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Abstract In this paper, we analyze in some detail the
manifold-mapping optimization technique introduced
recently [Echeverría and Hemker in space mapping and
defect correction. Comput Methods Appl Math 5(2):
107-–136, 2005]. Manifold mapping aims at accelerating
optimal design procedures that otherwise require many eva-
luations of time-expensive cost functions. We give a proof of
convergence for the manifold-mapping iteration. By means
of two simple optimization problems we illustrate the conver-
gence results derived. Finally, the performances of several
variants of the method are compared for some design pro-
blems from electromagnetics.
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1 Introduction

Optimization problems in practice often require function
evaluations that are very expensive to compute, and in most
situations gradient information is not available. This is the
case, e.g., for optimal design problems where the design
simulations are based on complex finite element computa-
tions. As a consequence, many of the optimization processes
require inconvenient long computing times.

In engineering, surrogate models have been used since
long in analysis and design [9,13,33] and recently they have
been successfully applied to solving very time-consuming
optimization problems [1,12,18,23]. In surrogate optimiza-
tion the quality of the initial approximation is iteratively
improved. A first surrogate yields the first iterate and with the
use of it, the surrogate is improved. This iterative procedure
is repeated until some stopping criteria are met.

The nature of the surrogates is problem dependent. We can
clearly distinguish two different types of surrogates. If no a
priori information is available, approximations can be obtai-
ned from scratch, in most cases combining experiment design
strategies (e.g., Latin hypercube sampling [35] or orthogo-
nal arrays [30]) with interpolation/approximation techniques
(e.g., low degree polynomials [17], kriging [28] or radial
basis functions [15]). The second type of approximations is
found in situations where, because of, e.g., experience or
simple rules of thumb, the derivation of the surrogate is sim-
plified. An example of this is the use of lumped parameter
models (e.g., magnetic [20], electric [6] or thermal [31] equi-
valent circuits).

Space mapping [4,6] is a well-known surrogate-based
optimization technique. Though it can be used in combina-
tion with any type of surrogate, it is traditionally applied
with approximations of the second type described above.
The space-mapping technique has been reported as an
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efficient minimization procedure in a large number of
cases [6].

There are many variants of the space-mapping algorithm:
aggressive space mapping (ASM) [5], trust-region aggres-
sive space mapping (TRASM) [2], neural space mapping
(NSM) [3] and implicit space mapping (ISM) [7] being the
most significant examples. Although all these schemes do not
always converge to the right solution [20], the solution obtai-
ned is generally acceptable for practical purposes. Recently,
in [8] the original space-mapping approach is modified accor-
ding to the framework proposed in [1]. At the expense of
incorporating exact gradient information, the new scheme
yields convergence to the accurate optimum.

Defect-correction theory [10] helps in understanding the
space-mapping concept. Defect correction is the underlying
basis of a great number of mathematical techniques that
essentially solve a complex problem by the iterative use
of a simpler one (e.g., Newton’s method, relaxation proce-
dures [11], iterative refinement [11] or multigrid methods
[26]). Though defect-correction theory was originally deve-
loped for linear or nonlinear systems of equations, it can
also be applied in optimization problems. Space-mapping
procedures can be seen as special cases of defect-correction
iteration [20] and this can be used to explain in which case
the space-mapping approach does or does not fail to find the
correct solution.

Manifold mapping [20] is an alternative surrogate-based
optimization technique. Manifold mapping can be used
without computing exact gradient information and it has pro-
vable convergence to the right solution. This paper presents a
thorough analysis of the manifold-mapping (MM) approach
and it is structured as follows. In Sect. 2 the basic termi-
nology and some general assumptions are introduced. The
manifold-mapping approach, together with the algorithms
derived, are described in Sect. 3. In this section it is also
shown that, under mild assumptions, the fixed point for all
MM algorithms/procedures is the accurate optimum. Conver-
gence theorems for all these schemes are given in Sect. 4 and
they are illustrated by means of two simple design problems
in Sect. 5. Finally, in this section the manifold-mapping tech-
nique is compared with other efficient methods for optimal
design problems from the field of electromagnetics.

2 Problem statement

The optimization problem Let the specification of the aim
(the data) in an optimization problem be denoted by y ∈ Y ⊂
R

m . Since the true mechanism how this aim can be achieved
can be extremely complex, or even impossible to describe
in all its details, we study it by mathematical models. Often,
such models appear in several degrees of sophistication. It
is the purpose of manifold mapping to exploit the simpler

models by combining their efficiency in computation with
the accuracy of the more complex ones. Thus, we distinguish
two types of model: fine and coarse.

The fine model The fine model response function is denoted
by f : X ⊂ R

n → R
m , and x ∈ X is the control variable.

The set X of possible control variables is usually a closed
and bounded subset of R

n . The fine model is assumed to
be accurate but expensive to evaluate. We assume that f(x)

is differentiable but its Jacobian matrix Jf (x) = df/dx is
generally supposed to be unavailable.

For the optimization problem a fine model cost function,
F(x) = |||f(x) − y||| is defined, which is a measure for the
discrepancy between the aim and a particular response of the
mathematical model. This cost function should be minimi-
zed. So we look for

x∗
f = argmin

x∈X
|||f(x) − y|||. (1)

For simplicity, in this paper we take for ||| · ||| the Euclidean
norm on R

m , denoted by ‖·‖. Not every optimization problem
is of this type, but many practical design situations can finally
be reduced to this model-specification structure.

A design is called reachable if there exists an x∗
f ∈ X

such that f(x∗
f ) = y. This situation can often be expected

when n ≥ m since in that situation the number of degrees of
freedom in the design is larger than or equal to the number of
specifications. Reachable designs can be formulated as equa-
tions and, hence, they can generally be solved as nonlinear
systems. The original defect-correction iteration [10] can be
directly applied. For this reason, in this work we will particu-
larly analyze the overdetermined case n < m. We formulate
this as our first assumption.

Assumption 1 The dimension of the space of possible aims
exceeds the dimension of the control space: n < m.

The coarse model The coarse model is denoted by c : Z ⊂
R

n → R
m with z ∈ Z the coarse model control variable. In

this work, for simplicity, we consider X = Z , but the general
case can be dealt with by the introduction of an additional
mapping p : X → Z , as used in [20]. In contrast to the
fine model, the coarse model is assumed to be cheap to eva-
luate but less accurate. For the coarse model we have the
coarse model cost function, C(z) = |||c(z) − y|||. We denote
its minimizer by x∗

c ∈ Z ,

x∗
c = argmin

z∈Z
|||c(z) − y|||. (2)

Also for this cost function we consider in this paper the Eucli-
dean norm. The Jacobian matrix Jc (z) = dc/dz can be assu-
med to be available at no significant computational cost.
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Manifold mapping: a two-level optimization technique 195

Manifolds and constraints If the functions f(x) and c(x) are
sufficiently smooth, the sets f(X) ⊂ R

m and c(X) ⊂ R
m can

be considered as differential manifolds. In the appendix we
summarize a number of manifold-related definitions (from
[36]) relevant for our discussion. For simplicity and without
loss of generality, we just consider one particular chart of the
manifold that covers a sufficiently large neighborhood of the
solution region. We thus make the following assumption.

