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Abstract have smooth and regular structure, e.g. piecewise smooth-
ness, that permits substantial dimension reduction with li
) ] _ tle or no loss of content information. For support of this
In the manifold learning problem one seeks to0 dis-t¢t one needs only consider the success of image, video
cover a smooth low dimensional surface, i.e., a manifold,,q 5udio compression algorithms, e.g. MP3, JPEG and
embedded in a higher dimensional linear vector SPaceppEG, or the widespread use of efficient computational

based on a set of measured sample points on the surfacgemetry methods for rendering smooth three dimensional
In this paper we consider the closely related problem o hapes.

estimating the manifold’s intrinsic dimension and the in-
trinsic entropy of the sample points. Specifically, we view A useful representation of a regular signal class is
the sample points as realizations of an unknown multivarito model it as a set of vectors which are constrained to a
ate density supported on an unknown smooth manifold. Wemooth low dimensional manifold embedded in a high di-
present a novel geometrical probability approach, calledmensional vector space. This manifold may in some cases
the geodesic-minimal-spanning-tree (GMST), to obtainind>e a linear, i.e., Euclidean, subspace but in general it is a
asymptotically consistent estimates of the manifold dimermon-linear curved surface. A problem of substantial recent
sion and the Rnyia-entropy of the sample density on the interest in machine learning, computer vision, signal pro-
manifold. The GMST approach is striking in its simplicity cessing and statistids [d4.114] 27| [16,[26, 35] is the determi
and does not require reconstructing the manifold or esti-nation of the so-called intrinsic dimension of the manifold
mating the multivariate density of the samples. The GMS&nd the reconstruction of the manifold from a set of sam-
method simply constructs a minimal spanning tree (MSTples from the signal class. This problem falls in the area
sequence using a geodesic edge matrix and uses the ovef-manifold learning which is concerned with discovering
all lengths of the MSTs to simultaneously estimate manilow dimensional structure in high dimensional data.

fold dimension and entropy. We illustrate the GMST ap-
proach for dimension and entropy estimation of a humar{ion
face dataset.

When the samples are drawn from a large popula-
of signals one can interpret them as realizations from
a multivariate distribution supported on the manifold. As
Keywords: Nonlinear dimensionality reduction, geomet- this distribution is singular in the higher dimensional em-
rical probability, minimal spanning trees, intrinsic adph bedding space it has zero entropy as defined by the stan-

entropy, global manifold learning, conformal embeddingsdard Lebesgue integral over the embedding space. How-
ever, when defined as a Lebesgue integral restricted to
the lower dimensional manifold the entropy can be finite.
] This finite “intrinsic” entropy can be useful for for ex-
1 Introduction ploring data compression over the manifold or, as sug-
gested in[[211], clustering of multiple sub-populations on
Consider a class of natural occurring signals, e.qg., reszbrd f[he manifol_d. The question t_hat we ao!dre_\ss_in t_his paper
: how to simultaneously estimate the intrinsic dimension

speech, audio, images, or videos. Such signals typicall R : :
have high extrinsic dimension, e.g., as characterizedéy th nd |ntr|n5|.c entropy on the manifold given a sgt of ra”d"”.‘
number of pixels in an image or the number of time Sam_sample points? We present a novel geometrical probabil-

ples in an audio waveform. However, most natural signaléty approach to this question which is based on entropic
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graph methods developed by us and reported in publicasMST as a novel method for estimating manifold dimen-
tions [23]21[°20]. sion and entropy of the samples. As in work of others on

. . . ... _dimension estimatiori [26] 8] we do not here consider the
Techniques for manifold learning can be classified.

: ) X issue of reconstruction of the complete manifold. Simi-
into three categories: linear methods, local methods, ané

lobal hods. Li hods includ incinal rly to these authors, we believe that dimension estima-
global metho s ihear methods Include principal CoM+;qy 5 entropy estimation for non-linear data are of in-
ponents analysis (PCA)25] and multidimensional scallnz

MDS) [I71. Th based Vi i erest in their own right. We also do not consider the effect
( ) IL3]. They are based on analyzing eigenstructure o f additive noise or outliers on the performance of GMST.

empirical covarianc_e ma_trice_s, and can be reliably applie inally, the consistency results of GMST reported here are
only when the manifold is a linear subspace. Local methﬁmited to domain manifolds defined by some smooth un-
ods include linear local imbedding (LLE) [32], locally lin- known mapping. The extension of GMST methodology

car p_rojecj[ions (LLP)[24], Laplacian eigenmals [4], andto general target manifolds, e.g. those defined by implicit
Hessian eigenmap&l16]. They are based on local apPPrOXly el set embedding$ 128, 128], is a worthwhile topic for
mation of the geometry of the manifold, and are computag, .o investigation o ’

