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MANIFOLDS OF NEGATIVE CURVATURE

BY
R. L. BISHOP AND B. O'NEILLO

1. Introduction ACm function/on a riemannian manifold M is convex provided
its hessian (second covariant differential) is positive semidefinite, or equivalently
if (/o <t)"5:0 for every geodesic a in M. We shall apply this notion in a variety of
ways to the study of manifolds of negative or nonpositive curvature.

Convexity has, of course, long been associated with negative curvature, but
convex functions seem to have been used only locally or along curves. In the first
part of this paper we give an abstract global treatment. Nonconstant convex
functions exist only on manifolds of infinite volume (2.2); the first question about
such a function on M (complete, A'á 0) is whether it has a critical point—necessarily
an absolute minimum. If not, M is diffeomorphic to a product LxR1 (3.12).
If so, much of the topology and geometry of M is determined by the minimum set
C of/. This comes about as follows. Like any set {me M \ f(m)f¿a}, C is totally
convex, that is, contains a geodesic segment a whenever it contains the endpoints
of a. Let A he an arbitrary closed, totally convex set in M. In case A is a sub-
manifold, it is totally geodesic and M is, via exponentiation, its normal bundle
(3.1). This situation does not change greatly if A is not a submanifold (e.g., 3.4);
A is always a topological manifold with boundary (possibly nonsmooth), whose
interior is a locally totally geodesic submanifold. We describe a number of geo-
metrically significant ways of constructing convex functions (4.1, 4.2, 4.8, 5.5, etc.);
these show in particular that C may or may not be a submanifold.

In the second part of the paper we define and study the mobility sequence of a
nonpositive curvature manifold M. The basic fact is that the set P(M) of common
zeroes of all Killing fields on M is a closed, totally convex submanifold (5.1).
Thus M is a vector bundle over P(M), which is totally geodesic and hence again
has K^O. The mobility sequence is then constructed by iteration: M^¡*P(M)^
■ ■ ■ -¡- Pk(M)=Q. It terminates with a submanifold that is either mobile (P(Q)
empty) or immobile (P(Q) = Q). We prove that if Q is mobile, or if ttx(M) has
nontrivial center, then (with a trivial exception) M is a product LxR1 and if also
M contains a closed geodesic then in particular M is a vector bundle over a circle
(4.9, 6.4). Since P(M) is invariant under all isometries of M, the mobility sequence
is closely related to the isometry group of M (e.g. 8.1).

We introduce the notion of warped product (or, more generally, warped bundle),
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2 R. L. BISHOP AND B. O'NEILL [November

which uses convex functions to construct a wide variety of manifolds of negative
curvature (7.5). For example, negative space forms can easily be constructed in
this way from flat space forms (7.10). The study of Killing fields on warped products
(8.2) shows in particular that the dimensions and length of mobility sequences are
restricted by only the most trivial necessary conditions (8.4).

In the final part of the paper we investigate the fundamental group and for the
principal results require strictly negative curvature, K^c<0. We begin by relating
convex functions to asymptotic geodesies, showing for example that if M admits a
strictly convex function without minimum (and is not simply connected) then there
is a unique equivalence class of asymptotic geodesies with properties decisive for
the geometry of M (9.12-9.14). Our main tool in the study of the fundamental
group is the notion of ray group: fix a point me M, then associated with each
geodesic ray p starting at m is a subgroup of -¡Tr(M) consisting of those elements
that (roughly speaking) decrease in length as they move out p. There are two types
of such ray groups, depending on whether the ray diverges or has a limit cycle
(10.10)—the latter type are always infinite cyclic. The fundamental group is the
disjoint union of its ray groups (10.11) and these have the algebraic property that
"nontrivial conjugates are disjoint" (10.12). In the compact case, for example, our
results reduce to a sharpened form (10.16) of the Preissmann result that commutative
subgroups are cyclic.

We assume that riemannian manifolds and the apparatus on them are C°° and
that manifolds are connected—unless these points are raised. By a closed geodesic
y in M we mean a nonconstant periodic geodesic y: A -> M. The closed interval
[0, 1] is denoted by I.

2. Convex functions. If/is a C°° real-valued function on a riemannian manifold
M, its hessian V2/= V df is the (0, 2) tensor field such that

V2f(X, Y) = XYf-(VxY)f
for all vector fields X, Y on M. At each point m e M, V2/is a symmetric bilinear
form on the tangent space Mm. If y is a geodesic and y denotes its tangent field,
V2/(y',y') = (/°y)".

We denote the covariant differential of a vector field X by Ax. Thus Ax is the
(1, 1) tensor field for which the value on a vector field Y is AXY=VYX. The
following properties of Ax are well known. The symmetry of Ax with respect to
the riemannian inner product is equivalent to X being locally a gradient. If
Z=grad/, then Ax is the symmetric transformation given by V2/and the metric:
V2f(Y, Z) = (AXY, Z>. The skew-symmetry of Ax is equivalent to X being a
Killing field. The trace of Ax is the divergence SX of X, that is, the derivative of
the volume expansion given by the flow transformations of X.

We say that a C° function fis strictly convex if, at each pont, V2/is positive
definite, and/is convex if, at each point, V2/is positive semidefinite. As we shall
see, convex functions arise naturally on manifolds of nonpositive curvature.
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2.1 Proposition. Let f be a convex function on a complete riemannian manifold
M. Then

(1) The critical points of fare its absolute minimum points.
(2) For each number c, the set Mc = {me M \ f(m)^c} is totally convex, that is,

contains every geodesic segment of M whose endpoints are in Mc. In particular, Mc
is connected.

(3) / is constant on each closed geodesic in M.
(4) For each value c off, the inclusion MC<=M induces a homomorphism of the

fundamental group 7r1(Mc) onto ■tt1(M).

Proof. (1) It suffices to show that if p is a critical point, it is an (absolute)
minimum point. If m e M, let t. /-> M be a geodesic segment from p to m, and
let g=f° r. Then g'(0) = 0, since p is a critical point, and g"^0, since/is convex.
Hence/(m) -f(p)=g(l)-g(0) 2: 0.

(2) If t: /-> M is a geodesic segment with/r(0)^c and/r(l)^c, then (/t)"S0
implies /t á c.

(3) If y is a closed geodesic, then by (2), fy(s) úfy(t) for all s, t e R. Thus/y is
constant.

(4) Each element of tt1(M, m), m e Mc, can be represented by a geodesic loop t
at m. But by (2), t lies in Mc.

The notion of total convexity obviously differs in an essential way from the
usual notion of convexity in a riemannian manifold [1], [2]. For example, in a
hyperboloid of revolution the minimal circle is totally convex, but a single point
is not.

We call attention to the following papers, both appearing contemporaneously in
the Annals of Mathematics: D. Gromoll and W. Meyer, Manifolds of positive
curvature; J. Cheeger and D. Gromoll, On the structure of complete manifolds of
nonnegative curvature. The notion of totally convex sets is used in both of these.
In the second, it is shown that the inclusion MC<^M above induces a homotopy
equivalence; more generally, the same result obtains for a closed totally convex set
C such that there are two points p, q in the interior of C for which all geodesic
segments from ptoq also lie in the interior of C. This condition is clearly satisfied
by Mc. Some of our results below are immediate corollaries; for example, Pro-
position 2.5 (2). However, our proofs are more elementary, since in particular we
do not use any Morse theory.

Clearly any intersection of totally convex sets is totally convex, and by the
argument for (4) above the inclusion map of a totally convex subset into M induces
a homomorphism onto of fundamental groups. Except in the case of nonpositive
curvature, the proof that this inclusion induces an isomorphism seems to require a
Morse theory argument.

According to the following proposition, many riemannian manifolds, in par-
ticular the compact ones, do not admit nontrivial convex functions.
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4 R. L. BISHOP AND B. O'NEILL [November

2.2 Proposition. If M is a complete riemannian manifold having finite volume,
then all convex functions on M are constant.

Proof. Suppose/is a nonconstant convex function. Let G = grad/and let c be
a noncritical value of /. Then cM = {m e M \ f(m)^c} is a submanifold with
boundary/" 1(c) and nonzero volume, on which G is never zero and points inward
from the boundary. Thus G/||G|| = U is a unit-length field defined on all of CM and
"complete upwards" in the sense that the flow transformations {tf>t} of U are
defined on all of CM for / ä 0. Since </>t, t > 0, maps CM properly into a set of smaller
volume, we must have that the divergence of U is negative somewhere on CM.
However, for a local orthonormal basis E1 = U, E2,..., Ed, we have

8U = 2<AuEi,Ei}
= 2<V£iC/,A¡>

= J («?> Eí)Eí pi+pf <AoEi, £>)
= ||G||A1|G||-1 + ||G||-12Va/(£'„A;).

But
E1\\G\\~1 = -<Vt,G,G>||G||-3

= -<AaU, uy\\G\\-2
= -V2/(i/, U)\\G\\~2.

This leaves 8U= ¡G\\ _1 2?-a V2/(A¡, A¡)g0, a contradiction.
Fix the notation C=C(f) for the set of critical points of a convex function/

By Proposition 2.1 (1), Cis the minimum set off. Thus if c is a nonminimum value
of/, then Mc is a manifold with boundary the level hypersurface /" 1(c). C itself
(if nonempty) is not necessarily a manifold—with or without boundary. For
example, iff is a convex function on A1 with minimum set a closed interval, then
on A2 the function f(x) +f(y) is convex with minimum set a square. The following
lemma is an easy consequence of the computations Uf=\\G\\>0 and U2f=
<VGG, G>||G||"2=V2/(i/, l/)fc0.

2.3 Lemma. Let f be convex on a complete riemannian manifold M. The normalized
gradient U (as in 2.2) is defined on M—C. Ifm$C, the integral curve a of V such
that a(0) = m is defined for all t ä 0, and fa is strictly increasing and convex. In
particular fa(t) -> oo as t ->■ oo.

2.4 Proposition. Let f be a convex function without minimum on a complete
riemannian manifold, and let L=f~\c) be a level hypersurface off Then the restric-
tion to A x (—oo, 0] of the flow of C/=grad//¡|grad/¡¡ is a diffeomorphism onto Mc.

The proof is a straightforward consequence of the preceding lemma. It follows
that cMis a strong deformation retract of M, and that/"He) is a strong deforma-
tion retract of Mc. In particular, (still assuming/has no minimum) every level
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hypersurface of f is connected, since Mc is connected. This is not necessarily the
case for a convex function with minimum, as is seen most simply by x2 on R1.

We now consider the strictly convex case.

2.5 Proposition. Let M be a complete riemannian manifold. (1) If M admits a
strictly convex function, then M contains no closed geodesies. (2) If M admits a
strictly convex function with a minimum, then M is contractible.

Proof. (1) Closed geodesies are excluded by Proposition 2.1 (3), since (/y)" = 0
contradicts strict convexity.

(2) Suppose/is a strictly convex function with nonempty minimum set C. The
hessian of/at each point of C is V2/, which is nondegenerate, so the points of C
are isolated. But C is connected by Proposition 2.1 (2), so C is a single point.
The following lemma completes the proof.

2.6 Lemma. Let M be a complete riemannian manifold and let f be a convex
function on M such that the minimum set C off is nonempty and compact. Then C is
a strong deformation retract of M.

Proof. Let Br he the compact neighborhood of C consisting of points in M at
distance not more than r from C, where r > 0.

We can choose r so small that for each m e Br there is a unique geodesic segment
which minimizes distance from m to C. For this we need only take r< 1 so that
every closed ball of radius ir and center at some point in Bx is (strictly) convex.
Suppose m e Br and that there were two minimizing geodesic segments a and ß
from C to m. The ends of a and ß which lie in C, a(0) and ß(0), are the ends of a
unique minimizing geodesic segment t. Since the isosceles triangle aßr is contained
in the convex ball with center m and radius \a\, there are points on the base r
which are at distance less than \a\ from m. But by Proposition 2.1 (2) t lies in C,
contradicting the minimality of a.

It now follows that C is a strong deformation retract of such a Br. We simply
deform Br into C by moving points uniformly along the unique minimizing seg-
ments. Fix r at such a value henceforth.

Let c be the minimum value of/on the boundary 8Br of Br. We claim Mc<^Br,
so in particular Mc is compact. Indeed, if f(m)^c and t is a minimizing geodesic
from C to m, then/is strictly increasing on t (by convexity of/and the fact that
only the point of t in C is the initial point) and m is the maximum point of/on r.
It follows that no interior point of r can be on 8Br and hence all of r lies in Br.
Note that dBr does not intersect C, so c is not a critical value off.

Let U be the normalized gradient of/, defined on M—C. Then Uf= ||grad/||
has a minimum value ;u>0 on the compact set/'^c). Now if m $ Bs, where s>r,
let t be a minimal unit speed geodesic from Mc to m. Since MC,=-BT, \r\>s — r.
We have that t'(0) is orthogonal to f~\c), so t'(0)=U(t(0)). Letting g=fr, this
shows g'(0) = p. and hence g"=i¿. Thus g(\r\)=f(m)>p.(s — r) + c. We have proved
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6 R. L. BISHOP AND B. O'NEILL [November

that M"<^BS, where b = p.(s — r) + c, which shows that M" is compact for every b.
We can now deform M into Mc by moving points backwards along the integral

curves of U. This is possible because for any m e CM, the function Uf bas a positive
lower bound on MHm) — Mc, so the integral curve must eventually reach Mc.

