character database [17] and OCR (optical char-
acter recognition) database [18])), to evaluate the feasibility of our proposed
nonlinear dimension reduction (MLA+LDA) method and NAM method, re-
spectively.

5.1 Image Recognition

The first object database provided by AT&T Cambridge Laboratories (for-
merly known as the Olivetti database) consists of 10 different images for
40 people each (four female and 36 male subjects). The images are taken
at different time, varying the lighting, facial expressions (open/closed eyes,



8 Junping Zhang, Stan Z. Li, and Jue Wang

smiling/non-smiling), and facial details(glasses/no-glasses). All the images are
taken against a dark homogeneous background and the people are in up-right,
frontal position. There are unstructured intermediate changes (± 20 degrees)
in head pose. Examples of ORL database are shown in Figure 3. We crop
images into 112*96 pixels (namely 10304 dimensions).

Fig. 3. Examples of ORL Face Database

The training set and test set are divided in the same way as in [19]: The
10 images of each of the 40 persons are randomly partitioned into two sets,
that is, 200 training images and 200 test images, without overlapping between
the two sets.

The second one, UMIST database consists of 575 images of 20 people
with varied poses. The images of each subject cover a range of poses from
right profile (-90 degree) to frontal (0 degree)[15]. Examples of the UMIST
database are shown in Figure 4(a). All these images of UMIST database are
cropped to the size of 112 × 94, namely 10304 dimensions.

The main difficulty of UMIST database is that face data in the observation
space may have higher curvature and stronger nonlinearity in multiple views
than in frontal views. From the aspect of computer vision, meanwhile, ”the
variations between the images of the same face due to illumination and viewing
direction are almost always larger than image variations due to change in face
identity”[20]. This makes multi-view face recognition a great challenge.

In this experiment, we randomly select 10 images of each person as the
training set, and the remaining 375 images as the test set.

The JAFFE database, which has been used in facial expression recogni-
tion, consists of 213 images of 10 Japanese females. The head is almost in
frontal pose. The number of each image represent one of the 7 categories of
expressions (neutral, happiness, sadness, surprise, anger, disgust and fear). In
our experiment, the database is used for both oriental face recognition and
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(a) Examples of UMIST Face Database (b) Examples of JAFFE Face Database

expression recognition. All these images of JAFFE database are cropped to
the size of 146 × 111 pixels.

When being used for face recognition, the JAFFE database is partitioned
into two sets: 6 images of each of the 10 persons are randomly extracted
to make 60 training set and the remaining 153 images are used as the test
images. Meanwhile, in expression recognition, 24 images of each expressional
categories are randomly extracted to make 168 training set and the remaining
45 images are used as the test set. Examples of JAFFE database are shown
in Figure 4(b).

The dimension of LLE-reduced data is set to be 150 except for JAFFE face
recognition (where the dimension is 50 as in Figure 4(e)). For the 2nd mapping,
LDA based reduction, the reduced dimension cannot be more than L − 1.
otherwise eigenvalues and eigenvectors will have complex values. Actually, we
remain the real-value part of complex values when the 2th reduced dimensions
are higher than L − 1.

In order to compare the performance of MLA+LDA in dimensionality
reduction, we introduce a classical linear dimensionality reduction algorithm–
PCA (principal component analysis) [21], and then design four combinational
algorithms for face recognition: the combination of 1-nearest neighborhood
classifiers with PCA+LDA (PCA+LDA+NN), the combination of means clas-
sifiers with PCA+LDA (PCA+LDA+M), the combination of 1-nearest neigh-
borhood with MLA+LDA (MLA+LDA+NN) and the combination of means
classifiers with MLA+LDA (MLA+LDA+M). All the experimental data have
been normalized. The experimental results are the average of 100 runs.