tionally simple to implement. Global approaches include
ISOMAP [34] and C-ISOMAPI[[I5]. They preserve the What follows is a brief outline of the paper. We re-
manifold geometry at all scales, and have better stabilityiew some necessary background on the mathematics of
than local methods. domain manifolds in Sec2. In Se€l 3 we review the
L . asymptotic theory of entropic graphs and obtain several
We  propose a ggodesm-m|_n|maI—Spa.1nn.|ng-treeheW results required for their extension to embedded man-
(GMST) method for mgnn‘old learning that is _|mpIe- ifolds. In Sec.[# we define the general GMST algorithm.
mented as follows. ~First a complete geodesic grap'l}—'inally in Sec.[b we illustrate the GMST approach to es-

between all pairs of data samples is constructed, €.9. USifg tin g intrinsic dimension and entropy of a human face
ISOMAP or C-ISOMAP. Then a minimal spanning graph, - cat

the GMST, is obtained by pruning the complete geodesic
graph down to a subgraph that still connects all points
but has minimum total geodesic length. The intrinsic
dimension and intrinsie-entropy is then estimated from 2 Background
the GMST length functional using a simple linear least

squares (LLS) and method of moments (MOM) procedure2 1 A3DExample

The GMST method falls in the category of global ap-
proaches to manifold learning but it differs significantly To illustrate ideas consider a 2D surface embedded in
from the aforementioned methods. First, it has a differ3D Euclidean space, called the embedding space. Let
ent scope. Indeed, unlike ISOMAP and C-ISOMAP, the{il,‘l,il,‘27 ..} CcUC R? be a set of points (samples)
GMST method provides a statistically consistent estimatén a subset/ of the plane. Naturally, the shortest path
of the intrinsic entropy in addition to the intrinsic dimen- petween any paifx;, ;) of these points is given by the
sion of the manifold. To the best of our knowledge nostraight line inR? connecting them, with corresponding
other such technique has been proposed for learning magistance given by its Euclidear{) length, |z, — 2o
ifold dimension. Second, unlike local methods that workNow let U be used as a parameterization space to describe
on chunks of data in local neighborhoods, GMST works ory curved surface iR? via a mappinge : U — R3.
chunks of resampled data over the global data set. Thirsyrfacesm = ©(U) defined in this explicit manner are
for N samples the GMST method hé§ N log N) com-  called domain manifolds and they inherit the topological
putational complexity as compared with tl§ N*) com-  dimension, equal to 2 in this case, of the parameterization
plexity of an MDS ISOMAP reconstruction. Fourth, the space. Wherp is non-linear the shortest path ovi be-
GMST method is simple and elegant: it estimates intrintween pointsy;, = ¢(x;) andy; = ¢(x;) is a curve on
sic entropy and dimension by detecting the rate of increasge surface called the geodesic curve. In this paper we will
of a GMST as a function of the number of its resampledyrimarily consider domain manifolds defined by confor-
vertices. mal mappingsp. Such conformal embeddings have the
property that the length of paths on the surface are identi-

The aims of this paper are limited to introducing . o
cal to lengths of paths in the parameterization space, pos-



sibly up to a smoothly varying local scale factor. This Definition1 ¢ :  — M is called a conformal mapping
property guarantees that, regardless of how the mappin§y is a diffeomorphism (i.ey is differentiable, bijective
¢ “deforms” U onto M, the geodesic distances.ivt are  with differentiable inverse—!) and, at each point € (2,
closely related to the Euclidean distance#/inWhen this ¢ preserves the angles between tangent vectors, i.e.,
smooth surface representation holds there exist algosithm
e.g. ISOMAP and C-ISOMAF[34,115], which can be used (dpzv)” (dpgw) = c(x) v w 1)
to estimate the Euclidean distances between points in
from estimates of the geodesic distances between points fRF @ll vectorsv andw that are tangent td? at x, and
M. If a certain type of minimal spanning graph is con-¢(®) > 0 is a scaling factor that varies smoothly with
structed using these estimates well established results [ifor all z € 2, ¢(z) = 1, thenp is said to be a (global)
geometrical probability J36,21] allow us to develop sim- isometry. Ip this case the length of tangent vectors is also
ple estimates of both entropy and dimension of the pointreServed in addition to the angles between them.
distributed on the surface.
Itis easy to check that if there is an open&et 2 C
R™, then the diffeomorphism is a conformal mapping iff

2.2 Differential Geometry Setting Jo(x)" Sy () = c(x) Im, Wherel,, is them x m identity
matrix. In this case, the geodesic distanceMfican be