2.7 Remarks. By the same technique we can prove that if/is a convex function
such that/_1(c) is compact for some c, then

(1) For any two values b, b'>c of/the level hypersurfaces /" \b) and/"1^')
are compact and diffeomorphic under the flow transformation 4>v-b oftne vector
field grad//||grad/||2.

(2) If/has no minimum, M is diffeomorphic to/"1^) x A1. In fact, the flow of
grad//||grad/|2 is a diffeomorphism from f~\c)x [0, oo) onto CM.

3. Convexity and nonpositive curvature. The results of the previous section can
be strengthened when the manifold M has nonpositive curvature. For example,
2.7 (2) is obtained without the requirement that a level hypersurface be compact.

3.1 Lemma. A submanifold S of M (complete, K¿¡0) is closed and totally convex
if and only if S is totally geodesic and the exponential map exp: J_S—*■ M is a
diffeomorphism. (_j_S denotes the normal bundle of S.)

Proof. (1) Suppose S is a closed totally convex submanifold of M. Let a: 7—> S
be the unique shortest geodesic segment in S joining two points p, q which lie in
some convex neighborhood of S. To show that S is totally geodesic it suffices to
prove that a is a geodesic of M. Let ß: 1^ M be a minimal geodesic segment in M
from p to q. Since 5 is totally convex, ß lies in S. Since \ß\ S |a| the uniqueness of
a implies ß = a. Total convexity also implies that the inclusion i.S^M induces a
homomorphism i# of tt-^S) onto ttx(M). Since S is closed and totally geodesic, the
Hadamard-Herman theorem [4] asserts that exp: _|_S-> M is a diffeomorphism.
(Thus /# is an isomorphism.)

(2) Suppose S is a totally geodesic submanifold of M such that exp: \_S^ M
is a diffeomorphism. The latter condition implies that S is closed in M. Let
r:7->M be a geodesic segment in M joining points p,qeS. Since exp is a
diffeomorphism, r is fixed-endpoint homotopic to a curve in S from p to q, hence
to a geodesic y of S from p to q. But S is totally geodesic, so y is a geodesic of
M. Since K¿¡0, we have r = y, hence t lies in S.

Our aim now is to show that the content of the preceding lemma carries over,
to some extent, to arbitrary closed totally convex sets (e.g. the minimum set of a
convex function).

Let A be a totally convex subset of a complete manifold M. If p e A, then
x e Mp is tangent to A provided x is the initial velocity of some curve a that is
initially in A (that is, x = a'(0) where cc([0, e])<=^). If me M, a perpendicular from
m to A is a geodesic segment t: 7->- M such that (1) r(0) = m, (2) t(1) e A, and
(3) <t'(1), x> = 0 for every tangent jc to A at t(1). Note that if me A, then the
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1969] MANIFOLDS OF NEGATIVE CURVATURE 7

constant geodesic segment at m is the unique perpendicular from into A. In fact,
if t is a geodesic loop at me A, then t lies in A, so t(1 —/) is initially in A, whence
0^<t'(1), — t'(1)> and t is constant.

It is easy to see that the set of tangents to A at p is a convex cone in Mp. Indeed,
suppose x, y e Mp are tangents to A. It is already clear that tx, ty are tangent to A
for every /âO. Suppose that a, ß are curves in A such that a'(0) = x, ß'(0)=y. For
sufficiently small t > 0 there is a unique minimal geodesic segment yt from a(t) = yt(0)
to ß(t) = yt(l). Since A is totally convex, yt lies in A. Then for Oásá 1, T(t) = yt(s)
defines a curve in A such that t'(0) = (1— s)x + sy. An appropriate name for this
property of A would seem to be infinitesimally convex. This notion occurs in
control theory as the key property of the accessible set in the Pontryagin maximum
principle; only the manifold structure, not the riemannian structure, is involved.
Now it can be shown as in the paper of Cheeger and Gromoll (op. cit.) that a
closed totally convex set is a locally totally geodesic submanifold with possibly
nonsmooth boundary.

3.2 Lemma. Let M be a complete simply connected manifold with K^O. Let A be
a closed totally convex subset of M. Then

(1) For each me M there exists a unique perpendicular Tmfrom m to A.
(2) rm is the unique shortest geodesic segment from m to A.
(3) The function p: M^A sending m to rm(l) is a continuous retraction of M

onto A.
(4) p is distance-nonincreasing (ifK<0, distance-decreasing except for points of A).

Proof. If me M, then since A is closed, there is a point p of A nearest to m.
Let rm be the geodesic segment from m to p. Since rm is a shortest geodesic from
m to A, a standard argument shows that rm is a perpendicular to A. By a remark
above we can assume m$ A. Let a be a perpendicular from m to A and assume
a^=rm. The hypotheses on M show that Tm(l)#a(l); let y be the geodesic segment
from rm(l) to a(l). By total convexity, y lies in A. It follows easily that the angle
between y and rm at rm(l) is at least 7r/2, and similarly for the angle between y and
a at a(\). Thus the sum of the angles of the geodesic triangle yarm exceeds 77.
This contradiction shows that a = rm, proving (1) and (2). The continuity of p (in
(3)) follows from (2). To prove (4), if m, n e M let r: Ix I ^ M be the rectangle
such that r(-,v) is the geodesic segment from rm(v) to rn(v). Let L(v) be the length
of/■(-, v). A computation gives the first variation of L2 at v= 1 in terms of the inner
products used in defining perpendicularity:

L2'(\) = 2(-<r;(l), -/(])>-<T;(l),/(0)>) á 0,

where y = r(-, 1). Since K^O, and rm and t„ are geodesies, the second variation
formula [1] reduces to

—I'd *•£_ K I8r 8r\   8r      8r_ 2\       >
\8u dvj  8u      8v   J       =
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8 R. L. BISHOP AND B. O'NEILL [November

Hence A(1)^A(0); that is, d(p(m), p(n))^d(m, n). If A<0 and one of m, n is not
in A, then equality in the above formulas implies XI u(8r/8v) = 0 and 8r/8uA8r/8v = 0,
from which it easily follows that m = n.

3.3 Remark. It may be of interest to examine the case of equality of distances,
d(p(m), p(n)) = d(m, n), in a little more detail. Clearly we may assume p(m)^=p(n)
and one of m, n not in A. Since first variation vanishes, we must have that rm and
rn are both perpendicular to the geodesic segment y from p(m) to p(n). Since
second variation vanishes, we have that X/u(dr/8v) = X/v(8r/8u)=0, so the longi-
tudinal and transverse fields of r are of constant length and perpendicular to each
other. In particular, m and n are at the same distance from A. Moreover, the plane
sections spanned by these fields have zero curvature. Consequently, the interior
of r is a totally geodesic flat surface in M (but not complete).

We now eliminate the hypothesis of simple connectivity from the preceding
lemma.

3.4 Proposition. Let A be a closed totally convex set in a complete riemannian
manifold with A¿0. Then

(1) For each point me M there is a unique perpendicular omfrom m to A.
(2) om is the unique shortest geodesic segment from m to A.
(3) The function H(m, t) = am(t), (m, t)e Mxl, is a continuous deformation of M

onto A.
(4) The continuous retraction p: M —> A sending m to am(l) is distance-non-

increasing (if K<0, distance-decreasing except for points of A).

Proof. Let it: M-^^-M be the simply connected riemannian covering of M.
Clearly Ax =-n~ 1(A) is closed and totally convex. Let px : M± -» Ax be the retraction
obtained in the preceding lemma, and again, for p e Mlt let tp be the geodesic
segment from p to p^p). If S is a deck transformation, then, since 8(A1) = A1, it
follows that 8p±(p) is the nearest point of A1 to 8(p). Thus, by uniqueness of nearest
points, 8pl(p) = p18(p); that is, px commutes with every deck transformation. It
follows that 8tp = tí(p) for all p. Hence for me M the geodesic segments rp,
perr'1^), all project to the same geodesic segment om in M. Clearly om is the
unique shortest segment from m to A. Lifting to Mx also shows that om is the
unique perpendicular from m to A, thus proving (1) and (2).

Define «: MxxI-> M1 by h(p, t) = rp(t). Since p1 is continuous, so is «. But
TTfp = ctji(p) implies 7T« = 77(77 x 1), and it follows that 77 is continuous, proving (3).

For m, n e M we can choose lifts mx, «1 e Mx such that d(m, n) = d(mu nx), by
lifting a minimal geodesic from m to n. Then d(mlt n1)^d(p1(m1), ^(«¡J)^:
d(p(m), p(n)), since both />! and n are distance-nonincreasing. This proves (4);
the assertion for A<0 follows from the corresponding assertion in the lemma.

We have defined a closed geodesic to be a nonconstant periodic geodesic; how-
ever, we use the same term for a nonconstant geodesic loop y: 1^ M such that
y'(0) = y'(l).
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1969] MANIFOLDS OF NEGATIVE CURVATURE 9

3.5 Corollary. Let S be a closed totally convex subset of M (complete, A'SO).
If y : I -> M is a closed geodesic, then y is freely homotopic to a closed geodesic in A.
If y is not entirely in A, then all points of y are at the same distance from A and the
deformation takes place along a flat (finite length) cylinder with y perpendicular to
the meridians. Thus if K<0, A contains every closed geodesic of M.

Proof. Let ra = y(0) = y(l) and let rm be the perpendicular from m to A. Corre-
sponding to the rectangle used in the proof of Lemma 3.2 (viewed as being in the
simply connected covering of M) there is a rectangle in M whose longitudinal
curves are the geodesic loops in the same free homotopy class as y, based at the
points of Tm. Since the base curve, y itself, is smooth the first variation L2'(0) =
2«r;(0),y'(l)>-<T;(0),y'(0)» = 0. As before we have L2'(O)^L2'(v)^L2'(l)^0,
so L is constant, the second variation vanishes, and the deformation takes place
along a flat cylinder. The longitudinal and transverse vector fields are again
orthogonal, so the loops comprising the rectangle are smooth.

3.6 Note. The period of a closed geodesic does not have to be the same as that
of its deformation into a totally convex subset. For example, in the flat Möbius
strip the central circle is totally convex. The "parallel" closed geodesies have twice
the period and can be deformed into the central one in the above manner.

3.7 Corollary. If M (complete, K<0) admits a convex function f without
minimum, then there are no closed geodesies in M.

Proof. Since / has no minimum, f) Ma, for all values a off is empty. But by
the preceding corollary any closed geodesic of M would have to be in this inter-
section.

3.8 Remarks. (1) This result fails for K<0; for example, a (flat) circular cylinder
admits such a function and has many closed geodesies.

(2) If M (complete, A^<0) admits a convex function having a minimum, then
the minimum set contains all the closed geodesies of M.

If L is a level hypersurface of a function/on a manifold M, we denote by L+
the positive normal bundle of L, that is, the set of all vectors x in the normal bundle
\L such that x/äO. Evidently L+ is a manifold with boundary L.

3.9 Proposition. Let cbea noncritical value of a convex function fon M (complete,
K^O). Let L+ be the positive normal bundle of L—f~\c). Then

(1) The exponential map of \_L is a diffeomorphism of L+ onto CM leaving L
fixed.

(2) The resulting geodesic deformation H of CM onto L=f~\c) is length-non-
increasing. (If K<0, H is length-decreasing except on curves in L.)

Proof. If xeL+, then by definition xf^O. Since/is convex,/is nondecreasing
on the geodesic ray with initial velocity x. Hence exp maps L+ into CM. If me CM,
then since L is closed there is a shortest geodesic segment y from L to m. Minimality
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10 R. L.  BISHOP AND B. O'NEILL [November

forces y'(0), the initial velocity of y, to lie in L + , hence m e exp (L + ); that is, exp
maps L+ onto CM. That this mapping is one-one follows from the fact that perpen-
diculars to the totally convex set Mc are unique. Since geodesies do not realize
distance to a submanifold beyond the first focal point, there can be no focal points
along these perpendiculars. Hence exp is a diffeomorphism on L + .

The normal bundle J_L is diffeomorphic to the product L x R1. The deformation
H is given by the composition -n exp"1, where n: L+ ->L is the product structure
projection. If we give ]_L the product metric, -n is length-nonincreasing. Thus it
suffices to prove that exp is length-nondecreasing. This is equivalent to showing
that the lengths of L-Jacobi fields (those belonging to families of geodesies perpen-
dicular to L) are nondecreasing along perpendiculars to M°. Due to nonpositive
curvature the length squared of any Jacobi field is a convex function of its geodesic's
parameter. Thus it suffices to show that the first derivative, at the points of L, is
nonnegative.