In our experiments, two parameters (neighbor factor K ′ of LLE algorithm
and σ2 of kernel function) need to be predefined. Without loss of generality, we
set K ′ be 40 for ORL , UMIST and Jaffe expression database, 20 for JAFFE
Face database, and set σ2 be 10000 for ORL and UMIST databases, 80000
for JAFFE expression and face database.
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The experimental results are illustrated as in Figure 4(c), Figure 4(d),
Figure 4(e), and Figure 4(f), respectively. The error rates (ER) of several face
recognitions are also tabulated in Table 1. Where 1 means MLA+LDA+NN,
2 MLA+LDA+M, 3 PCA+LDA+NN, and 4 PCA+LDA+M in Table 1, re-
spectively.
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(d) UMIST Face Recognition
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(e) JAFFE Face Recognition

2 3 4 5 6 7 8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Dimension

E
rr

or
 R

at
es

MLA+LDA+NN
MLA+LDA+M
PCA+LDA+NN
PCA+LDA+M

JAFFE Express Recognition
1. The 1th Reduced Dimensions with MLA and PCA: 150
2. The 2th Reduced Dimensions with LDA: 8
3. Neighbor Factor K with LLE: 40
4. Variance of MLA: 8e4 

(f) JAFFE Express Recognition

Fig. 4. Recognition Comparison

Table 1. Error rates with the MLA+LDA

Database(Dim) MLA+LDA+NN MLA+LDA+M PCA+LDA+NN PCA+LDA+M

ORL (39) 3.93% 3.68% 7.37% 7.13%

UMIST (21) 3.16% 3.38% 2.62% 2.98%

JAFFE (10) 0.57% 0.58% 0.78% 0.82%

EXPRESS(6) 8.73% 10% 9.82% 11.16%
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From the Figures and Table 1, it can be seen that dimension of face
manifolds has been remarkable reduced based on our proposed MLA+LDA
methods. For example, the ratio between original dimensions and the 2th
biggest reduced dimension of ORL database is about 264. Compared with
PCA+LDA, recognition obtain better results in the reduced dimensions of
three face databases except for UMIST database. For example, in 150 re-
duced dimensions, the error rates of MLA+LDA+M algorithm is about 93.6%
of the MLA+LDA+NN, 49.9% of the PCA+LDA+NN, and 51.6% of the
PCA+LDA+M on the ORL face database.

It is worthy noting that several parameters influence final experimental
results. For example, the influences of variance σ2 of Gaussian RBF kernel,
and training samples on ORL face recognition are illustrated as in Figure 5(a)
and Figure 5(b), respectively. We observe that the curve of error rate about
parameter σ2 will appear a ’valley’ which is corresponding to the lowest error
rates if adjusting parameter σ2. Therefore, we assume that parameter σ2 may
be selected automatically in further work. When training sample is 9 each
person, meanwhile, our proposed MLA+LDA+M than other three methods
has lowest error rates and is about 1.32%.
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Fig. 5. Influences of Parameters

For comparing the recognition performance between the proposed MLA+LDA
and MLA, we cite the recently experimental results from literature [22] as in
Table 5.1:

Where NM means nearest manifold approach. The detail of NM approach
can be seen in [22]. It is no difficult to see that our proposed MLA+LDA
has greater reduced dimensions that MLA (Note: The reason is that the total
number of classes of these mentioned data is less that the reduced dimen-
sions of the data). And also with comparison of the recognition ability, the
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Table 2. Error rates with MLA

Database(Dim) MLA+NM MLA+NN PCA+NM PCA+NN

UMIST(150) 3.73% 5.71% 4.83% 8.11%

ORL(120) 3.83% 7.75% 8.13% 9.86%

JAFFE (50) 2.99% 8.86% 8.76% 11.12%

EXPRESS(150) 12.39% 13.73% 16.63% 32.94%

recognition results of MLA+LDA is better than that of MLA in the average
sense.