Assumption 2 The sets f(X) and c(X) are differentiable
manifolds of class C2.

We need the concept of the tangent plane for a manifold
at a point, which is used throughout this work.

Definition 1 Let M be a differentiable manifold and v ∈ M
a point in that manifold. The tangent plane for M at v ∈ M
is defined as the affine space spanned by the Jacobian of ϕ

at x, being ϕ any chart in the atlas of the manifold such that
ϕ(x) = v.

Since we only consider one chart we will denote the tan-
gent plane for f(X) at f(x) simply by the Jacobian of f at x,
i.e., Jf (x). Thus the tangent plane is well defined. Similarly,
Jc(x) will denote the tangent plane for c(X) at c(x).

We can state a general constrained optimization problem
as follows

x∗
f = argmin

x∈X
‖f(x) − y‖, (3)

X = {
x ∈ R

n; kf (x) = 0, kf (x) ≥ 0
}
,

where f : R
n → R

m , kf : R
n → R

nk and kf : R
n → R

nk are
assumed to be differentiable, and nk and nk are the number of
equality and inequality constraints, respectively. In general
we cannot expect the model and constraints to be defined over
the entire R

n . For example, it makes no sense in many cases
to consider negative lengths. But it is common in practice
that f and kf are correctly defined in X̂ , the set where the
inequality constraints are feasible

X̂ = {x ∈ R
n; kf (x) ≥ 0}. (4)

It should be noted that box-constraints can be obtained with
a proper choice for kf (x). The inequality constraints do not
generally reduce the dimensionality of the design space and
therefore we prefer to rewrite (3) as

x∗
f = argmin

{x∈X̂; kf (x)=0}
‖f(x) − y‖. (5)

In order to have degrees of freedom left for optimization, the
number of equality constraints nk should be smaller than the
number of design variables n, i.e., nk < n. We also assume
that the set X is a differentiable manifold in R

n . We formalize
this in the following assumption.

Assumption 3 The set X is either a subset of R
n or a diffe-

rentiable manifold in R
n of dimension n − nk > 0.

Now we can write the constrained optimization problem
(5) as (1), with X a differentiable manifold.

In this work we only analyze those cases in which the
functions kf (x) and kf (x) are easy to compute (and thus it
makes sense to take Z = X ). Below in Remark 3, we indicate
how more complex constraints can be handled.

If the equality constraints kf (x) can be evaluated easily
and a chart ϕX for X = {x ∈ R

n; kf (x) = 0} in the region
of interest can be obtained with not significant computatio-
nal cost, then the constrained optimization problem can be
restated with f ◦ ϕX as the fine model and a subset of R

n−nk

as the control space.
By the above argument we assume that the equality

constraints can be eliminated and, hence, X can be considered
as a subset of R

n , understanding n as the number of design
variables left after removing the equality constraints. As a
consequence, both Jacobians Jf (x) and Jc(x) have
rank n.

If x∗
f is a local optimum of the constrained problem (3),

then it satisfies the Karush-Kuhn-Tucker (KKT) conditions
[29], i.e., there are two Lagrange multiplier vectors λ∗

f ∈ R
nk

and λ
∗
f ∈ R

nk such that

d/dx (F − λ∗ T
f kf − λ

∗ T
f kf ) (x∗

f ) = 0, (6)

kf (x∗
f ) = 0, (7)

kf (x∗
f ) ≥ 0, (8)

λ∗
f , λ

∗
f ≥ 0, (9)

diag
(
λ

∗
f · kf (x∗

f )
)

= 0, (10)

where · denotes here the vector direct product.

Remark 1 In the case of an unconstrained optimization based
on the Euclidean norm, the KKT conditions represent the
orthogonality between the tangent plane for f(X) at x∗

f and
the optimal model-specifications discrepancy f(x∗

f ) − y, i.e.,

J T
f (x∗

f ) (f(x∗
f ) − y) = 0. (11)

The following concept will be very useful when formali-
zing the similarity between models.

Definition 2 We say that an optimization problem is locally
convex at x ∈ R

n if and only if there is a neighborhood Ux of
x such that every point in Ux satisfying the KKT conditions
is a local minimizer.

The assumption for a well-defined optimization problem In
order to be sure that the problems we want to solve make
sense, we have to assume that there exist solutions for these
designs.

Assumption 4 The fine and coarse optimization problems,
characterized by y, f and c, and X , are uniquely solvable, i.e.,

∀y ∈ Y ∃! x∗
f ∈ X x∗

f (y) = argmin
x∈X

‖f(x) − y‖, (12)
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196 D. Echeverría, P. W. Hemker

and

∀y ∈ Y ∃! x∗
c ∈ X x∗

c (y) = argmin
x∈X

‖c(x) − y‖. (13)

In most practical cases this assumption is reasonable. If X is
a closed and bounded non-empty set and f and c are conti-
nuous functions, the existence of the solutions is guaranteed.
Generally, uniqueness can be achieved by properly reducing
the set X .

The assumption of well-posedness is particularly impor-
tant for the coarse model and will be discussed later (Assump-
tion 12).

3 Manifold mapping

3.1 Original manifold mapping

In [20] the manifold mapping S : c(X) → f(X) is introdu-
ced with the aim of correcting the misalignment between the
manifolds f(X) and c(X). By S, the point c(x∗

f ) is mapped to
f(x∗

f ) and the tangent plane for c(X) at c(x∗
f ) to the tangent

plane for f(X) at f(x∗
f ) (see Fig. 1). Other approaches are

possible but in this work we define S as the affine mapping

S c(x) = f(x∗
f ) + S (c(x) − c(x∗

f )), (14)

where

S = Jf (x∗
f ) J †

c (x∗
f ). (15)

Here the pseudo-inverse † is defined as J †
c (x∗

f ) = Vc �
†
c U T

c ,
being Uc, �c and Vc the factors in the singular value decom-
position of Jc(x∗

f ) = Uc �c V T
c . The matrix �

†
c is the result

of inverting the nonzero entries in �c, leaving the zeroes
invariant. It should be noted that, because Jf (x∗

f ) and Jc(x∗
f )

are both full rank, also the m × m matrix S has rank n.
The manifold-mapping solution x∗

mm is defined as

x∗
mm = argmin

x∈X
‖S c(x) − y‖. (16)

Now the combination S◦c acts as the surrogate model for f
and under some assumptions about the similarity between the
fine and the coarse model that usually hold in practice, it will
be shown below that the manifold-mapping solution x∗

mm is a
local minimizer of the fine cost function. As one may expect,
not every coarse model can be successfully used within the
manifold-mapping framework. We partly formalize this by
two assumptions:

Assumption 5 If ‖f(x) − y‖ is locally convex at x∗
f then

‖S c(x) − y‖ is also locally convex at x∗
f .