Let A' be a nonzero vector field on L. Then X can be extended to CM so that it is
a Jacobi field along each perpendicular; this extension is not unique, but depends
also on the parametrization assigned to each perpendicular. However, every
L-Jacobi field which is nonzero on L arises in this way. For such an extension there
is a corresponding field of velocities V to the perpendiculars. On L we realize V as
the product of the gradient G off and a positive function g. Moreover, [V, X] = 0,
since V and X may be realized along each perpendicular as the longitudinal and
transverse fields of a rectangle. Thus V(X, Xy=2<yrX, X}=2<.VXV, X}
= 2(XgKG, Xy + 2g(AaX, Xy=2gV2f(X, X)>0.

If A^<0, the lengths of Jacobi fields are strictly convex, so exp increases the
lengths of vectors which are not tangent to L and not annihilated by n.

3.10 Remark. Part of what we have shown, V(X, X}^0, may be rewritten
<VXA", Vy¿0, that is, L is convex upward.

3.11 Corollary. If f is a nonconstant convex function on M (complete, K^O),
then any two level hypersurfaces off are diffeomorphic.

Proof. Let b < c be noncritical values of/ and let L=f~x(b). By assertion (1) of
the preceding proposition we can transfer the problem to L + , setting

S = exp-1(f~1(c)).

The projection n restricts to a one-one mapping of S onto L. If y is a nonconstant
geodesic ray initially normal to L, then / is strictly increasing on y, hence y is
never tangent to/_1(c). This means that a nonzero vertical tangent vector to L +
cannot be tangent to S; hence n: S^L is a diffeomorphism.

3.12 Theorem. Let f be a convex function without minimum on a complete
riemannian manifold with K^O. Then M is diffeomorphic to Lx R1, where L=f~x(b)
is any level hypersurface off.
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1969] MANIFOLDS OF NEGATIVE CURVATURE 11

Proof. It suffices to exhibit a complete vector field V on M such that (a) each
integral curve a: A -> M of V meets A for exactly one parameter value, and (b) V
is never tangent to A. In fact, if </> is the flow of V, the restriction of tp to A x A1
is the required diffeomorphism. We construct Fin two parts joined by a smoothing
operation. On M", except in the neighborhood of A defined below, V coincides
with the normalized gradient Í7=grad//||grad/||. On "M, V will consist of velocities
of unit speed geodesies normal to A.

Let A be a normal neighborhood of A in M; that is, N is the diffeomorphic
image under exp: ±.L-> M of a neighborhood N' of A in _|_A such that if xe N',
then tx e N' for all O^tS 1. It follows from Proposition 3.9 that A u "M is also
normal, being the diffeomorphic image of A' u A + . Let H7 be the unit vector field
on N u "M that is the image under exp of the obvious (positively directed) vertical
vector field on _LA. Geometrically, if f(m)>b, W(m) is the velocity at m of the
unique minimal unit-speed geodesic from A to m.

Now we smooth U and W to produce the required vector field V on M. Let g be
the Cm function on N that measures directed distance to A, that is, g is zero on A
and grad g= W. There is a C°° function r>0 on A such that for each p e A the
closed ball of radius r(p) lies in N. Extend r to N by constancy along integral
curves of W. Then set h = h*(g/r), where «* : A -> [0, 1] is a C°° function that is 1
on (-co, -1] and 0 on [0, oo).

On N, define V=hU+(l-h)W. We can suppose that <£/, W}>l/2 on A. It
follows that Vg>l/2, for Kg = <K, H/> = /í<í/, If >+ 1 -«> 1 -A/2 and «á 1.

Now we extend V from A to M by defining V to be U on M" — N and H7 on 'M.
Clearly Fis a C°° vector field on the entire manifold M. Since the norm of Kis at
most one, V is complete. The integral curve of U starting at a point me M"
eventually reaches N (by 2.3). Since Vg> 1/2 on N, the integral curve of Vstarting
at m reaches A. The integral curve of V starting at m e "M clearly reaches A at
parameter value t = - d(m, A). We know that Uf> 0 and Wf> 0, hence Vf> 0.
Thus each integral curve of V meets A exactly once, and V is never tangent to A.

3.13 Remark. Under the hypothesis of the theorem, M has at most two ends.
If M has only one end, then the level hypersurfaces of any convex function without
minimum are noncompact. Otherwise all are compact.

We shall say that a submanifold S of M (complete, A¿0) simplifies M provided
S is closed, totally convex, and every isometry of M carries S into itself. In view of
3.1 and 3.5, S then has the following properties:

3.14. S is a closed, connected, totally geodesic submanifold of M (hence is
complete with nonpositive curvature).

3.15. exp: _|_S->- M is a diffeomorphism, or equivalently, the inclusion S^M
induces an isomorphism of ^(5) onto ir^M).

3.16. Every closed geodesic of M is freely homotopic via a flat totally geodesic
cylinder to a closed geodesic in S. (If K<0, 5 contains every closed geodesic of M.)

3.17. For every </> e I(M) the restriction <f>\S is in I(S).
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12 R. L. BISHOP AND B. O'NEILL [November

3.18 Remarks. (1) Evidently if S simplifies M, then to a considerable extent the
topology and geometry of M are concentrated in M; e.g., they have the same
homotopy type and (if A'<0) the same closed geodesies.

(2) M may not have a simplifying submanifold S^=M, e.g., if M is compact.
(3) In 3.16 the two closed geodesies need not have the same period; see 3.6.
(4) Simplification is transitive; that is, if S simplifies M (complete, K^O) and T

simplifies S, then T simplifies M.
(5) Any nonempty intersection of simplifying submanifolds of M is again a

simplifying submanifold (since any intersection of totally geodesic submanifolds
is in particular a submanifold).

4. Construction of convex functions. We consider some general methods of
constructing convex and strictly convex functions.

On euclidean space (#=0) the matrix of second derivatives (d2f/8x¡ 8x/) of a
convex function is positive semidefinite and has "exact rows". Conversely, let
(F¡j) be a symmetric, positive semidefinite matrix of functions such that 2 En dx¡
is exact for 1 = i = n ; then there is a convex function / having 82f/8x¡ 8x¡ = F¡¡.
One need only integrate twice and add an arbitrary linear function.

We now collect a number of examples constructed using the riemannian distance
d.

4.1 Theorem. Let M be a complete simply connected riemannian manifold with
K^O.

(1) If S is a closed, totally geodesic submanifold of M, the C° function fs(m) =
d2(m, S) is convex. IfK<0, thenfs is strictly convex on M—S; in fact, \/2fs(y, y) = 0
for y^O if and only if y is tangent to S.

(2) In (1), if S is a single point p, thenfp is strictly convex (for K^O).
(3) If S and Tare closed totally geodesic submanifolds of M, thenfs+fT is convex

with minimum set C the set of midpoints of common perpendiculars to S and T.
(If S meets T, this means C = S n T.) Such perpendiculars join pairs (s, t) e SxT
that realize distance from S to T. If K<0, thenfs+fT is strictly convex if and only if
S and T meet in at most one point.

(4) If p. is an arbitrary positive finite measure on M with compact support, then g,
the mean square distance with respect to p, is strictly convex: g(p) = )M d2(p, m)p..
The function g has a unique minimum point. (For example, p, could be the volume
element of a compact submanifold of M.)

Proof. The later cases are easy consequences of (1), which we prove first. For
each me M there is a unique perpendicular r = rm from m to S. Furthermore,
m-> — t'(1) is the inverse of exp: _|_S->- M, so/s is C°°. Moreover,/S(/M)=|rm|2.

Let 0/ve Mm and let ß be the geodesic with initial velocity y. Then (V2/S)(j, y)
is the second variation of the squared arc length L2 for the rectangle r given by
r(u, v) = tS(v)(u). The integral term of L2" is the same as in Lemma 3.2, and is thus
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nonnegative. The endpoint terms both vanish: if Fis the transverse vector field of
r (so Y=8r/8v and Y(0) =y), the endpoint terms are <VyT, t'> evaluated at
w = 0 and w=l. The term at u = 0 vanishes because the first transverse curve ß is a
geodesic; the term at u=l vanishes because the last transverse curve lies in S,
which is totally geodesic and normal to t'(1). Thus/S is convex.

Now assume V2fs(y, y)=0. Then we must have ||VuT||=0, so Fis parallel
along t, and in particular is never zero.

If K<0, then we must have 7at' = 0; hence r'(l) = aY(l)e Sia). But t'(1) is
normal to S, hence t'(1)=0. It follows that y e Sm since t is the constant curve
T = m e S.

In (2) it suffices to assume KfíO, since in this case F(1)^0 is a contradiction.
In (3) if S meets A, then/s+/r has minimum value zero, so C=S n A, a closed

totally geodesic submanifold. In general, let me C, and let a and t be the unique
(nonconstant) perpendiculars from m to S and A, respectively. For the first variation
of A2, we compute

yfs = A2'(0) = 2<7, a')]h = -2(y, a'(0)>.

Similarly for t, we get yfT — — 2<j>, t'(0)>. Since me C and C is the set of critical
points offs+fT, it follows that a'(0) + r'(0) = 0. Thus a and rjoin to form a common
perpendicular to S and A. Furthermore, since |tr| = |a'(0)|| and |t| = ||t'(0)||, m is
the midpoint of this perpendicular. Reversing the argument, if m is such a mid-
point, then me C.

If y : /-> M is a common perpendicular from S to A, then a first variation
argument shows that y(l) is a critical point of/s| A. But/S is convex and Ais totally
geodesic, so/s|Ais convex on A. Hence y(l) is a minimum point of/s|A; that is,
d(y(0), y(l)) = d(S, A). The converse is immediate.

The K<0 assertion in (3) follows from (2), so the proof of (3) is complete.
In (4), let y be a geodesic with initial velocity y e Mm. Then (X/2g)(y, y)=.

fM (82/8t2)(0)[d2(y(t), mMm)-fM (fm ° y)"(0)pt(m) = jM (V2fm)(y, y)p(m). Thus by
(2), g is strictly convex. Let q be in the support of /x and let r be the diameter of
the support of p.. Then for any point p not in the compact ball of radius 2r at q,
we have g(p)>g(q). Thus g has at least one minimum point. But g is strictly convex,
so as noted earlier, g can have at most one minimum point.

4.2 Proposition. If </> is an isometry of M, let f0 be the square displacement
function: flt,(m) = d2(m,t/>(m)). Then fé is convex and exactly one of the following
holds: (I) </> has a fixed point. Then C is the fixed point set oftp, a closed, connected,
totally geodesic submanifold. (2) </> translates a geodesic. Then C consists of the
images of all geodesies translated by </> (and is not necessarily a submanifold).
(3) /¡, has no minimum.

Furthermore, if K<0, thenf^ is strictly convex except on the minimum set C, and
t/> translates at most one geodesic.
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14 R. L. BISHOP AND B. O'NEILL [November

Proof. For y e Mm, we compute yf0. Let a be the geodesic with initial velocity
y ; let r be the rectangle such that r( ■, v) is the geodesic segment from a(v) to </>(a(v)) ;
let Y be the associated vector field of r on y = r(-, 0). Thus for L(v)=\r(-, v)\ we
have L2=/,o«. From the first variation formula, we compute yfltl=L2'(0) =
2<T, y'>]u = 2«^*(y), y'(l)>-<>', y'(0)»- It follows that m is a nonzero critical
point of/,, if and only if </> translates the geodesic extension of y, also denoted y.
Thus exactly one of the cases (1), (2), (3) above holds. Using the second variation
formula we compute (V2f*)(y,y) = iL2-(0) = S10 {\\Y'\\2-K(Y,y')\\YAy'\\2}^0.
Hence/^ is convex. In case (1) it is well known (for any M) that the fixed point set
of an isometry is a closed totally geodesic submanifold. Here C is connected, since
C is totally convex.

Now suppose (V2/j,)(y, y)=0 for y^O. The formula above implies that Y is
parallel on y. Furthermore, assuming from now on that K < 0, it implies || Y A y \ = 0.
If y' = 0, then m is a fixed point of </>. If m is not a fixed point, then Y=p,y for some
number p. + 0. But Y(0)=y and Y(l)=<p*(y), hence in particular, </>*(y'(0)) =
Y(\)/p, = y'(\); so </> translates y. Also Y=p.y shows that y spans the nullspace of
V2fé at m—and in fact at every point of y(R). Thus y(R) has a neighborhood on
which Y2/, is nondegenerate except on y(R). This means that y(R) is a component
of C, hence by connectedness equals C.

4.3 Remarks. (1) Some of the results above extend easily to the case where M
is not simply connected. For example, if S is a closed totally convex submanifold,
then the function fs(m) = d2(m, S) is C™ since it coincides with ¡exp"1 (m)||2.
Then (1) and (3) of Theorem 4.1 hold with totally geodesic strengthened to totally
convex. In Proposition 4.2 simple connectedness was used in giving the geodesic
from m to </>(m) uniquely and smoothly. If <p = <l>x is homotopic to the identity via
a continuous homotopy {</>t}, then the geodesic in the homotopy class of the curve
t —> </>t(m) is another unique and smooth function of m. Thus the proposition follows
as before, except that "fixed point" is no longer the appropriate notion in (1).
For example, the identity on a hyperboloid of one sheet may be viewed as one
complete revolution, in which case the fixed point set is the whole surface, but the
minimum point set C consists of the points on the closed geodesic. The notion used
in (1) should be "points of zero displacement".