In the following, we recall some facts from differential ge- COMPuted as follows. Any smooth curfe: [0, 1] — M
ometry needed to formalize and generalize the ideas juS@" be represented &%) = o(v(t)), wherey : [0,1] —
described. We will consider smooth manifolds embedded? 'S & s_mopth curve ilR™. Then, the length(I") of the
in R?. For the general theory we refer the reader to am;urvel“ is given by

standard book in differential geometry (for example, [9], 1

[1Q], [7]). An m-dimensionasmooth manifold\ C R¢ (T = / iw(v(ﬂ)‘ dt

is a set such that each of its points has a neighborhood o |dt

that can be parameterized by an open seR'6fthrough 1 ) L )

a local change of coordinates. Intuitively, this means that A e (v(1) A (1) dt = /0 vely () (@) de .
althoughM is a (hyper) surface ifR?, it can be locally

identified withR", As in R™ the shortest path between any two points is

given by the straight line that connects then(¢) =
o + t(x1 — o) minimizesfo1 |%(t)| dt, over all smooth
curves with start and end pointsaf andx1, respectively.
So, if¢(x) = ¢, for all z € 2, the geodesic distance be-
tweeny, = ¢(zo) andy; = o(z1) is

Letp : © — M be a mapping between two mani-
folds, 2, M. Lety be a curve iff). Thetangent maplyz
assigns each tangent vectoto ) at pointx the tangent
vectordpgv to M at pointy(x), such that, ifv is the ini-
tial velocity of v in Q, thendpgwv is the initial velocity of
the curvep(vy) in M. For example, itc € U C Q C R™,

. d = — . 2
with U an open set oR™, thendyzv = J,(x) v, where wml(@o)s (1)) = clzo — o @
Jo = [00i/0x5], i =1,...,d, j =1,...,m,is the JaCO- \hen¢ = 1, i.e., ¢ is an isometry, the geodesic distance
bian matrix associated with at pointx € €. in M and the Euclidean distance in the parameterization

The lengthof a smooth curvé : [0,1] — M is de- SPaceR™ are the same. If > 1 (c < 1) there is a global
fined ast(T") — f()l IF(1)|dt. The geodesic distanche- expansion (contraction) in the distances between points.

tween pointsy,,y; € M is the length of the shortest It is evident from the above discussion that geodesic
(piecewise) smooth curve between the two points: distances carry strong information about a non-linear do-
main manifold such ag{. However, their computation
dai(Yo,y1) = ELAT) 1 T(0) = 9o, T(1) = 91} - requires the knowledge of the analytical form/of via ¢

and its Jacobian. In the manifold learning scenario con-

sidered in this paper this analytical form is assumed un-

_ We can now define the following types of embed-known and, instead, we are given a finite set of data points
dings. lying on the smoothn-dimensional manifold\, with m

also considered unknown. In order to reconstruct a domain



Step 1. Determine a Euclidean neighborhqod Steps one and two of ISOMAP are motivated by the

graphG of the observed datd,, accord- fact that locally any smooth manifold is approximately
ing to thee-rule or thek-rule as defined in “flat” and, so, the distances between neighboring points
ISOMAP [5]. are well approximated by their Euclidean distances. For
Step2. For isometric embeddings compute the faraway points, the geodesic distance is estimated by sum-
edge matrix¢ of the ISOMAP graph[34] ming the sequence of such local approximations over the

and for conformal imbeddings compute the shortest path through the gragh In [5] it was proved
edge matrixé of the C-ISOMAP graph that, when the data are random samples from a contin-

[M5]. The (i, ) entry of this symmetric uous distribution on the manifold, the first two steps
matrix is the sum of the lengths of the of ISOMAP recover the true geodesic distances with high
edges inG along the shortest path between probapility if the da_\ta ppints form a sufficiently “dgnse”
the pair of vertices(Y;,Y';) where the samph_ng of/\/l.and if M is free of “holes.." WhemM is a _
edge lengths between neighboring points ~ 9lobal isometric embedding R, the estimated geodesic
Y., Y, in G are defined as Euclidean dis-  distances are also an estimate of distance&"iand the
tance|Y ;-Y 5| in the case of ISOMAP o ISOMAP succeeds in its ta_sk of manifpld reconstruction.
|Y1-Y5|//M(1)M(2) in the case of C- For other types_ of embeddings, there is no gugrantee that
ISOMAP whereM (i) is the mean distanc the ISOMAP will recover the correct parameterization. In
of Y to its immediate nearest neighbors. [14], a variant of this algorithm, called C-ISOMAP, was
proposed to deal with the more general class of conformal
Table 1: First two steps of the ISOMAP/C-ISOMAP al- embeddings.

gorithms to reconstruct Euclidean distances betw&gn
on the embedding parameterization space from pgnts
over the embedded manifold

U

With regards to estimation of the intrinsic dimension
m several methods have been propo&ed [25]. Most of these
methods are based on linear projection techniques: a linear
map is explicitly constructed and dimension is estimated
by applying Principal Component Analysis (PCA), factor
analysis, or MDS to analyze the eigenstructure of the data.
manifold along with its parameterization we need to esti-These methods rely on the assumption that only a small
mate the geodesic distances between pairs of data poifigmber of the eigenvalues of the (processed) data covari-
in M and the respective Euclidean distances betweem prgmce will be significant. Linear methods tend to overesti-
images of these data points in the parameterization spaggaten, as they don’t account for non-linearities in the data.
U. Both nonlinear PCA[I27] methods and the ISOMAP cir-

