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ABSTRACT

Here, we present a new approach based on manifold learning for knowledge discovery and inverse design with
minimal complexity in photonic nanostructures. Our approach builds on studying sub-manifolds of responses of a
class of nanostructures with different design complexities in the latent space to obtain valuable insight about the
physics of device operation to guide a more intelligent design. In contrast to the current methods for inverse design
of photonic nanostructures, which are limited to pre-selected and usually over-complex structures, we show that
our method allows evolution from an initial design towards the simplest structure while solving the inverse problem.

Keywords: manifold learning, knowledge discovery,
inverse design, design complexity, photonic

1 Introduction
Photonic nanostructures have been extensively employed
for different applications due to their unique features in
controlling the spatial, spectral, polarization, and even
temporal properties of an optical wavefront with sub-
wavelength feature size. Thanks to recent advances
in optical materials and nanofabrication technologies,
extensive design flexibility exists for photonic nanos-
tructures through selection of constituent materials and
geometrical properties of individual nanostructures (also
known as nanoantenna or meta-atoms). This has enabled
practical photonic devices for a wide range of applica-
tions in computing [1, 2], signal processing [3], imaging
[4], planar lenses [5, 6], and wireless communication
[7, 8], just to name a few. The large number of de-
sign parameters (e.g., material selection and geometrical
properties of nanoantenna) requires new approaches for
inverse design and optimization of these nanostructures.
Unfortunately, there has been limited progress in this
direction, and the continuous progress in nanofabrica-
tion capabilities demands urgent progress in this new
direction. In addition, new techniques are needed to find
the best device architecture for a given response with
minimum device complexity subject to constraints like
ease of fabrication, sensitivity to fabrication errors, low
optical losses, etc. Such techniques should allow the

design algorithm to start from the under-defined archi-
tecture and evolve to the most appropriate design beyond
what initially envisioned by the designer.

Considering the large number of design parameters
and the ranges of their variations, traditional brute-force
inverse design approaches based on exhaustive search
[9] of the design space or evolutionary approaches [10]
(e.g., genetic algorithms) cannot be used due to the com-
putational complexity of state-of-the-art nanophotonic
design problems. More recently, inverse design meth-
ods based on artificial intelligence (AI) [11–34] have
shown promising performance in inverse design with
considerably reduced computational requirements. How-
ever, existing approaches are mainly focused on finding
the design parameters of a given nanostructure without
changing its structure. In addition, most of the reported
techniques only consider finding the design parameters
without providing insight about the underlying physics
of the device operation, e.g., by providing information
about the hidden patterns in the data. More recently,
there has been more interest in using AI to investigate
the design-response relation while optimizing the nanos-
tructures [35–47]. New approaches for “knowledge dis-
covery” in nanophotonics should utilize the “intelligent”
aspects of AI rather than using AI primarily as an opti-
mizer.

The main focus of this paper is on addressing these
two major needs: 1) AI-based techniques to enable in-
verse design while enabling the evolution of the nanos-
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Figure 1. Workflow of the manifold-learning-based design approach. a Forming the feasible regions and
learning sub-manifolds in the latent space. Each sub-manifold corresponds to one of the five nanostructure classes,
whose unit cells are shown. Random sets of design parameters are generated for each class, and the corresponding
responses are found using an electromagnetic (EM) solver. By training an AE, the dimensionality of the response
space is reduced into 2 or 3 and each sub-manifold is modeled using a separate GMM. Each GMM covers the
range of feasible responses from a given class of nanostructures. b For inverse design, the dimensionality of the
desired response is reduced using the trained AE to observe the feasibility of the response using different classes of
nanostructures in a. Using a trained neural network (NN) that relates the design space into the latent response space,
we search for the optimum solution with minimal complexity. It is observed from simulations that the reflection
responses have a single resonance peak with a Fano-like lineshape as shown in a and b.

tructure architecture from the initial guess (by the de-
signer) to the most appropriate architecture, and 2) en-
abling knowledge discovery in photonic nanostructures
by uncovering the roles of different design parameters
in the final response. For this purpose, we present a
new approach based on manifold learning for breaking
the geometric complexity of nanophotonic structures
during solving the inverse problem. We reduce the di-
mensionality of the response space by training an autoen-
coder (AE) [48] over a set of training data and model
the sub-manifolds for different classes of nanostructures
with different degrees of design complexity in the la-
tent space (i.e., low-dimensional space) using Gaussian
mixture models (GMMs) [49]. This representation also
results in understanding the underlying patterns in the
data and provides valuable insight about the underlying
physics of the nanostuctures. For solving the inverse
design, we will map the desired response into the latent
space and search over different sub-manifolds with re-
sponse feasibility to evolve to design candidates with
minimal geometric complexity. As a proof of concept

and without loss of generality, we apply this method
to study dielectric metasurfaces (as a popular class of
photonic nanostructures) formed by elliptical hafnium
dioxide (HfO2) meta-atoms on a silicon dioxide (SiO2)
substrate.