(2) In Theorem 4.1 (4) we have given the nontrivial part of the proof of a
well-known theorem of Cartan: If G is a compact group of isometries of a complete
simply connected manifold M with K^O, then the members of G have a common
fixed point. In fact, let p. be the volume element of an orbit under G. Then the
function g of the theorem is invariant under G, so every member of G fixes the
unique minimum point of g.

(3) The above results can be strengthened by replacing square distances by
distances, although in doing so we must deal with continuous rather than C"
functions. A continuous function/: M-^ Ris convex if for every geodesic segment
y : /-> M from any m to any n and for every v e I, we have/(y(u)) á (1 - v)f(m) + vf(n).
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This is consistent with the definition for C°° functions. We note that if/is also
nonnegative, then we may square the inequality and use the fact that (1— v)2
Sl—v, etc., to obtain/2(y(i>))S=(l —v)f2(m) + vf2(n). Thus iff is nonnegative and
convex so is/2. Hence Proposition 4.7 below is a generalization of Theorem 4.1 (1).
Before stating and proving it we need some facts about continuous convex func-
tions, some of which are well known and will be given without proof.

4.4 Lemma. Convexity is a local property ; that is, if for every me M,f is convex
in some neighborhood of m, then f is convex.

4.5 Lemma. Let f: ( — a, a) —> A be continuous (here a may be +oo). (1) If fis
convex, then the right and left derivatives f'+ andf'_ exist on all of ( — a, a) and are
nondecteasing. Hence the second derivative exists almost everywhere and is non-
negative.

(2) Iff is convex on ( — a, 0] and [0, a), andfL (0) 5J/+ (0), then f is convex.
(3) If 0 is a minimum point of f and f is convex on ( — a, 0] and [0, a), then f is

convex.

4.6 Lemma. Let M be simply connected, complete, with A.5¡0. (1) If S is a closed
totally geodesic submanifold of M, then distance to S is a convex function on M.
(2) If S is a geodesic segment in M, then distance to S is a convex function on M.

Proof. (1) Let r be the distance to S. Then by Theorem 4.1 (1), r2 is C" and
convex. Moreover, r is C°° on M—S and there we have V2r2 = 2V(r dr) = 2(dr)2
+ 2rS72r. Thus V2r is positive semidefinite on the hyperplanes annihilated by dr.
But the direction E1 =grad r is a null direction for V2r, because E^r= 1 is constant
and (V^Aj, Aj>=0for any vector field A2. Thus V2r(A2, E^) = E2l — (VE2A1)r=0.
This shows that V2r is positive semidefinite on M—S. But r takes its minimum
value on S, so r is convex on any geodesic meeting S by Lemma 4.5 (3). Hence r is
convex on M.

(2) We divide M into three parts, depending on whether the nearest point on S
is an interior point or one or the other endpoint. In the interior of any of these
parts the distance r to S is convex by (1). At the endpoints of S, r takes its minimum,
and so is convex on any geodesic through one of the endpoints by Lemma 4.5 (3).
In a neighborhood of another boundary point of the three regions, r is C1 by the
formula for first variation of arc length. Thus on a geodesic which is transverse to
the boundary r is convex by Lemma 4.5 (2). A geodesic which is tangent to the
boundary is the limit of transverse geodesies. Thus r is convex on all geodesies.

4.7 Proposition. Let M be a complete riemannian manifold with A. 5=0 and S a
closed totally convex subset of M. Then the distance to S is a continuous convex
function on M.

Proof. Let -n: M1 -> M be the simply connected covering space of M, S1 = tt~1(S),
r the distance to S, and rx the distance to Sv Then by Proposition 3.4 the segments
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whose lengths realize r are unique, so their lifts to Mx are the segments whose
lengths realize rt. It follows that r ° n = rx and we need only prove that rx is convex.
Thus we assume henceforth that M is simply connected.

Let y: /-> M be a geodesic segment from m to n. The nearest points in S to m
and n are unique, say p(m) and p(n). Let t: I^~ M be the geodesic segment from
p(m) to p(n). Since S is totally convex t(I)<=S. Letf(v) be the distance from y(v)
to t(I), so /is convex by Lemma 4.6 (2). Thus we have

r(y(v)) úf(v) = (\-v)f(0) + vf(\) = (\-v)r(y(0)) + vr(y(\)),

that is, r i$ convex.
We recall some facts about the simply connected covering -n : Mx -> M of a

manifold M: The fundamental group ttx(M)—without base point—can be con-
sidered to be the deck transformation group D of the covering. If S e D, let F(8)
be the set of all loops in M of the form i»», where a: /-> Mx is a curve such
that S(a(0)) = a(l). Then F(S) is an entire free homotopy class of loops in M. If 8
is in the center of D, then for each me M, the loops of F(S) at m constitute a
single element of ttx(M, m).

4.8 Lemma. Le/ M be complete, with A'áO. For each element 8 in the center of
ttx(M) there is a convex function f on M whose minimum set consists of the images
of all closed geodesies in the free homotopy class F(8). (Explicitly, f(m)=\ym\2,
where ym is the unique geodesic loop of F(8) at me M.) If F(8) contains no closed
geodesies, then f is strictly convex.

Proof. Let f be the square displacement function of 8, as in Proposition 4.2.
By hypothesis 8 commutes with every element of D, hence / can be factored
through M:fx=f° ir. Thus/is convex, and clearly/is the function defined in the
statement of this lemma. Since 8 has no fixed points, Proposition 4.2 says that the
minimum set Cx of/ consists of the images of all geodesies translated by S. It
follows, using the remarks above, that the minimum set C = 7r(d) off consists of
the images of all closed geodesies in F(8). If there exist no closed geodesies in F(8),
then C1=7r_1(C) is empty, so/ is strictly convex and so is/.

For negative curvature we get the following stronger result:

4.9 Theorem. Let M be a complete riemannian manifold with K<0. 7/'it1(A/) has
nontrivial center, then

(1) M is diffeomorphic to a product LxR1 unless M is a Möbius band.
(2) If there is a closed geodesic y in M, then y is simply closed and S1=y(R)

simplifies M. In particular, M is a vector bundle over S1, and y is (up to parametriza-
tion) the unique closed geodesic in M.

Proof. Let 8^1 be a central element of ^(M). In the context of the preceding
proof, Proposition 4.2 implies that S translates at most one geodesic of Mx, since
A^<0.
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If S does not translate a geodesic, then f, hence / is strictly convex without
minimum. Thus by Theorem 3.12, M is diffeomorphic to A x A1, and by Corollary
3.7, M contains no closed geodesies.

If S translates a (necessarily unique) geodesic y, then the minimum set C of the
function/is the image of the closed geodesic tt ° yin M. Since C is totally convex,
it follows that tt o y is simply closed; that is, C is a circle. By Corollary 3.5, ir o y
is essentially the only closed geodesic in M. Thus C is invariant under every iso-
metry of M, so that C simplifies M. Simplification implies that exp : ±_C -> M is a
diffeomorphism; this structures M as a vector bundle over the circle C. If M is
orientable as a manifold, or equivalently as a vector bundle, then M is diffeo-
morphic to CxAd_1. Otherwise, M is diffeomorphic to Ax Ad"2, where A is a
Möbius band containing C. Thus assertion (1) holds also in this case.

Note that the Möbius band A is a genuine exception to assertion (1) above,
since A admits a complete riemannian structure having (constant) negative
curvature.

5. Mobility. Let M be a riemannian manifold. We say that a point m of M is
mobile provided there exists a Killing vector field X on M such that X(m)^0.
Otherwise m is immobile. Let P(M) be the set of all immobile points of M. Then M
is mobile provided P(M) is empty (every point mobile), and M is immobile provided
P(M) = M (every point immobile). Of course, M can be neither mobile nor
immobile.

If M is complete, then the Lie algebra i(M) of all Killing vector fields on M is
the Lie algebra of the connected component 70(M) of the isometry group I(M) of
M. It follows that the set P(M) of immobile points of M is exactly the set of
common fixed points of all elements of 70(A/). In particular, the following are
equivalent: M immobile, i(M) = 0,1(M) discrete.

We mention a few examples. A zero-dimensional manifold is trivially immobile;
a one-dimensional manifold is mobile. A homogeneous riemannian manifold M is
mobile, since I0(M) is transitive on M. A compact manifold M with A<0 is
immobile, since it is known that I(M) is finite. We can prove this as follows: For
every Killing field X on M, the function ||.Y|| must have a maximum. Since it is
convex (see 5.5 below), it must be constant. But then every integral curve of X is a
geodesic, contradicting 5.5 unless ^=0. Thus I(M) is discrete and compact, hence
finite. (Compare [3].)

If tf> is an isometry of a complete riemannian manifold M, the fixed point set
F(</>), if nonempty, is a closed totally geodesic submanifold of M [5]. Also a non-
empty intersection of closed, totally geodesic submanifolds is again such a sub-
manifold. Thus if P(M) is nonempty (that is, M is not mobile), then P(M) is a
closed totally geodesic submanifold, since P(M) is the intersection of the fixed
point sets F(4>) for all (/> e I0(M). In general, P(M) need not be connected. We
assert that no component of P(M) is a hypersurface. In fact if P(M) contains a
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connected hypersurface S, then each </> e I0(M) leaves S pointwise fixed; thus, for
me S, (Sm)1 is one-dimensional and invariant under the rotation </>*„,. Hence ^*m
is the identity map of Mm and </> is the identity map of M. But then P(M) = M.

We get a considerably stronger description of P(M) when M has nonpositive
curvature.

5.1 Proposition. Let M be a complete riemannian manifold with K^O. IfP = P(M)
is nonempty, then P is a submanifold that simplifies M (and is not a hypersurface).
Thus P has properties 3.14-17; in particular, it is connected.

Proof. We must show that P is totally convex and invariant under all isometries
of M. Let t: /-> M be a geodesic segment joining points p,qeP. If (/> e I0(M)
there is a homotopy {</>/} in I0(M) from the identity map <£0 to <t>x = <l>- Since each </>t
fixes p and q, it follows that </> ° t is fixed-endpoint homotopic to t. Then K^O
implies <f> ° t = t; that is, every </> e I0(M) leaves t pointwise fixed. Hence t lies in P.

To prove the isometry condition, let p. e I(M). If 0 e I0(M), then p.~1</>p e IQ(M).
Thus if/? e P, we have p.~1<f>fi(p)=p. Hence p.(p) is a fixed point of every ^ e I0(M),
so /u(/;) e P.

We now show how to reduce any M (complete, A'^O) to the mobile or immobile
case, up to simplification. If P(M) is not empty, then P2(M) = P(P(M)) is well
defined. When M is complete, Â^O, so are the nonempty iterates P'(M). Thus

5.2 Corollary. If M is a complete riemannian manifold with K^O, there is a
smallest integer k such that Pk(M) is either mobile or immobile. Furthermore, Pk(M)
simplifies M, and k^\ dim M.

Proof. The simplification assertion follows from the preceding proposition, since
simplification is transitive.

To prove the last assertion, note that for l^i^k, Pi~1(M)^Pi(M). We have
seen that P\M) cannot be a hypersurface in Pi~1(M). Hence by recursion
Oádim P'(M)ádim M—2i, and the result follows.

We call this integer k, the smallest such that Pk(M) is either mobile or immobile,
the mobility grade of M. When Pk(M) is mobile, that is, Pk + 1(M) is empty, we
say that M is ultimately mobile. When Pk(M) is immobile, that is, equals Pk + 1(M),
we say that M is ultimately immobile.

For example, if Pk(M) is compact (in particular, zero-dimensional), then M is
ultimately immobile. If dim Pk(M) = \, then M is ultimately mobile, and in fact
is diffeomorphic to one of three types (for each dimension ä 3): simply connected
(Rd), the oriented vector bundle over S1 (S1xRd~1), and the nonoriented vector
bundle over S1 (BxRd~2, B=Mbbius band). If dimPk(M)^2, no conclusions
can be drawn (see Corollary 8.4).

In §8 we show that there are complete A'<0 manifolds M with arbitrary mobility
grade k S j dim M.

We recall some formulas for Killing vector fields.
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5.3 Lemma. Letf= \X\, where X is a Killing vector field on a riemannian manifold
M.Ifve Mm andf(m)^0, then

(1) vf=<.S/vX, X(m)>/f(m)=-<.(VxX)(m),v)/f(m);  hence grad/2= -2VXX.
(2) P(mW2f(v, v)= I V.JTA X(m)\\2-f2(m)K(v, X(m))\\v A X(m)\\2.
(3) X/2f2(v,v) = 2{\\X/vX\\2-K(v, X(m))\\v A X(m)\\2}. Here we need not assume

f(m)*0.
Proof. (1) Since X is a Killing field, Ax is skew-symmetric at each point. Thus

vf= v(X, X}"2 = <VVA, X(m)}/f(m) = (Axv, X(m)}/f(m)
= -<AxX(m),v}/f(m) = -<VxA(m), v}/f(m).