Assumption 6 If x∗
f is a local minimizer of ‖S c(x) − y‖

then x∗
f is the global optimum of ‖S c(x) − y‖.

fine model

coarse model

f(x*
f
)c(x*

c
)

y

f(x*
f
) = S c(x*

f
)

rotated and translated
       coarse model

fine model

y

Fig. 1 Manifold-mapping model alignment

These are mild assumptions for the models used in prac-
tice. Assumption 5 specifies only a similar local behavior in
the region of interest, i.e., in a neighborhood of the specifica-
tions y. Assumption 6 means that the surrogate optimization
does not introduce a spurious global optimum near the true
minimizer x∗

f .

Lemma 1 Any (local) minimizer of the fine model cost func-
tion ‖f(x) − y‖ is a (local) minimizer of ‖S c(x) − y‖.

Proof We denote a minimizer of the fine cost function by x∗
f .

First we see that x∗
f satisfies the KKT conditions associated

with (16). From (14) and (15) we have S c(x∗
f ) = f(x∗

f ) and
JS c(x∗

f ) = S Jc(x∗
f ) = Jf (x∗

f ). Thus, the first derivatives of
F(x) and of the surrogate cost function ‖S c(x)−y‖ coincide
at x∗

f . Since the constraints are the same in both optimization
problems and x∗

f is a local minimizer of F(x) (i.e., the fine
KKT conditions hold), we conclude that x∗

f satisfies the surro-
gate KKT conditions. The fine model cost function is locally
convex at x∗

f . Because of Assumption 5, the fine model opti-
mum is also a local minimizer of ‖S c(x) − y‖. 
�
Lemma 2 x∗

mm is a local minimizer of ‖f(x) − y‖.

Proof Use Lemma 1 and Assumption 6. 
�
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Manifold mapping: a two-level optimization technique 197

Remark 2 We cannot directly conclude from Lemma 1 that
x∗

mm is a minimizer of the fine cost function because the point
x∗

f could be just a local minimizer of ‖S c(x)−y‖. This agrees
with the way the two-level approach is taken into practice,
as a local manifold correction.

Remark 3 Based on the proof for Lemma 1 we can think of
a strategy for dealing with expensive constraints kf (x) and
kf (x), provided some fast-to-compute approximations kc(x)

and kc(x) are available. Analog manifold mappings for the
constraints Sk : kc(X) → kf (X) and Sk : kc(X) → kf (X)

can be defined so that

Sk kc(x∗
f ) = kf (x∗

f ), (17)

Sk kc(x∗
f ) = kf (x∗

f ), (18)

JSk kc(x
∗
f ) = Jkf (x

∗
f ), (19)

JSk kc
(x∗

f ) = Jkf
(x∗

f ), (20)

and thus again, the surrogate KKT conditions at x∗
f reproduce

the fine ones at the same point. This constraint manifold
mapping is the approach taken in [19,22].

The mapping S is not known a priori, because it depends on
the solution of the optimization problem. We propose an algo-
rithm (see Fig. 2) that, when it converges, yields—as we shall
see—both the mapping S and the desired fine model optimum
x∗

f . We will refer to this scheme as the original manifold-
mapping (OMM) algorithm. The model alignment can be
improved by an additional (right-preconditioning) mapping
p : X → Z . This mapping p is optional in the present case
where the coarse and fine control spaces Z and X coincide,
but it is obligatory when those spaces differ. For simplicity, in
the algorithm in Fig. 2 we take p = I , the identity. The opti-
mization procedure needed to compute xk+1 is not essentially
different from the one to obtain the coarse model optimum
x∗

c . Therefore, we may expect the optimization problem to
be well defined in each iteration step. However, formally this
has to be introduced as an assumption.

Fig. 2 The original manifold-mapping (OMM) algorithm

Assumption 7 The minimization

xk+1 = argmin
x∈X

‖Sk(c(x)) − y‖ (21)

is well defined for every k.

This assumption is the surrogate equivalent of Assump-
tion 4.

For the proof that, if it converges, the OMM algorithm
yields the fine model optimum, the following lemma will be
very useful.

Lemma 3 Let x̃ ∈ X be the minimizer of a surrogate model
problem

x̃ = argmin
x∈X

‖̃S c(x) − y‖, (22)

with

S̃ c(x) = f (̃x) + Jf (̃x) J †
c (̃x) (c(x) − c(̃x)), (23)

where ‖f(x) − y‖ is locally convex at x̃, then x̃ is a (local)
minimizer of ‖f(x) − y‖.

Proof Clearly, x̃ satisfies the KKT conditions associated with
‖̃S c(x) − y‖, and because of (23) we have S̃ c(̃x) = f (̃x)

and J̃S c (̃x) = Jf (̃x). Proceeding as in Lemma 1 we see
that the point x̃ satisfies also the fine KKT conditions and,
because ‖f(x)−y‖ is locally convex at x̃, this point is a (local)
minimizer of the fine cost function F(x). 
�
Remark 4 Note that from Lemma 3 it also follows that
S̃ = S.

We can replace the requirement of ‖f(x)−y‖ being locally
convex at x̃ from Lemma 3 by an assumption, very similar in
nature to Assumption 5, and also likely to hold in practice:

Assumption 8 If ‖̃S c(x) − y‖ is locally convex at x̃, then
‖f(x) − y‖ is locally convex at x̃.

Remark 5 The manifold-mapping theory is generally stated
in terms of local alignment between the surrogate model and
the fine model. As a consequence, we can only state results
concerning local optima of the fine cost function.

Now we will show that, if the OMM algorithm in Fig. 2
converges to a fixed point x, this fixed point is a (local) mini-
mizer of the fine cost function. The iterates of the OMM
algorithm are denoted by xk . Because we are studying the
fixed point situation, it may be assumed k > n.

Further, some additional mild assumptions are needed for
proving that x (locally) minimizes ‖f(x) − y‖. Since the
Jacobians Jf (x) and Jc(x) have both rank n, we expect that
the matrices �F and �C in the OMM algorithm are also
full-rank. In practice, this will generally be the case and for
the exceptional situation where it is not, minor changes in the
algorithm can be made with no real influence on the results.
So, to prevent minor details in the discussion making the
analysis much more complex, we introduce the following
assumption.