5.2 Character Recognition

The first character dataset from the UCI repository, comprises of a total of
20,000 labelled samples of, on an average, 770 examples per class The total
number of classes is 26. The character images were based on 20 different fonts
and each character within these fonts was randomly distorted to produce a
file of 20,000 unique stimuli. Each stimulus was converted into 16 numerical
attributes (statistical moments and edge counts), which were then scaled to
fit into a range of integer values from 0 through 15. Examples of the character
images are illustrated in Figure 6. Because of the wide diversity among the
different fonts and the primitive nature of the attributes, the recognition task
was especially challenging. The database is randomly partitioned two disjoint-

Fig. 6. Examples of UCI character databases

ing sets, that is , 350 training samples of each of the 26 classes as the training
set, and the remaining samples as the test set.

The second database was created by National Institute of Standards and
Technology (NIST) and contains 16,280 handwritten characters. There are, on
an average, 600 characters per class (26 classes). Each character is represented
by a 30 dimensional feature vector of edge tangents. Each dimension in both
datasets was linearly scaled to [0,1] interval. In this experiment, we randomly
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select 300 samples of each character concept as the training set, and the
remaining samples as the test set.
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Fig. 7. Character Recognition

The biggest reduced dimensions are extracted based on the spectral prop-
erties of LLE algorithm [8](where the biggest reduced dimensions are 12 for
UCI and 20 for OCR, respectively), and then the dimensions are gradually
decreased according to the descending-order of eigenvalues used by LLE algo-
rithm.

Furthermore, several parameters need to be predefined. Without loss of
generality, neighbor factor K of LLE is set to 50. Consider the dimensionality
difference of the two mentioned databases, parameters σ2 and (σ′)2 are equal
to 1.5 in UCI character database while being equal to 3 in OCR database.
And then 26 independent NAMs are established for 26 different classes. The
experimental results are the average of 100 runs.

The experimental results of two databases are illustrated as in Figure 7.
From Figure 7 it can be seen that when intrinsical principal dimensions are
equal to 12, the lowest error rates of two character databases are obtained. We
therefore assume that the possible number of principal features of character
manifolds should be extracted is 12 or so.

For comparing the recognition performance between the proposed NAMs
and other known state-of-the-art algorithms, we cite the recently experimen-
tal results from literature [18] as in Table 3. . As in Table 3, our proposed
NAM than other classifiers has better recognition rates. For instances, in UCI
character database, the error rates of NAMs is about 67.13% of the K-NN,
32.8% of the MLP; while in OCR character database, the error rates of NAMs
is about 98.6% of the K-NN, 43.52% of the MLP. Furthermore, our proposed
NAMs for two character databases using fewer features (12) to model intrin-
sical feature spaces. It is also noticeable that our experimental results are the
average of 100 runs, whereas other results are the average of 10 runs. We also
investigate the error rates of character recognition in the top n matches with
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Table 3. The Average Error Rates of sevaral algorithms on the two character
databases for NAM, K-nearest Neighbor (K-NN, K=3), Maximum Likelihood clas-
sifier (MLC), Bayesian pairwise classifier with single Gaussian with voting com-
bination method (BPC(1,V)), and MAP estimate combination (BPC(1,M)), and
Bayesian pairwise classifier with mixture of Gaussian for voting (BPC(n,v)) and
MAP estimate (BPC(n,M)) combination

Classifier UCI % OCR %

NAM 6.78 (12Dim) 10.358 (12Dim)

k-NN 10.10 10.5

MLP 20.7 23.8

MLC 17.3 20.5

BPC(1,V) 14.6 17.9

BPC(1,M) 14.7 16.7

BPC(n,V) 13.8 16.9

BPC (n,M) 12.4 13.7
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Fig. 8. Rank Performance

our proposed NAM. This lets one know how many characters have to be ex-
amined to get a desired level of performance. The performance statistics are
reported as cumulative error rates, which are plotted on Figure 8. The hori-
zontal axis of the graph is rank and the vertical axis of the percentage of error
rates. For example, when in the top 3 matches, the error rate of NAM for UCI
is 1.7%, and the error rate of NAM for OCR database is about 4.25%. Mean-
while, when in the top 6 matches, the error rate of NAM for UCI database is
0.65%, and the error rate of NAM for OCR database is about 2.5%.