We also observe that grad f2 = 2/grad /
(2) Let y be the geodesic with initial velocity v, so V2/(f, f) = (/° y)"(0)- Since

the restriction of A' to y is a Jacobi field on y, the result follows from the Jacobi
differential equation and a straightforward computation. The proof of (3) is by the
same means as (2), only simpler.

The following consequence is also well known.

5.4 Corollary. A point p e M is a [nonzero] critical point of \\X\\2 if and only if
the integral curve y of X such that y(0)=p is a [nonconstant] geodesic.

We now prove an infinitesimal analogue of Proposition 4.2.

5.5 Proposition. Let X be a Killing vector field on M (complete, A 5=0). Then the
function /= || A'|| is continuous convex, and there are exactly three mutually exclusive
possibilities:

(1) X vanishes at some point of M. The set C=M° of zeros of X is a closed,
totally convex submanifold of even codimension.

(2) X has a nonconstant geodesic integral curve y. The union C of the images of
all such geodesies is a closed, totally convex set.

(3) f has no minimum points.
Furthermore: if K<0, then fis strictly convex on M—C. In (2) y is unique except

for parametrization, C=y(R) is a closed totally convex submanifold, and V2/ is
degenerate only on vectors tangent to C.

Proof. It is clear from Lemma 5.3 that/is convex wherever it is nonzero. If y is
a geodesic on which/vanishes at more than one point, then/vanishes identically
on y, so/o y is certainly convex. If/vanishes at only one point of a geodesic y,
then/o y is convex by Lemma 4.5 (3). Thus/is convex everywhere. Moreover, we
see from Corollary 5.4 that the initial statements in (1), (2), (3) are mutually exclusive
and all inclusive.

Let C be the minimum set off, so C is closed and totally convex (in particular,
connected). In (1), C=M°, and M° is a submanifold, since it is the intersection of
the fixed point sets of the isometries exp t X for all t.lf me M°, then near m, M°
coincides with the fixed point set of a single isometry tf> = exp tX, t small. Since the
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differential map <£#m is a rotation of Mm, its (+ l)-eigenspace V has even codimen-
sion in Mm. But V is the tangent space of M ° at m ; hence M ° has even codimension
in M.

In (2), the character of C follows from Corollary 5.4.
Now suppose A"<0. If O^v e Mm,f(m)^0, and X72f(v, v) = 0, then by Lemma

5.3 (2), v = aX(m) for some nonzero number a, and S7vXa X(m) = 0. But \7XX is
orthogonal to X since Ax is skew-symmetric, so VxX(m)=0 and we have case (2),
with me C. Since the nullspace of V2/is 1-dimensional, /has no other minimum
points in a tubular neighborhood of the (geodesic) integral curve y of X. Since C is
connected, we conclude that C = y(R).

All three types of Killing fields can be exhibited on hyperbolic space. In case (1)
we call X an infinitesimal rotation about M° (which in H3 must be a geodesic).
In case (2), X is an infinitesimal spiral translation along y, or just an infinitesimal
translation if Ax°y = 0. In case (3) we can consider Xto be an infinitesimal rotation
about infinity.

Note that Propositions 2.2 and 5.5 imply that if M (complete, A'<0) has finite
volume, it is immobile.

6. Ultimately mobile manifolds. By a Killing geodesic we mean a nonconstant
geodesic that is an integral curve of a Killing field. Note that if M (complete, A'SO)
contains a Killing geodesic, then M is mobile, since by Proposition 5.5 there is a
nonvanishing Killing field on M. As a partial converse we have

6.1 Lemma. If M (complete, K<0) is mobile, then every closed geodesic in M is a
Killing geodesic.

Proof. Let y be a closed geodesic in M. Since P(M) is empty, there exists a
Killing field X on M whose restriction X ° y to y is not identically zero. If X ° y is
not tangent to y, then for small t, exp tX carries y to a distinct closed geodesic that
is freely homotopic to y. But this contradicts A'<0, hence X°y(s) = h(s)y'(s).
Because VXX is orthogonal to X, h is constant (nonzero), so y is an integral curve
of X/h.

(Further conclusions in this direction are included in Theorem 6.4, since, of
course, mobile implies ultimately mobile.)

6.2 Lemma. Let y be a Killing geodesic in M (complete, K<0).
(1) If y is one-one, then M is simply connected.
(2) If y is closed, then the circle y(R) simplifies M.

Proof. Let A' be a Killing field of which y is a nonconstant integral curve. By
Proposition 5.5, P=y(R) is the minimum set of the convex function \\X\\, so P is a
closed totally convex submanifold. Thus by Lemma 3.1, exp: J_P'-> M is a
diffeomorphism. A vector bundle over R1 is trivial, which proves (1). In case (2) it
follows from Corollary 3.5 that y is essentially the only closed geodesic in M, so
every isometry of M leaves y invariant. Thus the circle y(R) simplifies M.
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We have seen that if M admits a strictly convex function, then M contains no
closed geodesies. The converse holds in the following special case :

6.3 Lemma. If M (complete, K<0) is mobile, but contains no closed geodesies,
then M admits a strictly convex function.

Proof. If M contains a nonclosed Killing geodesic, then M is simply connected
(6.2 (1)) and admits a strictly convex function (4.1 (2)). Thus we can assume that
M contains no Killing geodesies.

Let Xx, ■ ■ ■, Xn be a basis for the space i(M) of Killing fields on M. By Proposition
5.5, the function/= 2 ||A^f[|2 is strictly convex on M—C] C¡, where C( is the mini-
mum point set of ||A¡||. However, none of the X¡ fall in case (2) of Proposition 5.5,
so Ci consists of the points at which Xt vanishes. Thus (~) C¡=P(M), which is
empty, and/is strictly convex on M.

The following theorem has the same conclusion as Theorem 4.9.

6.4 Theorem. Let M be a complete riemannian manifold with K<0. If M is
ultimately mobile, then

(1) M is diffeomorphic to a product LxR1 unless M is a Möbius band.
(2) If there is a closed geodesic y in M, then y is simply closed and S1 = y(R)

simplifies M. In particular, M is a vector bundle over S1, and y is (up to parametriza-
tion) the unique closed geodesic in M.

Proof. Let Q = Pk(M), where k is the mobility grade of M. By hypothesis Q is
mobile and by Proposition 5.1, Q is a closed totally convex submanifold of M.

Suppose first that there is a closed geodesic y in M. By Corollary 3.5, y lies in Q,
and by Lemma 6.1, y is a Killing geodesic of Q. Hence by Lemma 6.2, S1=y(R)
simplifies Q. By Corollary 5.2, Q simplifies M, hence by transitivity, S1 simplifies
M. As mentioned earlier, the uniqueness of y then follows from Corollary 3.5, so
(2) is proved. Since S1 simplifies M, it follows as in the proof of Theorem 4.9 that
M is diffeomorphic to either S1 x R"-1 or fix Rd~2 (B a Möbius band). Thus (1)
holds in this case.

Now suppose that M does not contain a closed geodesic. Thus Q does not
contain a closed geodesic (since Q is totally geodesic). By Lemma 6.3, Q admits a
strictly convex function/ If/has a minimum, then Q is simply connected. Hence
M is simply connected and (1) holds trivially in this case. Finally, if/has no
minimum, then by 3.12, Q is diffeomorphic to a product L x R1. Since Q simplifies
M, M is the total space of a vector bundle ß over L x R1. It follows that M is
diffeomorphic to Nx R1, where A^ is the total space of ß\L.

6.5 Corollary (to 4.9 and 6.4). Each of the following conditions implies that M
(complete, K<0) is ultimately immobile and-nx(M) has trivial center:

(1) M contains two distinct closed geodesies.
(2) M contains a closed but not simply closed geodesic (for example, a figure

eight).
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(3) M is not diffeomorphic to a product N x A1 or to a Möbius band.
(4) M has at least three ends.

We now derive some relations between mobility and the isometry group. For
this we will use some facts about the isometry group which are either well known
or easily derived (cf. [6], pp. 47-48). If S is a closed riemannian submanifold of M
(complete), then the set of isometries E(S, M) which can be obtained as restrictions
of isometries of M forms a closed subgroup of I(S). Moreover, if S is invariant
under I(M), then the restriction homomorphism I(M) -> A(5*, M)^I(S) isa C00
map and its kernel K is isomorphic to a closed subgroup of 0(d—n), where
d=dim M, « = dimS'. (K is isomorphic to the subgroup of the linear isotropy
group at a point of S which leaves the tangent space of S fixed.) Thus we have

6.6 Proposition. (1) If S is an n-dimensional submanifold of M invariant under
I(M), then

dim7(M) 5¡ dim I(S) + dim 0(d-ri).

(2) I(M) is compact if and only if some (or every) orbit under I(M) is compact.
(3) The subgroup of I(M) leaving a compact submanifold invariant is compact.
(4) I(M) is compact if there is a compact invariant submanifold.
(5) The same statements are true with I(M) replaced by I0(M).
(6) If an isometry </> e I(M) leaves a compact submanifold S invariant, then either

</> has finite order or there is a nontrivial Killing field on M. (The subgroup {</>*} lies
in a compact subgroup of I(M), so if {tj>k} is not finite, its closure contains a one-
parameter subgroup.)

The hypothesis of (1) above is satisfied when S simplifies M. Accordingly, when
we may conclude by Theorem 4.9 or 6.4 that M is simplified by a circle we obtain
further :

6.7 Corollary. Suppose that M (complete, K<0) is ultimately mobile or tt^M)
has nontrivial center. If M contains a closed geodesic, then I(M) is compact and has
dimension at most (d2 — 3d+ 4)/2.

There is no corresponding result in the ultimately mobile case when M does not
contain a closed geodesic, since this class of manifolds includes the hyperbolic
spaces. However, we do have a sort of reverse result:

6.8 Corollary. If M (complete, K<0) has I0(M) noncompact, then M is
ultimately mobile and contains no closed geodesies.

This is more evident in its contrapositive form :

6.9 Corollary. If M (complete, K<0) is ultimately immobile, then I0(M) is
compact.

Proof. By hypothesis M is simplified by Q = Pk(M) with 7(0 discrete. Thus
p: I(M) -*■ I(Q) has a compact kernel containing I0(M) as a closed subgroup.
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7. Warped products. This notion (and a generalization given at the end of this
section) will be used to construct a large class of complete manifolds of negative
curvature. A riemannian product cannot, of course, have negative curvature, but
we can achieve it (Theorem 7.5) by altering the product riemannian structure as
follows : Let B and F be riemannian manifolds and /> 0 a differentiable function
on B. Consider the product (differentiable) manifold BxF with its projections
77: BxF—>B and r¡: 5xF—> F. The warped product M = Bx ¡F is the manifold
BxF furnished with the riemannian structure such that

H2 = M*)l"+A«w)M*)l"
for every tangent vector x e Mm.

For example, every surface of revolution (not crossing the axis of revolution) is
isometric to a warped product, with B the generating curve, F the circle of unit
radius, and/(6) the distance from b e B to the axis of revolution.

7.1 Remarks. Let M=Bx,F.
(1) For each/7 e F the restriction of n to the horizontal leafri'1(p) is an isometry

onto B.
(2) For each b e B the restriction of r¡ to the vertical fiber 7r_1(¿) is a homometry

onto F with scale factor \/f(b).
(3) Since 7r* is obviously length-nonincreasing, w is length-nonincreasing on

curves. It follows from the local minimizing character of geodesies that a geodesic
(intrinsic) of a horizontal leaf is a geodesic of M; that is, the horizontal leaves are
totally geodesic.

(4) If <f> is an isometry of F, then 1 x </> is an isometry of M. Thus if F is mobile
(e.g., 1-dimensional), then M is mobile.

(5) If i/i is an isometry of B such that/=/° </>, then >p x 1 is an isometry of M.
Thus if A1 is a nonvanishing Killing field on B such that Xf=0, then M is mobile.
In particular, Bx kF is mobile, where k= \\X\\2.

7.2 Lemma. M=Bx fF is complete if and only if B and F are complete.

Proof. If M is complete, then a Cauchy sequence in B or F imbeds in a (hori-
zontal) leaf or a (vertical) fiber as a Cauchy sequence, and hence converges.

If B and Fare complete, let {m¡} be a Cauchy sequence in M, with m¡ = (b¡,Pi).
Let osy be a curve from mt to m¡ in M having length at most 2úf(m¿, m/). We can
assume that all projections 7r ° afJ lie in a compact region in B, and on this we have

f~2. c>0. Thus the speed of au at each point is at least c times the speed of 7r o ai¡.
Thus d(p¡, pj) ¿ (2/c)d(mi, m/j, showing that {pi} is Cauchy and hence convergent.

Since 7T is distance-nonincreasing, {b¡} is also Cauchy, hence convergent. Thus
{m¡} is convergent, and M is complete.