2 Results

2.1 Dielectric metasurfaces with resonant re-
flection responses

To show the capabilities of our approach, we study the
inverse design of metasurfaces with reflection responses
of Fano-like lineshape [37] using the unit-cell structures
shown in Fig. 2. These structures are composed of a se-
ries (one to four) ellipsoids of HfO2 on a SiO2 substrate.
The design parameters are periodicity (p ∈ [500,900]
nm) and the radii of the ellipsoids (Ri ∈ [45,200] nm).
The height of the ellipsoids (350 nm) is fixed due to
fabrication limitations, and the substrate is assumed to
be infinite in thickness. The simplest design (ONE in
Fig. 2) and the most complex one (FOUR) have 3 and 9
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Figure 2. The metasurface unit cells with different geometric complexities. Each unit cell is one to four HfO2
ellipsoids on a SiO2 substrate. The design parameters are periodicity (p ∈ [500,900] nm) and radii of the ellipsoids
(Ri ∈ [45,200] nm). The height of all ellipsoids is fixed at hel p = 350 nm while that of the substrate is assumed to be
infinite. The design complexity (i.e., the number of design parameters) of the structures are between 3 and 9 for the
simplest (ONE) and most complex (FOUR) cases, respectively. The resonance features of the selected ellipses result
in a single resonance peak in the reflection responses of the metasurface formed by a periodic array of each one of
these unit cells (see Fig. 1).

design parameters, respectively.
For the AI analysis, a total of 8000 random sets of

design parameters for the five unit-cell structures are
generated, and the corresponding reflection responses are
computed using three-dimensional finite-difference time-
domain (3D FDTD) simulations, implemented using
Lumerical, in the 300 < λ < 850 nm range, where λ is the
wavelength. The incident beam is a normally-incident
plane-wave from the top with linear polarization in the
x direction in Figs. 1a and 2. Each reflection response
is sampled at 551 uniformly-placed wavelengths in the
operating range. This structure is capable of generating
Fano-type reflection responses. Also, when co-polarized
resonances of different ellipsoids are strongly coupled
in the polarization direction (i.e., x-direction in Fig. 2),
overall resonant responses with relatively high quality
factors (Qs) are observed.

2.2 Knowledge discovery using the latent-
space representation of the reflection re-
sponses

To form the feasible set of responses for each nanostruc-
ture in Fig. 2, we train an AE to reduce the dimension-
ality of the response space from 550 (i.e., the number
of samples in the spectral response) into two or three
(i.e., two-dimensional (2D) and three-dimensional (3D)
latent spaces, respectively), while minimizing the re-
constructed mean-squared error (MSE). In addition, we
train a convex-hull using the algorithm explained in Ref.
[35] to encompass the range of feasible responses using
each of the unit-cell structures in Fig. 2. Figures 3a
and 3b show the representation of the responses and the

convex-hulls of the feasible regions for each structure
in a 2D latent space, respectively. The corresponding
results for the 3D latent space are provided in the Sup-
plementary Information. As seen from Fig. 3, the range
of feasible responses expands as we increase the design
complexity (i.e., the number of ellipsoids in the unit cell).
The feasible region of the structure with one ellipsoid
(i.e., ONE) is the smallest due to both the weak reso-
nance in the nano-antenna and weak coupling between
the nano-antennas in the periodic metasurface. An in-
teresting observation from Fig. 3b is the large disparity
between the convex-hulls of the BLTL and BLBR struc-
tures while both having two ellipsoids in their unit cell.
Also, the convex-hulls of the BLBR and THREE struc-
tures share similar regions despite having different levels
of complexity. These non-trivial observations need to
be understood using the physics of coupling between
different ellipsoids (or meta-atoms).