123
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Assumption 9 For k large enough, the m × n matrices �F
and �C have rank n and there are constants K1, K2 > 0
independent of k such that
(

max
i=0, ..., n−1

‖xk+1−i − x‖2
)

‖�F†‖2
2 ≤ K1, (24)

(
max

i=0, ..., n−1
‖xk+1−i − x‖2

)
‖�C†‖2

2 ≤ K2. (25)

We will see in Lemma 4 that Assumption 9, together with
the next one below, guarantees that �F �C† converges to
Jf (x) J †

c (x) and thus that Lemma 3 can be applied.

Assumption 10 For k large enough the matrix �Xk+1 defi-
ned by

�Xk+1 = [xk+1 − xk, xk+1 − xk−1, . . . , xk+1 − xk−n+1]
(26)

is regular and there is a constant K3 > 0 independent of k
such that
(

max
i=0, ..., n−1

‖xk+1−i − x‖2
)

‖�X−1
k+1‖2

2 ≤ K3. (27)

Remark 6 Assumption 10 refers to the condition of the
matrix �Xk+1 and equivalently to the scaled step directions
(xk+1−i − xk−i , with i = 0, . . . , n − 1). In the excep-
tional situations where the condition becomes too bad, the
algorithm can be easily modified in order to alleviate that.
Assumption 9 is related to Assumption 10 and to the well-
posedness of the inverse model operators (see Assumption 12
concerning the coarse model). Because c(X) is a differen-
tiable manifold we have �C ≈ Jc(x)�Xk+1 in a neighbo-
rhood of x, and thus, as it will become clear in the proof for
Lemma 4, that �C† ≈ �X−1

k+1 J †
c (x). Thus we can expect

Assumption 9 to be satisfied if Assumption 10 holds and
‖J †

c (x)‖2
2 is bounded. This last fact can be expressed as the

(general) inverse coarse model operator being Lipschitz in
the region of interest. The inequality (24) is the analogous
relation with respect to the fine model.

Lemma 4 Let the sequence of iterates xk and operators Sk+1

be defined by the OMM algorithm. Then, under Assump-
tions 9 and 10 the operators Sk+1 converge to Jf (x) J †

c (x),
where x is the fixed point of the iteration.

Proof By Assumption 9 and because f and c are differen-
tiable, we have

�F = Jf (x)�Xk+1 + Mf O

(
max

i=1,...,n
‖xk+1−i −x‖2

)
, (28)

�C = Jc(x)�Xk+1 + Mc O

(
max

i=1, ..., n
‖xk+1−i −x‖2

)
, (29)

where Mf and Mc are some m × n matrices that depend on
the smoothness of the manifolds f(X) and c(X) but not on

k. We can use a generalization of the Banach Lemma for the
inverse of a perturbed matrix [24, Theorem 6.1-2] applied to
�C and conclude that

‖�C†−�X−1
k+1J

†
c (x)‖2 ≤2‖Mc‖2 max

{
{K2, K3‖J †

c (x)‖2
2

}
.

(30)

Because of (28) and the fact that the norm of�C†−�X−1
k+1 J †

c
(x) is bounded by a constant independent of k, we obtain that
Sk+1 = �F �C† converges to Jf (x) J †

c (x). 
�

Using this result, we can apply Lemma 3 and conclude
that if the OMM algorithm converges, then the fixed point
of the iteration is a local minimizer of the fine model cost
function ‖f(x) − y‖. This is summarized in the following
theorem.

Theorem 1 Let x be the fixed point of the OMM iteration
(Fig. 2) and let the fine model cost function F(x) = ‖f(x)−y‖
be locally convex at x, then under Assumptions 1, 2, 3, 4, 7,
9 and 10 the point x is a local minimizer of F(x).

Remark 7 The assumption of local convexity of F(x) can
be replaced by Assumption 8 (model similarity) with S as in
(14), and (15).

Remark 8 The results thus far presented for the mapping pro-
posed in the OMM algorithm can be extended, by the same
arguments, to any such algorithm based on a matrix S satis-
fying S Jc(x∗

f ) = Jf (x∗
f ). In fact there is complete freedom

how S handles components in the complement of the range of
Uc. The general case is S = Jf (x∗

f ) J †
c (x∗

f )+ A (I −Uc U T
c )

with A any m × m matrix. This freedom can be used to sta-
bilize the algorithm.

3.2 Manifold mapping

In the OMM algorithm, Sk ◦c is used as the surrogate model,
i.e., it is updated during iteration, and the aim y is kept
constant. From an implementational point of view, it is inter-
esting to proceed the other way round: the model is kept fixed
and the aim is updated in each step. Then it is particularly
attractive to take for this model the available coarse model,
which is easily solved by assumption. This leads to a modi-
fication of the OMM algorithm. The procedure is shown in
Fig. 3 and we denote it simply as the MM algorithm. As in
the OMM algorithm we need an assumption to assure that
xk+1 is well-defined:

Assumption 11 In the MM algorithm, the updated aims
satisfy yk ∈ Y ∀k.

With this assumption replacing Assumption 7, we can
prove for MM a theorem similar to Theorem 1.
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Fig. 3 The manifold-mapping (MM) algorithm. Note that Tk = S†
k for

all k > 0

Theorem 2 Let x be the fixed point of the manifold-mapping
iteration (MM, Fig. 3) and let the fine model cost function
F(x) = ‖f(x)−y‖be locally convex at x, then under Assump-
tions 1, 2, 3, 4, 9, 10 and 11 the point x is a local minimizer
of F(x).

Proof Proceeding as in Lemma 4 we can see that the
sequence of operators Tk+1 = S†

k+1 converges to (Jf (x)

J †
c (x))† = Jc(x) J †

f (x). Also in the limit

x=argmin
x∈X

‖c(x) − c(x) + (Jf (x) J †
c (x))† (f(x) − y)‖.

(31)

Since c(X) is a manifold of class C2, (31) is equivalent to

x=argmin
x∈X

‖Jc(x) (x − x)+(Jf (x) J †
c (x))† (f(x) − y)‖.

(32)

Because Jc(x) and Jf (x) are full rank, we can write the former
equality as

x = argmin
x∈X

‖Jf (x) J †
c (x) Jc(x)(x − x) + f(x) − y‖. (33)

And with the same reasoning as in (31)–(32), equation (33)
is equivalent to

x = argmin
x∈X

‖Jf (x) J †
c (x) (c(x) − c(x)) + f(x) − y‖. (34)

Then Lemma 3 is applied in order to show that x is a local
minimizer of ‖f(x) − y‖. 
�

As a consequence of this theorem and by just rewriting
(31) with x a local minimizer of the fine cost function F(x),
the following interesting property for the fine model optimum
can be formulated.