It is worthy noting that several parameters, such as neighbor factor K of
LLE algorithm, variance σ2, and reconstructed variance (σ′)2, and the number
of training sample, influence recognition results. We observe that the curve
of error rates about parameter σ2 will appear a ’valley’ which is correspond-
ing to the lowest error rates when adjusting parameter σ2. For example, the
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influences of variance σ2 on two character recognition are illustrated as in
Figure 9(a) and Figure 9(b). And the lowest error rates are obtained when σ2

is equal to 1.5 for UCI and 3 for OCR, respectively. Meanwhile, we observe
that parameter (σ′)2, independent of the selection of parameter σ2, has simi-
lar phenomenon on the curve of error rates. Therefore, the parameter σ2 and
(σ′)2 may be automatically selected in future work. And the influences of the
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Fig. 9. Parameter Influences

number of training samples about recognition rates are investigated and the
results for the UCI database are illustrated in Figure 9(c). From the Figure,
it can be noted that there are remarkable improvement in the error rates of
the recognition tasks as the number of training samples increases. Experi-
ments on the influence on selecting Gaussian RBF centers of our proposed
NAM through vector quantization techniques (VQ) are also carried out on
UCI character databases as in Figure 9(c), it is no difficult to see that with
the combination of NAM and VQ the error rate has remarkable decreased,
and therefore NAM+VQ can obtain the same error rates as NAMs with fewer
RBF centers and training samples.
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6 Conclusions

In this paper, we propose two recognition approaches (MLA+LDA and NAM)
based on manifold learning. If data to be classified belongs to the same or sim-
ilar cognitive category such face, MLA+LDA is employed. Otherwise, NAM
approach is implemented.

Assuming that objects manifolds of different classes lie on the same fea-
ture subspace, object manifolds of different classes are first reduced into the
intrinsic principal feature subspace with proposed MLA. And then the within-
classes distances is further enlarged and the between-classes is decreased with
LDA. The final classification task is completed based on the reduced dimen-
sions of MLA+LDA.

If data to be classified are from remarkable different categories (for exam-
ple, character ’a’ and ’b’), recognition is achieved under the common feature
subspace seems to be unreasonable. And the proposed nonlinear dimension re-
duction method MLA+LDA is not effective in this case. We therefore propose
a new constructive nonlinear auto-associative modeling based on manifold
learning. Based on our proposed NAM, the intrinsical principal features are
extracted for preserving the principal structure of each manifold, and then re-
construction is achieved. With auto-associative mechanism, the reconstructed
data through NAM having the same cognitive concept than through NAMs
having the different cognitive concept will have less deviation. Therefore, the
probability metric for recognition is naturally established. Our propped NAM
has several obvious merits: Firstly, it avoids problems with local minimum and
convergence. Secondly, it is constructive, and geometrically intuitive. Mean-
while, our nonlinear auto-associative modeling can be used for the construc-
tion of both mapping and inverse mapping relationship between the observa-
tion space and corresponding feature spaces without dimensionality limitation.

Some potential problems remains. First, several parameters influence the
experimental results. How to select parameter automatically is worthy to fur-
ther research. Second, the number of intrinsical principal features of manifold
is related to the error rates of recognition. In the future work, it is necessary
to find a more effective approach which can estimate the number of princi-
pal features. The proposed NAM has semi-supervised learning characteristics
which can find unlabelled sample through predefined threshold and can facil-
itates adding new NAMs without redesigning original NAMs, moreover, how
to utilize these properties for modelling unknown concepts and designing new
algorithms are also our future work.
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