WhenM is an isometric embedding the ISOMAP al- cumvent this problem but they still rely on unreliable and
gorithm [32] obtains such a reconstruction from a finite se€OSUY €igenstructure estimates. Other methods have been
of samples through estimation of the pairwise geodesic dig2"oP0sed based on local geometric techniques, e.g., esti-

tances. This estimate is computed from a Euclidean grap’Pi‘ation of 'F’Ca' _neighbo_rhoods [35] or fractal dimer_lsion
G connecting all local neighborhoods of data pointgvh [, and estimating packing numbefS]26] of the manifold.

Specifically, ISOMAP proceeds as follows. Two methods,

called thee-rule and thek-rule [34], have been proposed . )

for contructingG. The first method connects each point3  Entropic Graph Estimators on
to all points within some fixed radiusand the other con- ;

nects each point to all its-nearest neighbors. The graph Embedded Manifolds

G defining the connectivity of these local neighborhoods

is then used to approximate the geodesic distance betweért),, = Y1,...,Y,, ben independent identically dis-
any pair of points as the shortest path throGgthat con-  tributed (i.i.d.) random vectors ii0, 1]¢, with multivariate
nects them. This results in an edge matrix wh@sg) en-  Lebesgue density, which we will also call random ver-
try is the geodesic distance estimate for the)-th pair of  tices. Define the edge matréas then x n matrix of edge
points. Finally, ISOMAP obtains a smooth reconstructionlengths (w.r.t. a specified metric) between pairs of vestice
of the manifold by applying the classical Multidimensional A spanning grapf” over), is defined as the pa{V, E'}
Scaling (MDS) method [12] to the edge matrix. whereV = ), andE is a subset of edges frofwhich



connect the vertice®’. When¢& is computed from pair- Here the sum is over all edgesn the graphT’, |e| is the
wise Euclidean distancésis called a Euclidean spanning Euclidean length ot, and~y € (0,d) is called theedge
graph. exponenbr power-weighting constanEor example when
7T is the set of spanning trees oWy one obtains the MST.
minimal Euclidean graph is continuous quasi-additive
hen it satisfies several technical conditions specified in
[3€] (also seellZ23]). Continuous quasi-additive Euclidean
graphs include: the minimal spanning tree (MST), the
nearest neighbors graph-NING), the minimal matching
graph (MMG), the traveling salesman problem (TSP), and
their power-weighted variants. While all of the results in
this paper apply to this larger class of minimal graphs we
specialize to the MST for concreteness.

It has long been knowrl[3] that, when suitably nor-
malized, the sum of the edge weights of certain minima
Euclidean spanning graplis over )),, converges almost
surely (a.s.) to the limig, fRd f*(y)dy where where the
integral is interpreted in the sense of Lebesgue, (0,1)
andj3; > 0. This a.s. limit is the integral factof f*
in what we will call theextrinsic Rényi a-entropy of the
multivariate Lebesgue densify

d 1
HE () = -

—

1 “(y)dy . 3
& Rdf (v)dy 3) Beardwood-Halton-Hammersley (BHH) Theorem

[B3,[36} LetY,, be ani.i.d. set of random variables taking
In the limit, whena: — 1 we obtain the usual Shannon values inR¢ having common probability distributio#®.
entropy,— [p. f(y)log f(y)dy. Graph constructions that | et this distribution have the decompositith= F + Q
converge to the integral in the lim[fl(3) were called continu where F is the Lebesgue continuous component énis
ous quasi-additive (Euclidean) graphslinl[36] and entropighe singular component. The Lebesgue continuous compo-
(Euclidean) graphs in[21]. See the monographs by Steelgent has a Lebesgue density (no delta functions) which is
[33] and Yukich [36] for an excellent introduction to the denotedf (z), z € RY. LetLEd(yn) be the length of the

theory of such random Euclidean graphs. MST spanning/,, and assume that > 2 and0 < v < d.

The a-entropy has proved to be an important quan-1Nen
tity in signal processing, where its applications rangeiro }
vector quantizatiori [1§,31] to pattern matchingl[22] and L5 (Vn)/n® — 5(1/ [*)dy  (a.s.), ©)
image registration [21. 19]. The-entropy parameterizes Rt
the Chernoff exponent governing the minimum probability,\hare o, — (
of error [11] making it an important quantity in detection ing on the distributionP. Furthermore, the mean length
and classification problems. Like the Shannon entropy, th%[LRd(y )]/n® converges to the same limit
a-entropy also has an operational characterization in terms‘~ " 9 '
of source coding rates. 1_[13] it was shown that the The limit on the right side ofd5) in the BHH theorem
entropy of a source determines the achievable block-code zero when the distributio® has no Lebesgue continu-
rates in the sense that the probability of block decoding efeus component, i.e., whei = 0. On the other hand, when
ror converges to zero at an exponential rate with rate conp has no singular component, i.€),= 0, a consequence
stantHE’ (f). of the BHH Theorem is that

d — ~)/d and 3, is a constant not depend-

LE (V)

def d
- 1Og n(d—)/d - log Bd (6)