Corollary 1 The fixed point of the MM iteration x∗
f satisfies

x∗
f = argmin

x∈X
‖c(x) − c(x∗

f ) + S
†
(f(x∗

f ) − y)‖. (35)

In Sect. 4 we show that both schemes, OMM and MM,
behave asymptotically the same and that the convergence
study for these two algorithms coincides.

Remark 9 By a reasoning similar to that in Remark 8 it can
be shown that the manifold-mapping algorithm can be based

on any matrix S satisfying J †
c (x∗

f ) S
† = J †

f (x∗
f ). In fact there

is complete freedom with respect to how S handles compo-
nents in the complement of the range of Uc. The general case

is S
† = Jc(x∗

f ) J †
f (x∗

f ) + (I − Uc U T
c ) A with A any m × m

matrix. In [20], the particular cases A = (I − Uf U T
f ) and

A = I are considered.

3.3 Generalized manifold mapping

The two algorithms, OMM and MM, can be generalized by
selecting any Sk for which Lemma 4 holds (i.e., Sk converges
to Jf (x) J †

c (x)). We call this more general scheme genera-
lized manifold mapping (GMM). A natural choice for Sk

would be Jf (xk) J †
c (xk). This makes sense in particular in

case the Jacobian of the fine model is available, e.g., via auto-
matic differentiation [25] or by some adjoint-based technique
[32]. But in most cases that information cannot be obtained
efficiently and, therefore, we rather write Sk = J̃f (xk) J †

c (xk),
with J̃f (xk) an approximation of Jf (xk), e.g., computed by
means of Broyden’s method [14]. In Fig. 4 the GMM scheme
corresponding to the MM algorithm is shown. If an approxi-
mation for J̃f (x0) is available, T0 = Jc(x0) J̃f (x0) could be
used as initial guess instead of the identity matrix. We consi-
der Assumption 11 to be also applicable to GMM.

Under convergence of the GMM scheme, we can also see
that again the fixed point for the iteration is the solution of the
optimization problem, x∗

f . The proof for the following theo-
rem is completely analogous to those given for Theorems 1
and 2 and is, therefore, omitted.

Theorem 3 Let x be the fixed point of the GMM algorithms
(Fig. 4) and let the fine model cost function F(x) = ‖f(x)−y‖
be locally convex at x, then under Assumptions 1, 2, 3, 4, 9,
10 and 11 the point x is a local minimizer of F(x).

Fig. 4 The generalized manifold-mapping (GMM) algorithm. Note
that Tk = S†

k for all k > 0. J̃f (xk+1) is either Jf (xk+1) in case it is
available or, in other cases, it is an estimate of it
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4 Manifold-mapping convergence proof

Here we first present conditions for convergence of the MM
algorithm and then we show that the OMM iteration can be
written in such a way that an equivalent convergence theorem
can be stated for it, with a proof analogous to that for MM.

We define the general inverse coarse operator c† : Y ⊂
R

m → X ⊂ R
n by

c† y = argmin
x∈X

‖c(x) − y‖. (36)

We notice that this operator is well-defined because of
Assumption 4. The coarse model is an essential component of
any manifold-mapping technique. We are interested in coarse
models whose associated inverse operators are
well-posed. This is formalized in the next condition that
should be satisfied by any coarse model used in practice.

Assumption 12 The general inverse coarse model operator,
c†, is Lipschitz with a Lipschitz constant bounded by Lc† .

We can write (35) and the expression for iterate xk+1 in
the MM algorithm as

x∗
f = c† (c(x∗

f ) − S
†
(f(x∗

f ) − y)), (37)

xk+1 = c† (c(xk) − S†
k (f(xk) − y)). (38)

Subtracting (37) from (38) and using Assumption 12, we get

‖xk+1 − x∗
f ‖

≤ Lc†‖c(xk) − S†
k (f(xk)−y) − c(x∗

f )+S
†
(f(x∗

f )−y)‖.
(39)

We can write the expression in the norm at the right-hand
side as

c(xk)−S†
k (f(xk)−y)−c(x∗

f )+S
†
(f(x∗

f )−y)

= c(xk)−c(x∗
f )−S†

k (f(xk)−f(x∗
f ))+(S

†−S†
k )(f(x∗

f )−y)

= (Jc(x∗
f )−S†

k Jf (x∗
f )) (xk − x∗

f )+(S
†−S†

k )(f(x∗
f ) − y)

+ O(‖xk −x∗
f ‖2). (40)

We now analyze the term (S
† − S†

k ) in (40). We proceed
as in the proof of Lemma 4, with the difference that we can-
not assume convergence of the algorithm. Since we know
the possible fixed point of the iteration, with assumptions
analogous to those for Lemma 4 (Assumptions 9 and 10) we

will be able to establish a relation between ‖S
† − S†

k ‖ and
‖x∗

f − xk‖.

Assumption 13 For k large enough, there are constants K4,
K5 > 0 independent of k such that

(
max

i=1, ..., n
‖xk+1−i − xk+1‖2

)
‖�F†‖2

2 ≤ K4, (41)

(
max

i=1, ..., n
‖xk+1−i − xk+1‖2

)
‖�C†‖2

2 ≤ K5. (42)

Assumption 14 For k large enough, there is a constant K6 >

0 independent of k such that
(

max
i=1, ..., n

‖xk+1−i − xk+1‖2
)

‖�X−1
k+1‖2

2 ≤ K6, (43)

where �Xk+1 is the square matrix defined in Assumption 10.

Remark 10 We recognize in

(
max

i=1, ..., n
‖xk+1−i − xk+1‖2

)1/2

a matrix-norm for �Xk+1. Thus, Assumption 14 can be sta-
ted in terms of κ(�Xk+1) the condition number of �Xk+1,
i.e., κ(�Xk+1) ≤ K6, with K6 > 0 a constant independent
of k. In the rare situations where linear dependence in the step
directions is obtained, the algorithm can be slightly modified,
with no significant influence in the final result, to cope with
that issue [27]. Assumption 13 can be related to the condi-
tion number of �Xk+1 and the well-posedness of the inverse
model operators in the region of interest.

Lemma 5 Under Assumptions 1, 2, 3, 4, 8, 9, 10, 11, 13 and
14, we find

‖S†
k − Jc(xk) J †

f (xk)‖ ≤ M1 max
i=0, ..., n−1

‖xk−i − x∗
f ‖, (44)

where M1 > 0 is a constant that depends on the smoothness
of the manifolds f(X) and c(X) but not on k.