The latent-space representation of the responses (see
Fig. 3a) provides priceless information about the under-
lying patterns in the reflection responses. For example, it
is observed that the clockwise movement around the fea-
sible region results in a red shift, and the counter clock-
wise movement results in a blue shift of the resonances.
In addition, Fig. 3a shows an increase in the magnitude
and Q of the reflection as we move from the center of
the latent space towards the edges. To better quantify the
knowledge provided by the manifold-learning approach,
we present the color-coded manifolds for the wavelength
and the Q of the Fano-type resonances of the reflection
resonances in Figs. 4a and 4b, respectively. Figure 4a
clearly shows the red (blue) shifts of the resonance wave-
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Figure 3. Latent-space representation of the reflection responses. a Representation of the reflection responses
and b the corresponding convex-hulls of the feasible regions for unit-cell structures in Fig. 2 in the latent space.
The smallest and largest convex-hulls in b correspond to the simplest (ONE) and most complex (FOUR) structures,
respectively. The magnitude of the reflection peak and the Q of the resonance increase as we move from the center
of the latent space towards the edges in a. Clockwise (counterclockwise) movement in the latent space results in red
(blue) shift in the resonance peaks in the reflection responses.

length by clockwise (counterclockwise) movements in
the latent space, and Fig. 4b shows that higher Qs are
achieved at the corners of the latent space.

Comparing the feasible responses of structures with
different unit cells in Figs 3 and 4 suggests that: 1)
the ONE and BLTL structures cannot generate high-Q
responses, 2) the BLBR structure is far more capable
than the BLTL structure in forming a variety of different
responses despite apparent similarity; 3) The BLBR and
THREE structures have a similar capability in generating
high-Q responses despite their different levels of design
complexity; and 4) the FOUR structure provides the
largest range of responses thanks to its highest level of
complexity. While some of these conclusions (e.g., 4)
might be trivial at the beginning, others (e.g., 2 and 3) are
not expected at the first glance. This clearly shows the
power of our manifold-learning approach in knowledge
discovery in nanophotonics.

In addition to comparing different structures with dif-
ferent levels of complexities, our manifold-learning ap-
proach can provide valuable insight about the roles of
different design parameters. To show this capability, we
study the effect of rotating one of the ellipsoids in the

BLBR structure (as the least complex structure with a
large range of high-Q responses) on the reflection re-
sponse while keeping other design parameters fixed (see
Fig. 4c). It is clear from Fig. 4c that by rotating one
of the ellipsoids (i.e., increasing θ from 0), both the
peak reflection magnitude and the Q decrease with a mi-
nor resonance wavelength shift, however, the reflection
response outside the resonance range stays almost the
same. To see this in the latent space, the correspond-
ing responses, after dimensionality reduction, have been
shown in Fig. 4b using triangles with the same colors as
those of the actual responses in Fig. 4c. The movement
of these triangles towards the center of the latent space
and the lack of considerable clockwise or counter clock-
wise rotation by increasing θ in Fig. 4b confirms the
ability of the manifold-learning approach in uncovering
the observed role of θ .

The amount of visually observable information about
different classes of unit cells, seen from Figs. 3 and 4
shows the efficacy of our manifold-learning approach
in knowledge discovery, i.e., providing valuable observ-
able insight about the physics of nanophotonic device
operation.
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Figure 4. Q factor and rotation analysis. a Wavelength distribution of resonances in the latent space. b
High/low-Q distribution of the responses in the latent space. c Effect of rotation of the ellipsoid on the reflection
response.

2.3 Inverse design using the manifold-learning
approach

To better quantify the effectiveness of each unit-cell
structure in Fig. 2 in forming a desired response, we
model the sub-manifolds of the corresponding responses
in the latent space for each structure using GMMs
(see Methods and Supplementary Information). These
GMMs provide the levels of feasibility of achieving any
given reflection response for metasurfaces with different
unit-cell structures in Fig. 2, which will be helpful in the
inverse design.

To find a structure that generates a desired reflection
response, the first step is to find the corresponding point
in the latent space by reducing the dimensionality of the
desired response using the trained AE (see the two exam-
ples in Fig. 5a). Next, we find the log-likelihood of the
feasibility for the desired response using the five differ-
ent unit cells in Fig. 2 by employing their corresponding
GMMs. We select the unit-cell structure with the highest
log-likelihoods. Once the unit-cell of the metasurface
is selected, we use exhaustive search with a separately
trained neural network (see Methods) for the forward
problem (i.e., connecting the design and response spaces)
of that metasurface to find the optimum design parame-
ters. Figure 5 shows the implementation of the inverse
design problem for two desired responses with high and
moderate Qs (see Figs. 5b and 5c, respectively). To
compare the effectiveness of metasurfaces with different
unit cells and the importance of the GMMs, we imple-
ment each design using all possible unit cells (regardless
of the design feasibility), and the corresponding results
are shown in Figs 5b and 5c as well as Tables 1 and 2,