HY (V) =
3.1 Beardwood-Halton-Hammersley Theo-

rem in R? _ _ , _ _
is an asymptotically unbiased and strongly consistent esti
. . Rd . .
A remarkable result in geometrical probability was estabMator of the extrinsie-entropyH,, (f) defined in[(B).
lished by Beardwood, Halton and Hammersley almost half

a century ago[13]. Ley,, = {Y,...,Y,} be a set of L
points inR?. A minimal Euclidean graph spanning, is 3-2 Generalization of BHH Thm. to Embed-

defined as the graph spannidy having minimal overall ded Manifolds
length
Lgd (V) = min Z le| . (4) Ifthe vertices), = {Y,...,Y,} are constraineqi to
TeT lie on a smoothm-dimensional manifold\M < [0, 1]¢,

ecT



the distribution ofY’; is singular with respect to Lebesgue one

measure}’ = 0, and, as previously mentioned, the limit

@) in the BHH Theorem is zero. However, as shown be'LE"L(Xn) = pm-"n/mg I% () da + o(n(m—”/m), (9)
low, if M is defined by an isometric embedding from the R™

parameterization spad™, if Y; has a continuous den-
sity f on M, and if ISOMAP is used to approximate the " ) - ; , ,
geodesic edge matrix, then the length of an MST conlimits claimed in [B) ford <mandd > m are obvious.
structed from the geodesic edge matrix can be made to°r¢ = ™ the relation[(p) implies
converge, after suitable normalization and transfornmatio

wherefx is the density ofX; = o~ 1(Y’;). Therefore the

to theintrinsic a-entropyH(f) on M defined by lim LE"(X,)/ntm=0/m =3, [ (x) dx, (10)
n—oo R™
H(/!V‘(f) _m 1og/ () um(dy), (7) anditremains to show that this limit is identical to the limi
v M asserted ir[{8).
where ua(dy) denotes the differential volume element For an integrable functio#’ defined on a domain
over.M. manifold M defined by the diffeomorphism : R™ —

More generally, assume that is embedded ifo, 1]¢ M, the integral ofF" over M satisfies the relation_[10]:

through the diffeomorphism. As X; = ¢~ 1(Y;) lives

in R™, let T be the Euclidean minimal graph spannitig / F(y) pm(dy) = / F(p(x)) g(x)dr, (11)
and having length functiod®" (x,) = LE" (¢o=1(V)) M "
;c;cno(r)cfilg]getgﬁﬁf%tle%rggq): We have the following exten whereg(z) = \/m_ SpecializingF to the in-
dicator function of a small volume centered at a pajnt

] ) (@) implies the following relation between volume ele-
Theorem 1 Let M be a smooth compaet-dimensional  ents inAM andR™: pim(dy) = g(z) dz. Furthermore,
manifold embedded iff), 1]¢ through the diffeomorphism specializing toF(y) = f(y) it is clear from [IL) that
@ :R™— M. Assum& < m < dand0 < v < m. Sup- fx(z) = f(p(z))g(x). Therefore

posethaty’;,Y o, ... arei.i.d. random vectors oM hav-

ing common density with respect to Lebesgue measure

fiam ON M. Then, the length functiondl®™ (o= (),)) of - [x(@)de = /m(f(SO(-’B))g(-’B))ad-’B
the MST spanning—!(),,) satisfies
F(p(®))g® " (=) g(a)da,

. m _ r / Rm™
Tim L2 (o7 (D)) /0 8)
, which, after the change of variabde— ¢(x), is equiva-
0, d <m |entto the integral in the limi{{8). O
ezt Our goal is to learn the entropy of non-linear data on

T 2 a l_
B fM [det (J“" J“’)] 12w pamldy), d =m a domain manifold together with its intrinsic dimension,

given only the data sé¥,, of n samples in the embedding
spaceR?, and without knowledge of its embedding func-
tion . If ¢ is an isometric or conformal embedding then

0, d >m

(as.) Wh%:ea = (m - 7)/m'/ Furthermore, the it has been shown that for sufficiently dense sampling over
mean E[LS" (o~ (V,))]/n'* ~7)/* converges to the A4, ie., for largen, the ISOMAP or the C-ISOMAP al-
same limit. gorithm summarized in Tabld 1 will approximate the ma-

trix of pairwise Euclidean distances between the points

R . X o L
This theorem is a simple consequence of the relationt” = ¢ (V) in the domain spac&™ without explicit

@) in the BHH Theorem and properties of integrals ove nowledge ofp. Thus_ if one uses thi_s edge matrix_to con-
manifolds. struct a MST ovep), its length function will approximate

LE" (=1 (Y,)) and we can invoke Thnil 1 to characterize
Proof of Thm[L:By the BHH Theorem, with probability its asymptotic convergence properties. As the edge matrix



will contain approximations to the geodesic distances beBy Thm. [ the first factor on the right converges (a.s.)

tween pairs of point$Y;, Y;) this graph will be called a
geodesidVIST (GMST).