Proof As in Lemma 4 we can write

�F = Jf (xk+1)�Xk+1+Mf O

(
max

i=1,...,n
‖xk+1−i −xk+1‖2

)
,

�C = Jc(xk+1)�Xk+1+Mc O

(
max

i=1,...,n
‖xk+1−i −xk+1‖2

)
,

where Mf and Mc are some m × n matrices that depend on
the smoothness of the manifolds f(X) and c(X) but not on
k. Again with [24, Theorem 6.1-2] and by Assumptions 13
and 14 we can conclude that S†

k −Jc(xk) J †
f (xk) is bounded by

a constant multiplied by maxi=1, ..., n ‖xk−i − xk‖. Clearly,
this is equivalent to S†

k − Jc(xk) J †
f (xk) being bounded by

M1 maxi=0, ..., n−1 ‖xk−i − x∗
f ‖ where M1 > 0 is a constant

that depends on the smoothness of f(X) and c(X) but not
on k. 
�

Remark 11 The constant M1 depends on the smoothness of
f(X) and c(X) (M1 = 0 if both manifolds are linear in the
neighborhood of the solution).
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Lemma 6 Under Assumptions 1, 2, 3, 4, 8, 9, 10, 11, 13 and
14, we find

‖S
† − Jc(xk) J †

f (xk)‖ ≤ M2 ‖xk − x∗
f ‖, (45)

where M2 > 0 is a constant that depends on the smoothness
of the manifolds f(X) and c(X) but not on k.

Proof We can write

S
† − Jc(xk) J †

f (xk) = Jc(x∗
f ) J †

f (x∗
f ) − Jc(xk) J †

f (xk)

= Jc(x∗
f ) J †

f (x∗
f ) − Jc(xk) J †

f (x∗
f )

+Jc(xk) J †
f (x∗

f ) − Jc(xk) J †
f (xk)

= (Jc(x∗
f ) − Jc(xk)) J †

f (x∗
f )

+Jc(xk) (J †
f (x∗

f ) − J †
f (xk)). (46)

Since f(X) and c(X) are manifolds of class C2 and the (gene-

ral) inverse operators are Lipschitz, we can bound ‖S
† −

Jc(xk) J †
f (xk)‖ by M2 ‖xk −x∗

f ‖, where M2 > 0 is a constant
that depends on the smoothness of the two manifolds but not
on k. 
�
Corollary 2 Under Assumptions 1, 2, 3, 4, 8, 9, 10, 11, 13
and 14, we have

‖S
† − S†

k ‖ ≤ M max
i=0, ..., n−1

‖xk−i − x∗
f ‖, (47)

where M > 0 is a constant that depends on the smoothness
of the manifolds f(X) and c(X) but not on k.

Proof We apply Lemmas 5 and 6 and set M =max (M1, M2).

�

Now, combining (39) and (40) we get

‖xk+1−x∗
f ‖ ≤ Lc†‖Jc(x∗

f )−S†
k Jf (x∗

f )‖‖xk −x∗
f ‖

+‖S
† − S†

k ‖ ‖f(x∗
f ) − y‖ + O(‖xk −x∗

f ‖2).

(48)

Due to (47) we can finally write

‖xk+1 − x∗
f ‖ ≤ Lc† (‖Jc(x∗

f ) − S†
k Jf (x∗

f )‖
+M‖f(x∗

f ) − y‖) max
i=0, ..., n−1

‖xk−i−x∗
f ‖

+ O(‖xk − x∗
f ‖2). (49)

We formulate this result in the following theorem.

Theorem 4 Under Assumptions 1, 2, 3, 4, 8, 9, 10, 11, 12,
13 and 14, and the condition

Lc†(‖Jc(x∗
f )−S†

k Jf (x∗
f )‖+M‖f(x∗

f )−y‖) < 1 for k ≥ k0,

(50)

where M > 0 is a constant that depends on the smoothness
of the manifolds f(X) and c(X) but not on k, the manifold-
mapping algorithm (MM, Fig. 3) yields (linear) convergence
to x∗

f .

Corollary 3 If in addition to the assumptions for Theorem 4
we have f(x∗

f ) = y (i.e., a reachable design), then the conver-
gence of the MM algorithm is superlinear.

Corollary 4 If in addition to the assumptions for Theorem 4
we have Sk = S = Jf (x∗

f ) J †
c (x∗

f ) for every k ≥ k0, then the
convergence of the MM algorithm is quadratic.

As a corollary of the following two lemmas, we will see
that—under convergence—the original (OMM) and the MM
iterations are asymptotically equivalent.

Lemma 7 If the iteration in the OMM algorithm converges,
for a large enough k we find for its iterate xk+1

xk+1

= argmin
x∈X

‖c(x)−c(xk) + S†
k (f(xk)−y) + O(‖x−xk‖2)‖.

(51)

Proof Because c(X) is differentiable in a neighborhood of
the fixed point, for a large enough k we can write

xk+1 = argmin
x∈X

‖Skc(x) − Skc(xk) + f(xk) − y‖
= argmin

x∈X
‖Sk Jc(xk) (x−xk)

+f(xk)−y+Sk O(‖x−xk‖2)‖
= argmin

x∈X
‖Sk Jc(xk) (x−xk)

+f(xk)−y+ O(‖x−xk‖2)‖, (52)

and for the last equality we remember that Sk converges to S
(Lemma 4). The iterate xk+1 can be expressed as

xk+1 = argmin
x∈X

‖Sk �C �X−1
k (x − xk)

+f(xk) − y + O(‖x − xk‖2)‖, (53)

where, for a large enough k we have O(‖x − xk‖) =
O(maxi=1, ..., n ‖xk−i − xk‖) in the Taylor expansions,
since there is convergence. Because Sk = �F �C† and
�C† �C = I , we have

xk+1 = argmin
x∈X

‖�F �X−1
k (x − xk)

+f(xk) − y + O(‖x − xk‖2)‖. (54)

Further, since �F and �C are full-rank and �Xk is regular

xk+1 = argmin
x∈X

‖�C �X−1
k (x − xk)

+S†
k (f(xk) − y) + O(‖x − xk‖2)‖. (55)

The lemma follows immediately from this last equation. 
�
Lemma 8 If the iteration in the MM algorithm converges,
for a large enough k we find for its iterate xk+1

xk+1 = argmin
x∈X

‖Sk (c(x) − c(xk)) + f(xk) − y

+ O(‖x − xk‖2)‖. (56)

Proof Analogous to that for Lemma 7. 
�
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Corollary 5 Under convergence, the OMM algorithm and
the MM algorithm are asymptotically equivalent.

Remark 12 Due to Corollary 5, Theorem 4 and Corollaries 3
and 4 are also valid for the OMM (Fig. 2) if Assumption 11
is replaced by Assumption 7.

Remark 13 By similar arguments as given for mappings
based on S = Jf (x∗

f ) J †
c (x∗

f ), analogous convergence results
can be obtained for the other versions of the algorithms as
introduced in Remarks 8 and 9.