respectively. This experiment mimics the conventional
design approaches focused on finding the design param-
eters regardless of the feasibility of the response. Figure
5a suggests that the desired response with Q = 52 can
only be generated using the FOUR structure. This is
confirmed by comparing the actual optimal responses
(see Fig. 5b) and the negative log-likelihood values
(− log(p) in Table 1). Similarly, Fig. 5a suggests that
the response with Q = 42 can be generated by BLBR,
THREE, and FOUR structures. This is confirmed by
different optimal responses and log-likelihoods from Fig.
5c and Table 2, respectively. Tables 1 and 2 also provide
means for using a trade-off between design complexity
and the response errors. The importance of the manifold-
learning approach is that it enables the consideration of
the feasibility before attempting to design a device using
a pre-selected structure.

3 Discussion
Of the four insights and conclusions from Figs 3 and 4
(as discussed in Section 2.2), the difference in the size
of the convex-hulls of BLTL and BLBR structures and
the similarity of the convex-hulls of BLBR and THREE
structures contradict the expected increase of the range
of feasible responses and the design complexity. To ex-
plain the reason for these important conclusions from the
manifold-learning approach, we perform the near-field
analysis of these three structures using the 3D FDTD
technique.

Figure 6 shows the resonant nearfield enhancement
by the FOUR, BLBR, and BLTL structures. Due to the
resonance of the individual ellipsoids at the incident
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Figure 5. Inverse design of Fano reflection responses. a Representation of two desired responses with an ideal
resonance lineshpe (zero reflection outside the resonant region) in the latent space. b-c Desired (ideal) and the
corresponding optimized responses (found by our inverse design approach) for different unit-cell structures in Fig. 2.

Table 1. The optimal design parameters (in nm), normalized MSE (NMSE), negative log-likelihood, for the Fano
reflection response in Fig. 5b

Design Parameters

Structure p R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE − log(p)

One 783 178 17 0 0 0 0 0 0 0.60 186.74
BLTL 599 63 63 0 0 173 130 0 0 0.546 468.08
BLBR 758 149 104 148 121 0 0 0 0 0.095 3.01
THREE 684 151 135 170 132 160 86 0 0 0.084 3.24
FOUR 769 123 74 148 99 142 80 128 148 0.083 2.18

Table 2. The optimal design parameters (in nm), NMSE, negative log-likelihood, for the Fano reflection response
in Fig. 5c

Design Parameters

Structure p R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE − log(p)

One 672 78 180 0 0 0 0 0 0 0.36 276.8
BLTL 777 76 64 0 0 168 157 0 0 0.31 214.26
BLBR 851 143 134 163 132 0 0 0 0 0.056 0.57
THREE 833 172 92 175 175 76 72 0 0 0.086 1.17
FOUR 7846 170 150 142 134 153 113 78 78 0.099 1.24

wavelength, the field enhancement near these structures
is expected. An important observation is the contrast be-
tween field enhancements in the x- and y- directions for
all structures in Fig. 6. This contrast is caused by the dif-
ferent levels of coupling between individual (resonant)
ellipsoids in the directions parallel and perpendicular to
the incident polarization (i.e., x- and y- directions, re-

spectively). Our analysis shows that the maximum field
enhancement (or the strongest light-matter interaction)
is obtained for ellipsoids with resonances co-polarized
with the incident polarization with strong coupling in
the direction of incident polarization (i.e., x-direction
in Fig. 6). It is clear that the coupled ellipsoids in the
x-direction in both FOUR and BLBR structures (Figs.
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Figure 6. Nearfield enhancement. The nearfield simulation of the a FOUR, b, BLBR, and c, d BLTL structures
under normal illumination with a uniform planewave at λ = 576 nm, 567 nm, 390 nm, and 383 nm, respectively, with
linear polarization in the x-direction. The color code shows the electric-field amplitude divided by the amplitude of
the incident filed (as a measure of field enhancement by the resonant structures).

6a and 6b, respectively) are responsible for the strong
field enhancement while the coupled ellipsoids in the y-
direction in the BLTL structure (Fig. 6c) cannot provide
such enhancement. As a result, the resonance strength
and Q of reflection in FOUR and BLBR structures are
somehow similar and they both are much stronger than
those of the BLTL structure as observed from Figs. 3 and
4.