We now turn to the study of the relations between the curvature (tensor and
sectional) of M and that of B and F. The decomposition of vectors into horizontal
and vertical parts, the second fundamental forms of the fibers, and the warping

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 R. L. BISHOP AND B. O'NEILL [November

function/and its gradient G all play a role in this development. The horizontal and
vertical parts of a vector field A on M=Bx ¡F will be denoted by ¿FA and "TA.
A vector field A on A will be identified with the horizontal vector field on M that is
77-related to X; a vector field F on A will be identified with the vertical 77-related
field. The function/will be identified with/° tt. This introduces two meanings for
the gradient G off, but these coincide under a previous identification. In fact,/° tt
is constant on fibers, so grad (f° tt) is horizontal; also for A" on A (and M) we
have (A", grad (/o tt)> = A(/o7t) = A/o 77=<A', G>. Finally, we shall sometimes
identify a function g on A with g o r¡ on M.

The fact that the leaves of M are totally geodesic and naturally isometric to A
lets us consider the structural objects on M as extensions of those on B. Thus we
will make no notational distinction between the riemannian metric, curvature
tensor or sectional curvature of A and M. For the fibers and A it is a different
matter, so we make the following conventions. The riemannian metric on A will
be denoted by ( , ), and for vector fields V, W onF we denote their inner product
on M by (V, W}=f2(V, W). The curvature tensor of Ais denoted by S; that of M
by A. The sectional curvature of Ais denoted by A; that of M by K. The co variant
differential operator on Ais D; that of M is V.

We express the second fundamental form data of the fibers by the (1, 2) tensor
A [7], which measures the difference between V and the covariant differential of
the fibers. Of course, such differences are defined only with respect to tangent
vectors to the fibers, but we extend to arbitrary vectors by first projecting them
onto the fibers. Thus for vector fields A, B on M we have

TAB = 3eX7irAVrB) + -rX?rA(tf'B).

At each point m e M, TA is a skew-symmetric linear operator on Mm reversing the
horizontal and vertical subspaces. Moreover the symmetry of the second funda-
mental form is expressed by the fact that for vector fields V, W on A, TVW= TWV.

7.3 Lemma. Let X, Y be vector fields on B, and V, W vector fields on F. Then
(1) VXYis the same on either B or M.
(2) VxV= VyX= TVX= (Xf/f) V.
(3) 3f(VvW) = TvW=-f(V, W)G=-((V, W>/f)G.
(4) -r(\7yW) = DvW.

Note that (a) the last equality in (2) and the equalities in (3) are tensorial, hence
are valid for arbitrary horizontal X and vertical V, W; (b) by (3) each (vertical)
fiber is totally umbilic, with normal curvature vector — (1//)G. In particular, the
fibers at critical points off (that is, where G=0) are totally geodesic and other
fibers are not.

Proof. (1) is equivalent to the fact that leaves are totally geodesic and isometric
to A. For (2), since [X, V]=0 we have \/xV=\/vX. Since <Ar, Y~) is constant on
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fibers, V(X, F>=0, and the remaining terms in the Koszul formula [1, p. 166]
for (S/VX, F> are zero for similar reasons. Thus VyA'is vertical, so

X/VX = "TVVX = TVX.

All the terms in the Koszul formula for 2<VXK, W} vanish except one,
X(f2(V, W)), which is equal to 2fXf(V, W) = 2(Xf¡f)f2(V, W). Hence VXV=TVX
= (Xflf)V.

For (3) we have

(VyW, xy = <jyW, xy = -f2(w, tvx)
= -f2(w, v)xf/f= -f(w, v){G, xy.

Hence J^VVW=TVW = -f(W, V)G.
(4) follows from the fact that the induced covariant derivative on fibers is given

by "TX/yW, together with Remark 7.1(2)—since homometries preserve covariant
derivatives.

7.4 Lemma. Let X, Y, Z be vector fields on B, and U, V, W vector fields on F. Then

(1) RUVW=SUVW-\\G\\2[(U, V)V-(V, W)U].
(2) rxvy=-(i/f)(v2f)(x, Y)v=-(\if)<yxG, Yyv.
(3) RXYV=RvwX=0.
(4) RxvW=RxwV=f(V, W)VXG.
(5) RXYZ is the same on either B or M.

Proof. (1) follows, by the Gauss equation, from the observation (b) above, once
we show that RUVW is vertical. But (RUVW, Xy= —(RUVX, Wy, so it suffices to
prove that RuvX=0. We can assume that [U, V] = 0; thus using Lemma 7.3 we get

ruvx= -vuvvx+vvvux= -Vu((xfif)r)+VA(xflf)u)-

But since Xf/f is constant on fibers, this reduces to (Xf/f)(—'\7uV+S/vU) =
-(Xf/f)[U, V]=0.

A similar computation, starting from [X, V] = 0, proves (2). In particular, RXVY
is symmetric in Zand Y; hence the cyclic symmetry of curvature gives RXYV=0,
which completes the proof of (3). The cyclic symmetry of R, and .Ry^A^O, give
Rxv W= RXW V. The rest of (4) follows from

(Rxvw, f> = -<rxvy, wy = (i//)<vxG, y><F, wy
= f(V,WXVxG,Yy;

and <RXVW, Uy = (RwuX, F>=0.
Finally, (5) follows since the leaves are totally geodesic and isometric to B.
Using this lemma we now compute sectional curvature. Let IT be a plane tangent

to M at m = (b,p), and let vectors x+v, y+w be an orthonormal basis for IT,
where x and y are horizontal and v and w are vertical. Expansion of the expression
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(Rx+v,v+w(x + v),y + w} yields sixteen terms; by Lemma 7.4 ten are zero and the
remaining six combine to yield the sectional curvature formula:

K(Yl) = K(x,y)\\x Ay\\2
-f(b){(w, w)V2f(x, x)-2(v, w)V2f(x, y) + (v, v)V2f(y,y)}
+f2(b)[L(v,w)-\\G(b)\\2](v A w,v A w).

The expression within braces has the following interpretation: the symmetric
bilinear forms ( , ) on Ap and V2/ on Bb combine to yield a symmetric bilinear
form ( , ) on the direct sum Mm = Bb + Fp. Extending ( , ) to bivectors in the
usual way, we find that the expression within braces is the square norm of x A w
—yAv. If V2/, and hence ( , ), is positive [semi-]definite, this norm is positive
[nonnegative].

7.5 Theorem. Let B and F be riemannian manifolds, and letf> 0 be a differentiable
function on B. Then the warped produce M=BxfF has curvature K<0 if the
following conditions hold:

(1) dimA=l, or K<0 on B.
(2) f is strictly convex.
(3) (a) dimA=l, or (b) A<0 if f has a minimum; A5=0 if f does not have a

minimum. (A is the sectional curvature of A.)

Proof. If (1), (2), and (3) hold, it is clear that all three parts of the formula
above for A(II) are nonpositive. If x and y are linearly independent, the first term
is negative; if v and w are linearly independent, the last term is negative. If other-
wise, then (x+v)A(y+w) = xAw—yAv^O, and the expression in braces is
positive. Hence A^<0.

Usually the converse is true :

7.6 Lemma. .//A is complete, and M=BxfF has negative curvature, then con-
ditions (1), (2), and (3) of the preceding theorem hold.

Proof. If dim A> 1, then for any orthonormal x, y in B„ choosing v = w=0 gives
K(fl) = K(x,y)<0. In any case, choosing y = 0, v = 0 gives K(Yl)= -f(b)X/2f(x, x)
<0, so/is strictly convex.

We use the completeness of A to prove that inf || G || = 0. For otherwise || G || £ c> 0,
so if a is an integral curve of — G/||G||, then (/° a)' = — \\G\\^—c. But the unit
vector field — G/||G|| must be complete, and hence for t sufficiently large we get
f(a(t)) < 0, contradicting /> 0.

Now choosing v, weFp, if L(v, w)>0, we could choose b so that ||G(è)||2
<L(v, w); and letting m = (b,p), x=y = 0, we would have A(fl)>0.

7.7 Remark. Similarly: if A is complete, then Af=AxrAhas A5j0 if and only
if (1) dim A= 1 or A^O on A, (2)/is convex, and (3) dim A= 1 or AáO.

Using the following one can construct convex functions on manifolds that have
some positive curvature.
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7.8 Lemma. Letf> 0 be a convex function on B. Then on M= Bx fFwe have
(1) The horizontal and vertical subspace of M are orthogonal with respect to the

bilinear form X72fon M.
(2) V2/ is positive semidefinite on horizontal subspaces, and is positive definite

whenever X72f\B is.
(3) V2/ is positive definite on vertical subspaces at which f does not assume a

minimum; V2/vanishes identically on vertical subspaces at minimum points.
(A) f is convex on M.
(5) / is strictly convex on M if and only iff is strictly convex on B and has no

minimum.
(6) fhas a minimum on M if and only if f has a minimum on B.

Proof. If A' is a vector field on B, Va vector field on F, then, since VXG is
horizontal, we have V2f(X, V) = (VXG, K>=0, which proves (1). Since the re-
striction of V2/to horizontal subspaces coincides, essentially, with X/2f\B, (2) is
trivial. For V as above, we have by Lemma 7.3 that V2f(V, V)=-J^(VvV)f
=f(V, V)||G||2¿0. This implies (3), and the remaining assertions are clear.

7.9 Remarks. (1) More generally, a convex function h on B lifts to a convex
function on M=B x ¡ F if and only if <G, grad hy = 0.

(2) Using results from above we can construct a counterexample to a converse
of Theorem 3.12, i.e. show there exists a complete A'<0 riemannian manifold
diffeomorphic to L x R which does not admit a convex function without minimum.
In fact, let L be a complete A^<0 manifold that contains a closed geodesic, and let
/> 0 be a strictly convex function on R with a minimum at 0. Then R x ¡L is a
complete A^<0 manifold and has the totally geodesic submanifold {0} xL which is
homometric to L (by Remark 7.1). Thus Rx ¡L has a closed geodesic. It follows
that any convex function on Rx¡L takes on its minimum at each point of this
geodesic. (Thus also RxfL admits no strictly convex function, with or without
minimum.)

(3) If L is a complete K^O riemannian manifold, then the product manifold
RxL has a complete K< 0 metric that admits a convex function without minimum.
In fact, R x ,L, where /> 0 is convex without minimum has these properties.

A specialization of this last remark gives a way to construct negative space forms.
In fact, if n is a tangent plane to RxfFat (t,p), then fl has orthonormal basis
x + v, w with v, w vertical and x horizontal. The sectional curvature formula then
reduces to

mi) = JM \\x\\2+Liv'w)-f'2(t) \\v\\2AW y(f)   11*11   + f2,t) ll»ll

where ||jc||a + ||i;||2 = l (warped product norm).

7.10 Corollary. If a manifold F admits a complete metric with constant curvature
C^O, then the product manifold RxF admits a complete metric with constant
negative curvature.
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In fact, by the formula above (and 7.2) A x, A has the required properties, where
f=ë if C=0 and/=cosh? if C= — 1. For example, hyperbolic ¿/-space 77" is a
warped product of A and either A""1 or 77d_1. If we give A+ =(0, oo) the complete
metric such that \\d/du\\2(t)=f(t) = l/t2, then / is convex and A+ x^A""1 is the
Poincaré halfspace model of 77".

In the next section we will need the following characterization of Killing fields
on a warped product.

7.11 Lemma. A vector field Z on Bx fF is a Killing field if and only if
(1) Ji?Z(-, q) is a Killing field on B for each qe F,
(2) l^"Z(é, ■ ) is a conformai field on F with magnification factor — (Zf/f)(b, ■ )

for each beB, and
(3) V(Z, X)=-f2X(-rZ, V)for all vector fields X on B and V on A.

Proof. We show that these conditions are necessary and sufficient for Az to be
skew-symmetric. It suffices to apply Az to pairs X, X and V, V and X, V, where
X and V are as in (3).

(1) When X is considered as a vector field on Bx,F, then Vx commutes with
the projections Jf and "f, since the horizontal leaves are totally geodesic. Thus
(AZX, X) = C7XZ, X} = (X/X(JÍTZ), X} which on i¡-\q) is (Vx^Z(-,q), X}.
Thus Az is skew-symmetric on horizontal vectors if and only if each A^Zi. M is
skew-symmetric.

(2) For beB, Vy((,,.,Z depends only on Z(b, -)=^Z(b, ■) + irZ(b, ■). Since
■VZ(b, ■) is a vector field on A, we have by Lemma 7.3(4) that X/v(irZ) = Dv(yZ).
Locally we can write JFZ in terms of functions on A x A and a local basis of vector
fields from A. Applying Lemma 7.3(2) we obtain

rxiv(œz) = [V?z)f/f}v = (Zfif)v.
Thus, abbreviating ^"Z(¿, ■) to Zb, we get

<yvz, v>(b, ■) = f\b)(Dv(z% v)+f(b)Z(b, )(v, v).
Now we use the identity Dv(Zb)= —LZ»(V) + DZ*(V). It follows that Az is skew-
symmetric on vertical vectors if and only if, for every b e B, the (1, 1) tensor field

Dz*-Lz*+(Zf/f)(b,   )I
is skew-symmetric. But this is equivalent to Lz»( , )=2p.( , ), with/n= — (Zf/f)(b, ■).