4.1 GMM convergence proof

The proof for GMM is analogous to that for MM (by construc-
tion of Sk+1 we fulfill the conditions for Lemma 5). The two
possible GMM algorithms, corresponding to OMM and MM,
are also asymptotically equivalent. We formulate this in the
following theorem.

Theorem 5 Under Assumptions 1, 2, 3, 4, 8, 9, 10, 11, 12,
13 and 14, and the condition

Lc†

(
‖Jc(x∗

f )−S†
k Jf (x∗

f )‖+M‖f(x∗
f ) − y‖

)
<1 for k ≥ k0,

(57)

where M > 0 is a constant depending on the smoothness of
the manifolds f(X) and c(X) but not on k, the GMM algo-
rithms yield (linear) convergence to x∗

f .

Remark 14 In the case Sk+1 = Jf (xk+1) J †
c (xk+1), a lemma

analogous to Lemma 5 can be trivially proved. In some situa-
tions the constant introduced in that lemma for GMM could
be smaller than the one for MM. As a consequence, the
(linear) convergence for the GMM schemes may be faster
than for the MM iteration (see Sect. 5.1).

5 Examples

5.1 Two simple examples

First simple problem With this simple example we illustrate
the convergence Theorems 4 and 5. The fine model is defined
over X = [−1, 1] by

f(x) = [x, x2]. (58)

The set f(X) ⊂ R
2 is part of a parabola and we want to

find the point in that set closest in Euclidean norm to the
specifications y = [3/4, 0]. The coarse model is defined
over Z = X and is the linear c(x) = [x, (1+ x)/2]. Figure 5
shows a representation of the problem and the fine and coarse
cost functions, ‖f(x) − y‖2 and ‖c(x) − y‖2, respectively.
The corresponding optima are x∗

f = 0.5 and x∗
c = 0.4.
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Fig. 5 Top the sets f(X) and c(X), specifications y and f(x∗
f ) and

c(x∗
c ) for the first example. Bottom the fine and coarse cost functions,

‖f(x) − y‖2 and ‖c(x) − y‖2, respectively, for the same example

Though the two models are not specially similar around
the solution region the similarity between them is sufficient
for obtaining convergence with the manifold-mapping
approach. Since both manifolds f(X) and c(X) are smooth,
we expect a reasonable small constant M in (50) for Theo-
rem 4. The design is not reachable and therefore convergence
can be presumed to be linear for the MM and the GMM ite-
rations (see Fig. 6). In this problem it is easy to check that
both OMM and MM coincide, iterate by iterate. We see that
MM needs 17 iterations for getting |xk − x∗

f | smaller than
10−8. The GMM scheme, using the exact Jacobian, yields the
same accuracy in 13 iterations. In Fig. 6 we also check that
the constant in the linear convergence rate is smaller for the
latter algorithm. If the Jacobian is estimated by Broyden’s
method, the complete iteration history coincides with that
for MM. The reason is that for a function of one variable,
Broyden’s method coincides with the secant algorithm for
approximating a derivative, and that procedure is essentially
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Fig. 6 Convergence history for |xk − x∗
f | for the manifold-mapping

(MM) and generalized manifold-mapping (GMM) iterations for rea-
chable and non-reachable designs in the first simple example. MM∗
denotes the MM algorithm with Sk = S

the one followed in the computation of �F and �C in the
MM algorithm (not only MM and GMM use the same Jaco-
bian estimation, also the iterates x0 and x1 coincide). In the
next example, when we consider a function of two variables,
we see that the Broyden-based GMM algorithm differs signi-
ficantly from the MM algorithm.

In Fig. 6 we also observe two cases of superlinear conver-
gence for MM (cf. Corollaries 3 and 4). If we apply MM with
Sk = S (denoted by MM∗ in Fig. 6) we obtain a solution with
the same accuracy of 10−8 in only four iterations. Neverthe-
less that situation is unrealistic because the necessary infor-
mation is not available before the optimization problem has
been solved. In the case of the reachable design, given by
y = [1/2, 1/4] (yielding again x∗

f = 0.5), the solution is
obtained with an accuracy of 10−8 in six iterations. The same
superlinear convergence is observed for the GMM algorithm.

Second simple problem By means of this example with two
design variables we show that different choices for the fine
model Jacobian estimation at the kth iteration, J̃f (xk), yield
distinct convergence histories: the better J̃f (xk) approximates
Jf (xk), the smaller the constant associated with the linear
convergence. The example was introduced in [20] as a least
squares best approximation of the data vector y = [0,−0.4,

0.1] by the fine model

f(x) = f(x1, x2) = [x1 (x2 − 1)2, x1, x1 (x2 + 1)2] (59)

defined over X = R
2. It can be seen that the design is not

reachable. The coarse model

c(x) = c(x1, x2) = [−x1 + x2, x2, x1 + x2] (60)

is again linear and it is also defined over Z = X .
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Fig. 7 Convergence history for ‖xk − x∗
f ‖ for the manifold-mapping

(MM) and two different generalized manifold-mapping (GMM) ite-
rations in the second simple example (non-reachable design and a
bad correspondence between the fine and the coarse model). GMM-
Exact denotes the GMM scheme with the exact Jacobian Jf (xk).
GMM-Broyden approximates that Jacobian via Broyden’s method

We solve the problem with the MM and the GMM algo-
rithms. For GMM, two variants are compared, one with the
exact Jacobian for the fine model and the other with an
approximation based on Broyden’s method. It should be noti-
ced that for most time-expensive fine models, the availability
of the exact Jacobian is an unrealistic assumption. All the
schemes yield the fine optimum x∗

f = [−0.101, −0.141].
The convergence history for the three methods is shown in
Fig. 7. We clearly observe that the convergence is linear in all
cases and that the constant M in the convergence theorems
(mean slope of the convergence history) is different for each
algorithm. In this problem the discrepancy between fine and
coarse models in the solution region is large and this fact
is recognized in a large number of iterations compared with
the previous example. In practice, fine and coarse models
are much more similar and, hence, convergence is generally
achieved in significantly fewer iterations.

5.2 Practical examples

The next two examples are design problems from practice
[21,22]. We show that they can be solved efficiently by the
manifold-mapping approach. Since –in both cases–Jacobians
for the fine model are not available, Broyden’s method is used
to estimate Jf (xk) when the GMM iteration is used. In the
two optimal design problems the inequality constraints k(x)

are easy to compute (box constraints).