It is important to note that the different distances be-
tween adjacent ellipsoids in the x- and y-directions are
not the main contributors to the difference of the light-
matter interaction strength in different structures. To
resolve this potential confusion, Fig. 6d shows a dif-
ferent structure that includes two ellipsoids with small
spacing in the y-direction. It is clear from Fig. 6d that
despite this closeness, the orthogonality of the coupling
direction and the incident polarization results in weak
field enhancement. A further evidence of this fact is seen
from Fig. 4c, where by rotating one ellipsoids in the
BLBR structure (and thus, weakening the coupling in the
polarization direction), the resonance strength is reduced
and the responses move towards the center of the latent
space. The simulation results for the field enhancement
in a variety of structures with different levels of coupling

in x- and y-directions are provided in the Supplementary
Information to further clarify this insight. Neverthe-
less, this discussion clearly shows the capability of our
manifold-learning approach in uncovering the physics
of device operation, which can be used to form more
effective designs. For example, by using this insight, the
unit-cell structures with coupling perpendicular to the
incident field will be excluded from the design options
before any design attempt. More importantly, this insight
excludes the option of using rotated ellipsoids for the
design, which considerably reduces the computational
requirements for any inverse-design approach.

In addition to the valuable insight about the device
operation physics, the manifold-learning approach helps
forming more intelligent designs. First, it shows the
level of feasibility of a response using a given class of
structures. Secondly, it provides a series of options with
different levels of complexity (and potentially robustness,
although not discussed in this paper) for the design. As
an example, our approach provides three options for the
design problem in Fig. 5c. It allows moving from a more
complex structure (e.g., FOUR in this case) to the least
complex one (BLBR) in our simple approach of using
five options for the design. For a more complex design
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tool, we envision using a trained algorithm with consid-
erably more options beyond what an average designer
can consider. Such a design tool will allow the evolution
of an initial design structure by the user to a different
final design that might be considerably less complex,
more robust, less power-hungry, etc. Considering the
fact that in many cases, the initial designs are motivated
more by using the utmost fabrication capabilities (and
thus, most complex structures), such evolutionary de-
sign approaches will be very helpful in forming practical
structures with optimal resource management.

4 Methods

4.1 Electromagnetic simulations
The 3D FDTD simulations are conducted with the com-
mercial software Lumerical. The simulation domain is
limited to one period (p) in the lateral directions (i.e., x
and y in Fig. 2) and perfectly matched layers are used
on the top and bottom layers (in the z-direction in Fig.
2) due to the periodicity of the structures.

4.2 Manifold learning
To form the latent space of the responses, an AE is
trained on a total of 6000 reflection responses obtained
by 3D FDTD simulations for the random sets of design
parameters of the structures in Fig. 2. Each reflection
response is calculated in the 350 nm < λ < 800 nm, and
it is sampled uniformly with 550 samples in this range.
The dimensionality of the reflection responses is reduced
from 550 into 2 and 3 using the trained AE with 11 layers
(550, 200, 100, 50, 20, d, 20, 50, 100, 200, 550 nodes at
each layer, respectively, where d is the dimension of the
latent space). The hidden layers have tangent-hyperbolic
(tanh(.)) activation functions, and the input and output
layers have linear activation functions. The MSE loss is
minimized during the training using Adam optimizer in
Python. The training is stopped after 500 epochs if the
required MSE is not reached.

GMMs are used for modeling the sub-manifold of the
responses in the latent space for each design complexity.
The distance metric is set to correlation, and the max-
imum distance is 0.3, with a maximum of 5 Gaussian
distributions for each model. The GMMs are trained on
the training samples in 2D and 3D spaces.

4.3 Inverse Design
To find the optimum design parameters, a feed-forward
NN is trained from the design to the response space.
The network has 8 layers with 9, 20, 50, 100, 100, 200,

400, 500 nodes at each layer. The activation functions
of the hidden layers is tanh(.). The design parameters
are normalized to have zero mean and unit standard
deviation. The weights of the NN are trained using the
Adam optimizer in Python to minimize the MSE.

To perform the inverse design with a desired reflection
response and a given design complexity (i.e., a given
unit-cell structure in Fig. 2), we use the exhaustive
search (with 106 random sets of design parameters) in
the design space using the trained feed-forward NN. The
optimum solution with minimum mean-squared distance
to the desired reflection response for each design com-
plexity is reported as the solution.

Note that this is the simplest approach for the inverse
design using AI. In a more aggressive approach with
less computation requirements, recent techniques like
training a pseudo-encoder and combining an inverse AI
design (from the response space to the reduced design
space) with a considerably smaller exhaustive search
(from the design space to the reduced design space), as
explained in Ref. [36] can be used.

All of the AI algorithms are implemented in Python
and Keras on a system with Core i7 CPU, one RTX2080
GPU, and 32 GB of RAM.
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