(3) Finally, we have

<vFz, xy = viz, xy-{z, \7vxy = f<z, xy-(xf/fKz, vy,
and

<vxz, vy = z<z, vy-(z, vxk> = a/2(^z, v)-(xf/fxz, vy
= (Xf/fxz, vy+f2x(rz, v).

But Az is skew-symmetric on mixed pairs if and only if the sum of the expressions
above is zero, thus proving (3).
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We now indicate how to generalize the notion of warped product to bundles.
First we assert that, for riemannian manifolds B and F, a homomorphism h: ttx(B)
—>I(F) gives rise to a riemannian manifold M=M(B, F,h) with fiber bundle
structure F'-*■ M-^- B whose structural group is 1(F) and whose bundle charts
UxF^¡'tt~1(U) are isometries. To construct M, identify ttx(B) with the deck
transformation group of the simply connected covering ß: i?i —^ B, and let ttx(B)
act on the riemannian product BxxF by the isometries 8(bx,p) = (8(bx), h(8)p).
This action is free and properly discontinuous, so the quotient manifold M =
(Bx x F)/ttx(B) has a unique riemannian structure making the natural map
v. BxxF-^ M a riemannian covering. The function J^xF—s- B:(bx,p)^-ßbx
factors through v to give the projection tt: M -> B. If £/<=/} ¡s evenly covered by ß,
then, for each lift UxcBx, v gives a fiber-preserving isometry of i/i xiront0 7r"1((7).
Thus 7r_1(i/) is identified with the riemannian product UxF—uniquely up to
isometries of F. It follows that -n preserves the length of horizontal vectors (rieman-
nian submersion) and the horizontal distribution is integrable (flat connection).

If/>0 is a C°° function on B, we can obviously warp the bundle M = M(B, F, h)
in the same way as a product: for x e Mm, define ||x||2 to be \\JfxW2 +f2(Trm)\\i/'x\\2.
For U as above, 7r_1(i/) is now identified with Ux nuF, so previous results that
are local in B hold for the warped bundle M(f).

8. Mobility grade. Recall that the mobility grade of M (complete, Kf¿0) is
the smallest integer k for which Q = Pk(M) is either mobile or immobile. In this
section we first obtain upper bounds for the dimension of the isometry group
I(M) as a function ofk and the dimension dof M. Let n = dim Q, c¡ = dim P'~1(M)
— dimPi(M)^2, and c=yP{Ci = d—n. By iteration, using Proposition 6.6(1), we
get

dim/(Af) ¿ dim 7(0-4 ¿ Afe-1).
1 ¡=i

In the sum, if two of the c/s exceed 2, we may decrease the smaller (say c¡) by 1
and increase the larger (say ch) by 1, in which case the sum is increased by

\[(cj-\)(cj-2) + (ch+\)ch-Cj(ci-\)-Ch(ch-\)] = Ch-Cj+\.

Thus the maximum value of the sum, for given k and c, occurs when, say, cx = c2
= ■ • • =ck-x—2 and ck = c — 2k + 2. The sum is then

p(k,c) = i[c(c+3-4k) + 4k(k-l)].

8.1 Proposition. Let M (complete, K^O) have dimension d and mobility grade k.
(1) If M is ultimately mobile, then

dim I(M) è i[(d-2k)2 + d].

(2) If M is ultimately immobile, then

dim/(M) ^ i[(d-2k)2 + 3d-4k].
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Proof. (1) Since Q is mobile, dim 0^ 1 and dim I(Q)^±n(n+1) = ̂ (d-c)
•(d—c+l). Adding this to p.(k, c) we get

dim7(M) 5; \[d2 + d+4k(k-l)+2c(c-d-2k+l)].

Since this expression is quadratic in c with the coefficient of c2 positive, the maxi-
mum will occur at one of the extreme values of c, which in this case are 2k and
d— 1. The bound is the same for both of these, namely, \[(d—2k)2 + d].

(2) Since Q is immobile, dim 7(0 = 0, so our bound on dim I(M) is p.(k,c).
The range of c in this case is 2k 5] c 5; d, and the maximum of p.(k, c) occurs when
c = d; that is,

dim7(M) 5; p,(k, d) = i[(d-2k)2 + 3d-4k].

(In order to attain this maximum, Q must reduce to a point, since dim Q = d— c = 0.)
Our aim now is to show the existence of negative curvature manifolds of arbitrary

mobility grade (Corollary 8.4). We will construct these as iterated warped products,
using

8.2 Theorem. Let B and F be complete manifolds with K^O such that (i) A admits
a strictly convex function, and (ii) there is no fiat factor in the deRham decomposition
of the simply connected coverings Bt and Fx. (In particular, K<0 will assure this.)
Then there exists a strictly convex function f on B such that P(Bx fF) = Bx rP(F)
and dim 7(A x rA) = dim 7(A).

Before beginning the proof we note that
(ii') If Xu..., Xn are linearly independent Killing fields on A (or A), then

AXl,..., AXn are linearly independent.
Suppose, in fact, that 2a¡^x, = 0. Then for X=~24aiXi, we have Ax = 0. But

then X is parallel on A, so if AVO there will be a flat factor A1 in the deRham
decomposition of B±.

We will need the function / in the theorem to have no invariance under the
isometries of A. More precisely

8.3 Lemma, (i') There is a strictly convex function f>0 on B such that, if G =
grad/ then for every Killing field A^O on B,f[X, G] is not a Killing field—not even
the zero field.

Proof. By (i) there is a strictly convex function /„ on A. Exponentiating if
necessary, we may assume/0>0. Let e1;..., en be a basis of Bm, m e B. If c>0 is so
small that expm (ce¡) = w¡ lies in a normal neighborhood of m, then every isometry
of A is determined by its action on m = m0, mx,..., md. Thus if AV=0 is a Killing
field, etx moves at least one of the mx for all small t. Now let u be a C °° function
having compact support and isolated maxima at each mt. Then for small t,u° etx
has isolated maxima at etx(m^. Differentiating, we see that Lx(du) = d(Xu)^0 for
every Killing field AVO. Moreover, uLx(du) is not a Killing 1-form, since it
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vanishes outside the support of u, but is not identically zero. Now we dualize,
using the riemannian metric < , > of A. If i/=grad u, the linear space

si = {u[X, U] | X e i(B)}

has the same dimension as i(B) and does not meet i(B) except in 0. (Note that Lx
commutes with dualization, since X is Killing.)

We wish to show that we can destroy whatever symmetry/) may have by adding
tu; for small t, the function/0 + ?w will be convex and positive (since u has compact
support). Note that

(f0 + tu)[X, G0 + tU] =f0[X, G0] + t(u[X, G0]+f0[X, U]) + t2u[X, U].

It follows that all of these vector fields are in the linear space £%^>si spanned by

{/„[A", G0], u[X, G0]+f0[X, U], u[X, U], X \ Xei(B)}.

Define a family of linear transformation Tt : i(B) -> Sä/i(B) by

Tt(X) = (f0 + tu)[X, G0 + tU] + i(B) = T(X) + tT'(X) + t2T"(X).

We wish to show that there exist small t for which Tt is one-one; that is, no
(fa + tu)[X, G0 + tV} is Killing for AVO. Choose bases for i(B) and 3S/i(B) that are
related by A"; that is, if the basis of i(B) is Xlt..., Xn, then that of âS/i(B) starts
with u[Xu U] + i(B),..., u[Xn, U] + i(B). The latter are linearly independent, since
s/ + i(B) is a direct sum. With respect to such a basis the matrix of A" is

(Ó)
where 7 is the n x « identity matrix. Thus the first minor of Tt is

det (t2I+tA + B) = t2n + lower degree terms.

Thus Tt has rank «, except for finitely many t. This completes the proof of Lemma
8.3.

Note.. In particular, the conditions on/forbid A/=0 for 0/ X e i(B). In fact,
if A/=0, then f[X, G]=fLxG is dual to fLx(df)=fd(Xf) = 0.

Proof of Theorem 8.2. Let Z be a Killing field on A x, A, where/is given by the
preceding lemma. By Lemma 7.11 (1) we may write Z— 2 «iA"¡+ Y, where Y=irZ,
hi: A-> A, and Xu ..., Xn is a basis for i(B). Then by Lemma 7.11(2), for every
point beB, the vector field Y(b, ■) on Ais conformai, with magnification factor
— 2 (X\(b)flf(b))hi. Since the functions Xf are linearly independent (by the Note
above), we can choose points b¡ (j=l, ••-,«) such that the matrix (A¡(A,)/) is
nonsingular. In fact, by a change of basis of i(B) we can arrange that this matrix
is the identity matrix. Thus Y(bjt ■)= Y¡ is conformai on A with magnification
factor — 2 °»A¡ = — h¡.

Reordering if necessary, we may also suppose that hu ..., hs are a basis for the
space spanned by the «¡ over the reals. (If all the Y¡ are Killing we have all «¡ = 0
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and 5 = 0.) Then As+i = 2iaiA f°r some constants ai;, and since Ts + i —2a¡,T,
has magnification factor 0, it is Killing. Similarly, Y(b, )-Zí(Xi(b)f/f(b))Y¡ is
Killing for every b e B. Letting Va, a= 1,.. .,p be a basis for i(F), we have

s V

Ys+i = 2 %î/+2 ô««K«
j=l a=l

Y(b,-) = % ^Yi+2K(b)Va
i = x   J \°) a=\

= fjb) Î (X'(b) + nfciijXs + ¡(b)yYi+ | ka(b)Va

where fV,=*X,+2îï{ Oi}Xt+t. Then

Z = J /i,A",+ 2 2 «<A*. + i+2 (^TÜOíi+i A:eKB
í=l i=l/=l i=l a=l

= 2 (h,Wj + (Wif/f)Y,)+ ¿ *eKe.
i=l a=l

Here the functions ka: B-^ R and h f. F-> 7? are clearly C°.
In this final expression we have that the magnification factors — ht of the Y¡

are linearly independent, as well as the W, e i(B). This summarizes the content
of Lemma 7.11 (1)(2) in terms of bases. We have yet to apply (3), which now gives,
for vector fields X on B and V on F:

viz,xy = \(vh/)iwi,xyi
= -/2A-(Z, V)

= -P 2 (XW,flf)iY» V) + 2 (Xka)(Va, V)i
Let w, be the 1-form (/W¡, ■) on fi, ti;. the 1-form (Y¡, ■) and &a the 1-form

(Va, ■) on F. We identify these 1-forms with their pull-backs to BxF via the
projections onto B and F Then the formula equivalent to 7.11(3) becomes

(o 2 ^A ^ - -/2 d(w*f)A ̂-/2 2 <*«A *«•
Taking exterior derivatives yields

2 doo,- A dh, = -df A 2 W/) A %+/2 <W/) A dVj
(2)

-2/4T A^*„A #a+/22 <*a A <#«.
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Under the (pointwise) identification of /\3 A*(A x A) with the direct sum

A3 T*(B) + /\2 T*(B) ® A*(A) + A*(A) <g> A2 A*(A) +A3 T*(F),

only the inner types occur in (2). Thus we have just two direct summand equations:

(3) 2 da>i A dhi = ~df A 2 ¿Wif) A V/-2fdf A 2 dka A &a.

(4) 0 = 2 d(WJ) A dVi+f2 dka A d&a.

Taking the exterior derivative of (4) we get

(5) 0 = df A 2 dka A d&a.

Note that d&a=\/&cc since &a is a Killing 1-form and d& is always the skew-
symmetric part of V#. Hence by (ii') the forms d&a are linearly independent. Thus
we must have df A dka=0 for each a. (The second A is, in effect, a tensor product
on two independent spaces.) This simplifies (3) to

(6) 2 dm' A dhi = "2 dfA <w/)A Vi-

Again by (ii') the dtaj are linearly independent. More specifically, we can find s
vector pairs (xu x't) at various points of A such that the matrix (dtOj(Xi, x'¡}) is
nonsingular. Thus (4) says, by multiplying by the inverse matrix, that the dh¡ are
linearly dependent on the t¡} :

(1) dhi = 2 CtPlfi       cu constants.

Inserting (7) in (1) we have

2 (2 Cijtoi+fd(Wif))j A Vi+f2 2 dka A »a = 0.

The r¡¡ and &a are linearly independent, so dka = 0, that is, the ka are constant, and

(8) '2ci,toi+fd(wjf) = o.

But fd(Wjf)=fLWj(df) corresponds to flW,, G] under duality by < , >. Thus (8)
contradicts Lemma 8.3. The only relief from this contradiction is the possibility
s=0; that is

Z = 2 kaVa,       ka constants.

Conversely, we have seen that the injection of/(A) into the vector fields of Bx fF
produces Killing fields. The conclusions of the theorem are now clear.