5.2.1 Coreless actuator [21]

A magnetic actuator is a device that converts magnetic energy
into mechanical force and motion. The one in Fig. 8 (left)

123



204 D. Echeverría, P. W. Hemker

Fig. 8 Geometries of the coreless (left) and automotive (right) actua-
tors. The axis of rotational symmetry is denoted by z

consists of a moving cylindrical magnet and two fixed toroi-
dal coils. It is called coreless because actuators usually have
ferromagnetic cores. The specification y is a force response
exerted on the magnet. This is specified as the force at a finite
number of displacements of the magnet along the symmetry
axis. The actuator geometry x = [x1, x2, x3, x4] (see Fig. 8)
has to be determined so that the discrepancy in the Eucli-
dean norm between the computed and specified force res-
ponse is minimized. The fine model is based on a calculation
of the forces after a finite-element computation of the vec-
tor magnetic potential formulation [34] of the axisymmetric
magnetostatic equations. In the coarse model, the force is
computed for a much simplified model, where the actuator
is represented by only a (small) number of coils. Depending
on the number of coils in the simplification, several coarse
models are obtained. The coarse model computation used
here is around 300 times faster than the fine model one. More
details on this particular problem can be found in [21].

The coreless actuator optimization results are shown in
Table 1. Both the manifold and the Broyden-based GMM
algorithms yield an acceptable design solution after only two
fine model evaluations. The number of coarse model eva-
luations is larger for the second scheme because the coarse
model Jacobian is approximated by finite differences in each
iteration step. In an earlier paper [21] the space-mapping
technique was reported to be a very efficient solver for this
problem. In order for space mapping to obtain a value for
the cost function comparable with one found by the two
manifold-mapping algorithms in Table 1, all coarse models
from [21] are considered. The best space-mapping option
found is used in our comparison.

Automotive actuator [22]

Automotive actuators are used in devices such as electro-
magnetic switches, relays, valves, etc. and they typically
generate high levels of force. The one in Fig. 8 (right) consists

of a core and a plunger, both made of iron, and a copper
coil. The design variables are the sizes x = [x1, x2] indi-
cated in the figure. Again, the specification y is a force res-
ponse exerted over the plunger, when it moves vertically.
The Euclidean norm of the difference between the computed
force for a given x and the specification y is minimized, kee-
ping the device volume constant. (Elimination of this easy-
to-compute equality constraint leads to the two mentioned
design variables.) A finite element computation for the axi-
symmetric magnetostatic equations plus a post-processing
stage make the fine model. The coarse model is based on an
equivalent magnetic circuit [16] of the actuator (analogous to
an electrical circuit) and it is around 400 times faster than the
fine one. It should be noticed that the fine model optimum x∗

f
lies on the boundary of the set X . Additional problem details
can be found in [22].

Table 2 shows the results for the automotive actuator opti-
mization. The cost function corresponding to the solutions
has a considerably larger value than in the previous example
because the specification y has a significantly larger norm.
(This cost function is not a relative measure of the force
discrepancy.) When these facts are taken into account, the
optimal cost function values are similar for both design pro-
blems. The manifold-mapping algorithm yields the solution
after three fine model function evaluations. GMM, with the
fine model Jacobian estimated via Broyden’s method, per-
forms almost identically. (The coarse model Jacobian com-
putations are recognized in a small increase in the coarse

Table 1 Optimizing the coreless actuator

# (f, c) evals Cost function

MM (2, 132) 2.2

GMM (2, 148) 2.2

SM (3, 150) 2.3

MM manifold mapping, GMM generalized manifold mapping, SM
space mapping
The second column shows the total amount of fine and coarse model eva-
luations needed in the optimization. The coarse model used is approxi-
mately 300 times faster than the fine one

Table 2 Optimizing the automotive actuator

# (f, c) evals. Cost function

MM (3, 66) 45.0

GMM (3, 78) 45.0

SM (6, 296) 45.3

SQP (12, 47) 45.0

MM manifold mapping, GMM generalized manifold mapping, SM
space mapping, SQP sequential quadratic programming
The second column shows the total amount of fine and coarse model eva-
luations needed in the optimization. The coarse model used is approxi-
mately 400 times faster than the fine one. SQP takes the coarse model
optimum x∗

c as its initial guess
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model function evaluations for GMM algorithm.) The usual
(standard) optimization method for these problems, sequen-
tial quadratic programming (SQP) [29], is applied to the
fine model cost function with the coarse model optimum x∗

c
as initial guess. A design with a cost function value com-
parable with the one obtained with the manifold-mapping
approach is obtained with almost four times the computatio-
nal cost. Space mapping, on the other side, performs faster
than sequential quadratic programming but it is less efficient
than manifold mapping. In this case we also observe the well-
know fact that standard SM does not converge to the accurate
solution [20].

6 Conclusion

Manifold mapping was introduced in [20] as an efficient two-
level approach for optimization, to be considered for very
time-demanding design problems. In this paper a number
of possible variants are identified: OMM, MM and GMM.
OMM and MM are asymptotically equivalent and they per-
form identically in most practical situations. MM is preferred
to OMM because it is easier to implement (see also [27]).
GMM represents a whole family of schemes based on the
manifold-mapping approach. If a better approximation for
Jf (xk) than �F �X−1

k is available, then GMM is recommen-
ded. In all cases, if the iteration converges, the solution of the
accurate model is the fixed point of the iteration. Conditions
for convergence have been given for all algorithms described.
By two simple examples we illustrate some of the theoretical
aspects dealt with in the paper. The practical performance of
the presented algorithms is illustrated by two cases of optimal
design in electromagnetics.

Acknowledgments We thank W. Hoffmann and D. Lahaye for their
fruitful discussions during the development of this work.

Appendix

Definitions for differentiable manifolds

Because the concept of manifold is central in our description
of the optimization methods studied in this paper, in this
appendix we summarize a number of basic notions, from
[36], related with manifolds.

Definition 1 An n-dimensional differentiable manifold of
class Ck with 1 ≤ k ≤ ∞ is a pair (M,F) consisting of an
n-dimensional, second countable, locally Euclidean space M
together with a differentiable structure of class Ck . Usually,
the differentiable manifold (M,F) is denoted as M .

Definition 2 A locally Euclidean space M of dimension n
is a Hausdorff topological space M for which each point

has a neighborhood homeomorphic to an open subset of the
Euclidean space R

n .

Definition 3 A differentiable structure F of class Ck (1 ≤
k ≤ ∞) on a locally Euclidean space M is a collection of
coordinate systems (also called an atlas of charts) {(Uα, ϕα) :
α ∈ A} satisfying:

(a)
⋃

α∈A Uα = M ,
(b) ϕα ◦ ϕ−1

β is Ck for every α, β ∈ A,
(c) the collection F is maximal with respect to (b); that

is, if (U, ϕ) is a coordinate system such that ϕ ◦ ϕ−1
α

and ϕα ◦ ϕ−1 are Ck-functions for all α ∈ A, then
(U, ϕ)∈F .
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