More specifically, assume that the embeddingtfs
isometric (conformal) and denote B}, the edge matrix
Enm over the pointg),, constructed by the ISOMAP (C-

ISOMAP) algorithm[5[715] as described in Table 1. Define@). By identifying (o« — 1)

thegeodesidMST T' as the minimal graph ovey,, whose
length is:
M o v
Ly (Vn) = min Z; el (12)

where|e| ¢ ranges over the? entries|e;;| o of the edge
matrix £,4 computed by ISOMAP (C-ISOMAP).

The following is the principal theoretical result of this
paper and is a simple consequences of THm. 1.

Theorem 2 Let M be a smoothn-dimensional manifold
embedded in0, 1]¢ through a conformal map : R™
M. Let2 < m < dand0 < v < m. Suppose that
Y., ....Y, arei.id. random vectors oM with common
densityf w.r.t. Lebesgue measure,, on M. Assume that
each of the edge lengths;;| o« in the edge matrix
converge a.s. top~ 1 (Y;) —¢ (Y ;)|2 asn — oo. Then,
the length functional of the GMST satisfies

Tim L) /@ 0/ (13)
00, d <m
B [og F4(y) 977 (07 (@) pa(dy), d =m
0, d >m

(a.s.) wherex = (m —~)/mandg(x) def

\/det (JTJ,).

Furthermore, the meaf[L2! V)] =1/ converges
to the same limit.
Proof of Thm[R

First express the normalized length functional

LM,) /n<d’—v>/d’ as

~

LE" (o~ (V) /n@ —1
LR e )] -

M d —y)/d
L)} (yn)/n( )/

to the the limit [B). Since the edges lengths used to con-
struct LQ/‘(JJR) converge a.s. to the edge lengths used
to constructLEm(ga*l(yn)) the term in brackets con-
verges (a.s.) to 1. Hence the normalized length func-
tional L{(Y,,) /n(¢ =7)/4 converges (a.s.) to the the limit
—v/d, x = ¢~ '(y) and

det (JIJ,) = g(¢™'(y)), for d = m the integrand on
the right of the limit[B) is equivalent to:

a—1

f(y) [det (S 4p)] 7

S

) [9(e ' (v))]

O

If m > 2, as the parametet is increased fron2 to
oo the limit (I3) in Thm.[® transitions from infinity to a
finite limit and finally to zero over three consecutive steps
d = m—1,m,m+ 1. Asd indexes the rate constant

n@=0/d" of the length functional*(Y,), this abrupt
transition suggests that the intrinsic dimensiarand the
intrinsic entropy might be easily estimated by investigat-
ing the convergence rate of the GMST’s length functional.
This observation is the basis for the estimation algorithm
introduced in the next section.

We now specialize Theorefth 2 to the following cases
of interest.

3.2.1 Isometric Imbeddings

In the case thaty defines an isometric imbedding the
ISOMAP algorithm is asymptotically able to recover the
true Euclidean distances between the pointstin =
©~1(Y,). Thus the assumption of Thild. 2 is satisfied. Fur-
thermore,J? J, = I,,. Thus, for example, wheh?*(),)

is the length of the geodesic MST constructed on the edge
matrix generated by the ISOMAP algorithm, the linfl(13)
holds with thed = m limit replaced by

B /M 12 () pa(dy).

Furthermore, m /~log (ﬁﬁ/‘ (V) /nlm=2/m _1og Bm)
converges a.s. to the intrinsic entropy (7).



3.2.2 Isometric  Imbeddings  with  Contrac- INitialize:  Using entire database of
tion/Expansion signals ), construct geodesic distance

matrix £x¢ using ISOMAP or C-ISOMAP.
Select parameters:

In the case thap defines an isometric imbedding with con-
i ) po, p1 (po<p1<mn), and N (N >0)

traction or expansion the C-ISOMAP algorithm is able to

recover the true Euclidean distances between poimt$,in for p=p o

FurthermoreJ:;wa = cl,, wherec is a constant. Thus, -0
when L}*(),) is the length of the geodesic MST con- oy N/ = 1,....,N
structed on the edge matrix generated by the C-ISOMAP Randomly select a subset of p signals Y, fron
algorithm the limit [IB) holds with thé = m limit re- Compute geodesic MST length L, over Y,
placed by L=L+1L,
end for
Bc /2 / F(y) paq(dy). Compute sample average geodesic MST length
M E[L2' (V)] = L/N

