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Recent technological advances have lead to the development of cameras

that measure depth by means of the time-of-flight (ToF) principle [5]. ToF

cameras allow capturing an entire scene instantaneously, and thus provide

depth images in real-time. Despite the relatively low resolution, this type

of data offers a clear advantage over conventional cameras for specific

applications, such as human-machine interaction. In this paper, we pro-

pose a method that allows simultaneously recognizing the performed ac-

tivity and tracking the full-body pose of a person observed by a a single

ToF camera. Our method removes the need for identifying body parts in

sparse and noisy ToF images [4] or for fitting a skeleton using expensive

optimisation techniques [1].

The proposed method consists of learning a prior model of human

motion and using an efficient, sampling-based inference approach for ac-

tivity recognition and body tracking (Figure 1). The prior motion model is

comprised of a set of low-dimensional manifold embeddings for each ac-

tivity of interest. We generate the embeddings from full-body pose train-

ing data using a manifold learning technique [2]. Each of the embeddings

acts as a low-dimensional parametrisation of feasible body poses [3] that

we use to constrain the problem of body tracking only from depth cues.

In a generative tracking framework, we sample the low-dimensional man-

ifold embedding space by means of a particle filter and thus avoid exhaus-

tively searching the full-body pose space. This way, we are able to track

multiple pose hypotheses for different activities and to select one that is

most consistent with the observed depth cues. Our depth feature descrip-

tor, intuitively a sparse 3D human silhouette representation, can easily be

extracted from ToF images.

The overall method combines the distinctiveness of multiple local,

activity-specific motion models into a global model capable of recognis-

ing and tracking multiple activities from simple observations.
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Figure 1: The proposed full-body tracking and activity recognition

method is based on a learned motion model containing activity-specific

manifolds of feasible poses. Tracking is achieved using a particle filter.

Let y ∈ R
dy denote a full-body pose, consisting of the joint angles of a

simple skeleton body model and let s ∈ R
ds be a feature vector repre-

senting a ToF depth image. We are given a training dataset of labelled

full-body poses and ToF feature vectors {Yα
,Sα}, α ∈ {1, . . . ,M}, for M

activities of interest. The dataset is acquired with a synchronized motion

capture and ToF camera system. Each activity α contains Nα training

poses, i.e. Yα = [yα

1 , . . . ,yα

Nα

] and Sα = [sα

1 , . . . ,sα

Nα

]. During the train-

ing phase, we learn a prior motion model that consists of the following

activity-specific components:

1. Manifold embeddings Xα = [xα

1 , . . . ,xα

Nα

] generated from the full-

body pose training data Yα using Laplacian Eigenmaps [2], such

that each embedding point xα

i corresponds to a full-body pose yα

i .

2. Regression mappings f α

xs(x) and f α

xy(x), learned from training data,

that allow predicting feature vectors and full-body poses, respec-

tively, from embedding locations x.

Figure 2: Pose estimation examples for several frames of different activ-

ities. Top: Segmented input 3D ToF data of a person. Bottom: Corre-

sponding estimated (red) and ground truth (blue) full-body poses.

3. Pose likelihood priors ppose(α,x) that model the feasibility of a

pose of activity α , given by its low-dimensional representation x.

4. Activity switching priors pswitch(α,x) that model the likelihood of

switching to another activity from any embedding location x.

In the testing phase, we recognize the performed activity α̂t and predict

the full-body pose ŷt at every time step t, given only observed feature

vectors st . We model the state of our dynamic system as a pair (α̂t , x̂t) of

an activity index and a position in the corresponding manifold embedding.

For state inference, we employ a particle filter that efficiently samples the

embedding space and tracks multiple pose hypotheses.

We recorded a training and testing dataset using a ToF camera syn-

chronized with an optical motion capture system. Depth features were ex-

tracted from the ToF images according to the procedure described in the

full paper. The descriptor has ds = 48 dimensions and the manifold em-

beddings have dx = 2 dimensions. We considered 10 activities: clapping,

golfing, hurrah (arms up), jumping jack, knee bends, picking something

up, punching, scratching head, playing the violin and waving. Each of the

movements was recorded 6 times with 10 actors. Only the depth features

were used for testing, the motion capture data served as ground truth. Our

experiments were performed in a cross-validation scheme. Over all test-

ing sequences, 92% of all non-idle frames were classified as the correct

activity. Misclassification mainly occurred between activities with simi-

lar poses, such as waving and scratching head. The predicted full-body

poses deviate from the ground truth poses by 4.21◦ per joint, or alterna-

tively, by 29.1mm in 3D space (see Figure 2). The detailed evaluation in

the full paper shows that our method can reliably recognize movements

of multiple activities and precisely estimate full-body pose.
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