Y (mem)/m end for
Now m/vlog (Lv (Vn)/m - IOgﬁm) CoN Estimate m and HM(f) from {E[L}M(V,)]}h2p,
verges a.s. up to an unknown additive constamf2 log ¢

to the intrinsic entropy[{7). We point out that in many

signal processing applications (e.g. image registration}-‘?‘bl_e 2: GMST resampling algorithm for estimating in-
¢ dimensionn and intrinsic entropyd /M.

a constant bias on the entropy estimate does not pose'as!
problem since an estimate of the relative magnitude of the

entropy functionalis all that is required. a-entropy. However, as can be seen from the discussion in

the next section, as the rate exponent of the GMST length
depends omn we can still perform dimension estimation

3.2.3 Non-isometric Imbeddings Defined by Confor- in this case.

mal Mappings

In the case thap is a general (non-isometric) conformal 3.2.4 Non-conformal Diffeomorphic Imbeddings
mapping the C-ISOMAP algorithm is once again able to
recover the true Euclidean distances between point$in  wheny defines a general diffeomorphic embedding a re-

Furthermore,J] J, = C(w? . Thus, whenL2'(Y,) is syt analogous to Thnfl 1 easily follows giving an identi-
the length of the geodesic MST constructed on the edge

imiti i M (d'—)/d
matrix generated by the C-ISOMAP algorithm, the limit gthZ‘:tlzg trglatlonto[[B) except thaty (Vn)/n® =
[@3) holds with thel" = m limit replaced by 9

a e T —v/2d
Brn /M Foy) e () pm(dy). P /Mf () [det (JTJp)] ™ pm(ay),

whend = m. However, without an extension of the C-

In this case m/vlog (LQ/‘ (Vo) /nlm=2/m —log 3, ISOMAP algorithm that can provably learn the Euclidean
converges a.s. up to an additive constant to the weightedistances between the poins, in the parametrization
intrinsic entropy space, Thm[J2 is not applicable. To the best of our knowl-
edge such an extension of C-ISOMAP does not yet exist.
1 _ _
——log [ f(y) (e (W) mm(y) -
N “

4 GMST Algorithm

The weightedy-entropy is a “version” of the standard un-
weightedn-entropyH M (f) which is “tilted” by the space-

varying volume element oM. This unknown weighting Now that we have characterized the asymptotic lilnd (13)
makes it impossible to estimate the intrinsic unweightedf the length function of the GMST we here apply this the-



ory to jointly estimate entropy and dimension. The key isestimated using a combination of non-linear least squares
to notice that the rate of convergence is strongly dependLLS) and integer programming. Instead we take a sim-
dent onm while the rate constant in the convergent limit pler method-of-moments (MOM) approach in which we
is equal to the intrinsiei-entropy. We use this strong rate use [I6) to solve for the linear least squares (LLS) esti-
dependence as a motivation for a simple estimatarn.of matesa, b of a,b followed by inversion of the relations
Throughout we assume that the geodesic minimal grap{id). After making a simple large approximation, this
length L;‘/‘(J}n) is determined from an edge mat$,, approach yields the following estimates:

that satisfies the assumption of THth. 2, e.g., obtained using

ISOMAP or C-ISOMAP. We set the edge power weighting mo= |v/(1-a)]
in LQ/‘ (Vn)toy =1 an/d aSSl/Jme that > 2. This guar- HO/}/‘ _ @ (13 B logﬁm)
antees that.*(V,,)/n(? =7/¢ has a non-zero finite con-
vergent limit ford' = m. Next defind,, = log L2*(V,). It is easily shown that the law of large numbers and Thm.
According to [IBY., has the following approximation @ imply that this estimator is consistent as— co. We
omit the details.
ln =a logn+b+ e, (14)
A word about determination of the sequence of con-
where stants{3,, } m is in order. First of all, in the large regime
for which the above estimates were derivég, is not re-
a = (m-n9)/m, quired for the dimension estimata#,,, is the limit of the
b = logfBm+~/m H(f), (15)  normalized length functional of the Euclidean MST for a

uniform distribution on the unit cub®, 1]™. Closed form
expressions are not available but several approximations
and bounds can be used in various regimes:dB6, [Z].

The additive model{14) could be the basis for manyAnother possibility is to determing,, by simulation of
different methods for estimation of and 2. For exam- the Euclidean MST length on the-dimensional cube for
ple, we could invoke a central limit theorem on the MST uniformrandom samples. In our simulations, described be-
length functionall[l] to motivate a Gaussian approximatdow, we have used the large approximation of Bertsimas
to ¢, and apply maximum likelihood principles. How- and van Ryzin[[8]log 3, ~ v/2 log(m/2me).
ever, in this paper we adopt a simpler non-parametric least
squares strategy which is based on resampling from th
population)),, of available points inM. The algorithm
is summarized in TablEl 2. Specifically, Igt, ..., pqg,

1 < p1 < ...,< po < n, be@ integers and let
N be an integer that satisfie§/n = p for some fixed

p € (0,1]. For each value op € {p1,...,pg} gener-
ate N independent sample®’/, j = 1,..., N and from
these samples compute the empirical mean of the GMS
length functionalsL, = N*lzjilLy(yg). Defining

1l = [logL,,,...,logL,,]T, and motivated by[[14) we

a = (m — v)/m ande, is an error residual that goes to
zero a.s. ag — oo.

Before turning to the application we briefly discuss
8omputational issues. We have developed a custom im-
plementation of the MST algorithm which is a modifica-
tion of Kruskal’s algorithm([[30]. This implementation im-
plements an efficient disk radius algorithm to restrict the
search space yielding substantial runtime speedup. This
has allowed us to routinely implement the MST on tens of
Ilhousands of points.

write down the linear vector model S Appllcatlon
I=A { Z ] P (16) We performed several preliminary validation tests of the
GMST estimator on simulated data including: a linear
where manifold and the .sw_iss roll ma_nifold investigated[inl[34].
log pi log p T Due to space limitations we will nqt present results from
A= [ 1 1 Q } these validation tests. Rather we will present a very simple

example to illustrate the applicability of GMST intrinsic
Expressinga and b explicitly as functions ofn and H,  dimension and entropy estimates. For this purpose we in-
via (I3), the dimension and entropy quantities could bevestigated a set of black-and-white images of several indi-



viduals taken from the Yale Face Database B [17]. This
is a publicly available database containing face images
of 10 subjects with 585 different viewing conditions for
each subject. These consist of 9 poses and 65 illuminatic=
conditions (including ambient lighting). The images were g
taken against a fixed background which we did not bothe

to segment out. We think this is justified since any fixed 7f
structures throughout the images would not change the ir
trinsic dimension or the intrinsic entropy of the datase¢. W
randomly selected 3 individuals from this data base anig
subsampled each person’s face images down6tb a 64
pixel image. The pixels in each of the images were lexi-
cographically reordered into vectors residing in a 4096 di-

X 10 GMST Length Fuctional

6F

Ul

GMST len
D

mensional space. 3} 3 Facel
A~ Face2
We studied the dimension and entropy of each per ~% Face3
son’s face as follows. We first generated the Euclideal
nearest neighbor gragh used by ISOMAP in Step 1 (see . . . .
100 200 300 400 500 600

Table[d) for each of the three sets of 585 images. We the n
investigated the trajectory of the mean GMST as a func-

tion of n for each person’s face folio. Specificall$ x 25 Figure 1: The average geodesic MST growth rates for three

random samples (with replacement) were selected to forjifferent face images in the Yale face database B.
26 resampled face subsets of sizes ranging fiom to

585, respectively. Step 2 of the ISOMAP algorithm was
then implemented on each sample to generate 650 differ-
ent edge matrices. Subsequently the GMST was computed
from each of these edge matrices and for each of the 26
folio sizes the 25 resampled GMST length functions were
averaged to obtain 3 average GMST length sequences over
n. In the GMST implementation the edge exponentas

fixed at a value of 1. GMST Length Fuctional
135 T T

In Fig.[d the sequence of average GMST length func:
tionals is plotted for each of the three faces. The symbol
denote the locations of the 26 valueswothosen for study
and the corresponding values of the average GMST lengtl = 13}

Note that the average GMST length sequences appear §

increase almost linearly over for each of the three per- g

sons, albeit with different rate constants. However, afte ©

a log-log transformation, shown in Fill 2, it becomes evi- < 125} > Facel

dent that the linear model for the of the mean GMST lengtt k- Face2
functional is not valid for smath. Fig. 3 is a blowup of e b

Fig.[@ forn > 500 and experimentally confirms the large-

n linear behavior predicted by Thnil 2 and supports the 125 . = - =

validity of the linear model[{14). log n

Using the average GMST length sequences we next
estimated slope and intercept parametetsof the linear
model and implemented the MOM estimator of dimension
and entropy as described in the previous section. Only the
rangen > 500 was used in fitting the linear model. The

Figure 2: Log-log plot of Fig[1.
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GMST Length Fuctional method proposed has two main advantages. First, it is
' ' ' global in the sense that tyhe MST is constructed over the
13.45 1 entire and we thus avoid local linearizations. Second, un-
like previous methods it simple to implement and does not
require tuning any user-defined parameters such as eigen-

135

13.4]

13.35 . .
§ value thresholds or sizes of local neighborhoods. The
2 133 GMST methods described in this paper are currently be-
% 13.95 ing applied to a large number of dimension reduction and
R entropy characterization problems including: gene cluste

' B Facel ing in bioinformatics, Internet traffic analysis, lung ndelu

13.15 % Face2 1 classification, and radar signature analysis.

- Face3
131
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MOM estimator ofm was rounded to the nearest integer

and the parametes,, was estimated by the large ap-
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