A point p of a riemannian manifold M is called a central point of M provided
(1) every isometry of M leaves p fixed, and (2) every linear isometry of Mp into
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itself is the differential map of an isometry of M. We can furnish the manifold Rd
with riemannian structures such that the origin 0 is a central point by the following
warping of polar coordinates. Represent N=Rd — {0} as a product manifold of
A+ =(0, oo) and the unit sphere Sd~1 by means of the projections 7r(«)= ||«|| and
t?(«) = «/]|«||. If/: A+ -^ A is a function possessing a C00 extension to A that is odd
and has/'(0) = 1, then the warped product structure on N and the usual euclidean
inner product on (Ad)0 combine to give a C°° riemannian structure on Rd. Obviously
condition (2) above holds atp=0 for the resulting (necessarily complete) riemannian
manifold Rd(f). The curvature formula preceding Corollary 7.10 now applies with
A=l. Thus, for example, A"(sinh) is hyperbolic space. If we choose/(0 = ' + f3/6,
then Rd(f) has curvature — 1 5¡ K< 0, with K(U) = — 1 if and only if II is a plane at
the origin. Thus 0 is clearly a central peint.

Conversely, if M (complete, A<0) has a central point/?, then P(M) = {p}, since
p is an isolated point of the connected set P(M). Thus M is simply connected and
ultimately immobile. Furthermore, M is isometric to Rd(f) for suitable/

We can now give the existence proof mentioned earlier.

8.4 Corollary. Given integers d^2 and c±,..., ck satisfying the necessary
conditions c¡ ̂  2 and 2 A = ^> there exists a complete d-dimensional riemannian
manifold M with K<0 such that

(1) M has mobility grade k, and
(2) P\M) has codimension c¡ in Ai_1(M).

Furthermore, ifd—^ c¡^2, then M can be required to be ultimately mobile or to be
ultimately immobile.

(In the last assertion, n = d—'2,ci is the dimension of Pk(M); hence M must be
ultimately mobile //«= 1, ultimately immobile ifn = 0.)

Proof. First we assert that for d^2 there exists a complete A<0 manifold M of
dimension d and such that M admits a strictly convex function without minimum.
Furthermore, such M exist that are (a) mobile and (b) immobile. For (a) we can
use the hyperbolic space Hd = RxetRd~1 with/the function ê (lifted as usual to
77d). For (b) a small perturbation of the riemannian structure of Hd will produce
an immobile A<0 manifold that retains the other properties of Hd and/. (This
remark includes the k = 0 case of the corollary.)

Now for k>0 consider the case where n = d—Jici is at least 2. Let Pk be a
complete, K<0, «-dimensional manifold admitting a strictly convex function with-
out minimum. Let A be complete, A<0, ¿^-dimensional with a central point q.
Then by Theorem 8.2 there is a strictly convex function / on Pk such that if
Afc_1=Afcx/Awe have P(Pk^^) = Pkx{q}. By results of the preceding section, Pk_x
is again complete, A<0 and admits a strictly convex function without minimum.
By iteration we reach the required manifold M. The final assertion holds, since by
the initial assertion of this proof, we can choose Pk to be mobile or to be immobile.

If « = 0, we start the iteration with Pk_1 a complete A<0, (^-dimensional
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manifold with a central point (which thus becomes Pk(M)). If n= 1, we start with
Ph-x a (cfc+l)-dimensional manifold of the type given by the following lemma.
In both of these cases, Pk-x admits a strictly convex function without minimum.
In fact, Pk-x is simply connected, so the required function can be constructed by
applying Theorem 4.1 (3) with 5 and T asymptotic geodesies (see §9).

8.5 Lemma. Let F be a complete manifold with sectional curvature L<0 and with
a central point q. Then N= R x ¿F is complete, K= — 1, with

I(N) = {\x^\4>eI(F)}.

In particular, P(N) = Rx {q}.

Proof. From the curvature formula preceding Corollary 7.10 we compute
K(U) = — 1 +e~2tL(v, w)||v||2, where x+v, w is the usual orthonormal basis for II
at (t,p) e N. Since L is never 0, ^(11)= — 1 if and only if v=0; that is, if and only
if II contains a nonzero horizontal vector.

Let (pel(M). If x^O is a horizontal vector, then every plane through x has
K= — 1 ; hence every plane through ^^(x) has K= — 1 ; hence </>*(x) is horizontal.
Thus </> carries leaves to leaves. But then </> carries vertical vectors to vertical vectors,
hence fibers to fibers. Thus </> is a product function <f>x x <f>2. It is clear that <f>x is
an isometry, say <f>x(t)= ±t + a. For any t e R,we can express </>2 as the composition
of: the injection of F onto 7r_1(r), the isometry </> from 7r_1(r) to n'1(±t + a), and
the projection r¡ of 77_1(± t+a) onto F By Remark 7.1 (2) it follows that j>2 is a
homometry with scale factor either e~a or e2t~a. The latter is impossible, since
this number must not depend on t. But a selfhomometry of a complete nonflat
riemannian manifold is an isometry (cf. [6], p. 242). Hence a = 0. Thus </>=lx<f>2,
with 4>2 e 1(F). Conversely, if >/i e 1(F), then 1 x t/r e I(N). The final assertion follows
since P(F)={q}.

9. Asymptotes. We first review briefly the basic facts about asymptotes;
compare Buseman [2].

Let M be a complete, simply connected riemannian manifold. We say that a
geodesic ray p : [0, oo) ->■ M is asymptotic to a geodesic ray a provided there is a
sequence {p¡} of geodesic rays and sequences {s¡}, {í¡} of positive numbers such that
(a) lim p'i(0) = p'(0), (b) pi(st) = ct(í¡) for all i, and (c) lim t¡ = oo. (Clearly this definition
does not depend in any essential way on the parametrizations of p and o.) If M is
not simply connected, we say that p is asymptotic to a provided they have lifts
Px, o-j to the simply connected covering Mx such that px is asymptotic to ax-

9.1 Lemma. For any geodesic ray o and point me M, there is a geodesic ray p
starting at m and asymptotic to a.

Proof. Evidently we can assume that M is simply connected. Let pt be a geodesic
ray starting at m and passing through o(i). Then some subsequence of {/>!(0)} will
converge to the required p'(0).
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9.2 Proposition. Let p and o be geodesic rays in a complete, simply connected
manifold H with K^O. Then p is asymptotic to a if and only if the function s->
d(p(s), o) is bounded.

Proof. Suppose p is asymptotic to <r, and as in the definition let p¡ be an approxi-
mating sequence with pi(si) = o(ti) for all i. Since a([0, oo)) is a closed, totally convex
set, it follows by Proposition 4.7 that f=d(-, a) is a continuous convex function.
Fix iäO. By definition, lim íj = co; it follows that lim s, = co. Let i be large enough
so that s¡¡ís. Now/° p¡ is continuous and convex, and/(pi(5¡))=/(cr(/¡)) = 0, hence
f(Pi(s))^f(pi(0)). But lim ft(0) = p'(0) implies lim Pl(t) = p(t) for all t. Thus taking
limits in the preceding inequality gives/((o(i))5;/(p(0)); hence d(p(s), a) is bounded.

Conversely, suppose b is an upper bound for d(p(s), a), and let {u¡} be a positive
sequence such that lim w¡ = co. Let o(tt) be the foot (that is, nearest point) of p(ut)
on a. Assuming for simplicity that these rays have unit speed, we find, using the
triangle inequality, that

t, = d(o(0), o(ti)) ^ Ui-d(p(0), o(0))-d(p(Ui), a(ti)).

Since the last term is bounded by b, lim r¡ = co. Let pt be the (unit speed) geodesic
ray starting at p(0) and passing through a(/¡) with Pi(Si) = o(tt). It remains to show
that lim p'i(0) = p'(0), or, equivalently, that lim cos &t = 1, where &t is the angle
between p'(0) and p'¡(0). But from the geodesic triangle p(0), p(u¡), pt(Si) we get

b2 ^ df ^ uf+sf-2uiS¡ cos &i ̂  2m,j4(1-cosí,),

where dt = d(p(u¡), CT(f¡)) = d(p(u¡), a). The result follows.
It is clear from this proof that in the definition of asymptote there is no loss of

generality in assuming that each pt starts at the same point as p.

9.3 Corollary. Geodesic rays p and o in H having the same speed are asymptotic
if and only ifd(p(t), a(t)) is bounded.

Proof. Fix the notations: d0 = d(p(0), <r(0)), and a^) the foot of p(t) on o.
Suppose p is asymptotic to a (both unit speed). Following Busemann [2, p. 250]
we get

d(o(t), o(tl)) = \t-tA = \d(j>(0), p(t))-<K«(0)Mhy)\ S d0 + d(p(t),o(tl)).

But by Proposition 9.2 this last term is bounded, say by ¿>0. Hence

d(P(t), a(t)) ï d(P(t), od^ + d^t,), c(s)) Ú d0 + 2b.

The converse implication is immediate from Proposition 9.2.

9.4 Corollary. Asymptoticness is an equivalence relation on the set of geodesic
rays in 77.

If asymptotic geodesic rays meet in H (simply connected) it is easy to see that
they are the same but for parametrization. Thus the preceding corollary gives
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9.5 Corollary. If a is a geodesic ray in H, then the geodesic ray starting at
me H and asymptotic to o is unique.

9.6 Proposition. Let g be a geodesic ray in H. For each point p e H, let V(p) be
the initial velocity of the unit speed geodesic from p asymptotic to a. Then V is a
continuous vector field.

Proof. For each z'ä 1, let V{ be the C" vector field on H-a(i) such that V¡(p)
is the initial velocity of the unit speed geodesic pt from p to a(i). We know that
lim Vt(p)= V(p) for each point p; now we prove that this convergence is uniform
on compact sets. Let B be a compact set containing p e H. Let b>0 be an upper
bound for the distances from points of B to a. It suffices to show that the angle
&u between Vt(p) and V¡(p) approaches zero uniformly (in p e B) as í and j go to
infinity. Let q be the foot of p on a. Thus b^d(p, q). Then in the geodesic triangle
po-(i)q, it is easy to see that the angle a, at <t(i) uniformly approaches zero. If
i<j, then for the triangle p, a(i), a(j) we have angle sum &tJ+(ir— a^+ccj^n. Thus
Py^otj — oey, and the result follows.

For a geodesic y: /?-> M call y+=y|[0, oo) the positive ray of y, while the
negative ray y~ of y is defined by y~(u) = y( — u) for mïîO. Then two geodesies are
said to be asymptotic provided their positive rays are asymptotic.

From now on we do not assume simple connectedness, unless explicitly men-
tioned. A routine check shows that asymptoticness is still an equivalence relation—
on entire geodesies as well as geodesic rays. However, the criteria in 9.2 and 9.3
fail in general, and it is possible for distinct geodesies through the same point to be
asymptotic.

Let/be a convex function on M. An f-monotone geodesic is a geodesic on which
/is monotone nonincreasing. The rest of this section deals with continuous as well
as C°° convex functions.

9.7 Proposition. Let f be convex without minimum on a complete manifold M.
For each point me M there is an f-monotone geodesic starting at m such that the
positive ray y+ is minimal.

Proof. Let {a¡} be a sequence such that at <f(m) and lim a¡ = inf / For each i,
let y¡ be a unit speed geodesic that is minimal from m to f~1(ai). Passing if necessary
to a subsequence, we have lim y¡(0) = x e Mm. We assert that the geodesic y with
initial velocity x has the required properties. Let st be the first number for which
Yt(Si) ef~1(ai). Clearly limí¡ = oo. Fix s^O. By construction, /(y¡(0)) =f(m)>at
=f(yi(si)). If i is large enough, then 0 = st¿su and since / is convex we obtain

/(y¡(s))á/(m). But limy¡(i)=y(í), hence f(y(s)) â/(w). Again since / is convex,
this boundedness implies that y is /-monotone. Furthermore, by construction
s = d(yi(0), yi(s)). Taking limits gives s = d(y(0), y(s)); thus y+ is minimal.

9.8 Proposition. Let f be a convex function on a complete manifold M. A geodesic
asymptotic to an f-monotone geodesic is f-monotone.
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Proof. It suffices to assume M is simply connected. Let p be asymptotic to the
/-monotone geodesic a, and let p¡ be an approximating sequence with pi(si) = a(ti).
Fix í^O. Since/° />¡ is convex, for si = s we have f(pt(s))¿,max{/(ft(0)),f(pi(Si))}.
Butf(pi(Si))=f(<j(ti))^f(a(0)); hence in the limit we obtain

f(P(s)) ï max{/(p(0)),/(a(0))}.

Since /o p is convex it follows that p is /-monotone.
9.9 Remark. The /-monotone geodesic through a point need not be unique,

even iff is strictly convex and M has curvature K^O. We give two examples.
(1) A^=0. Let M be the euclidean plane with cartesian coordinates x, y. Let g be

a strictly convex function on the real line. Then the function f(x,y)=g(x)+g(y)
is strictly convex on M. However, if we choose g without minimum, then from each
point there will be a quadrant of directions for/monotone geodesies. If we choose
g bounded below, this example shows that there can be many values for

as y runs through the /-monotone geodesies.
(2) K<0, sup ^=0. Let M be the surface of revolution z=f(r), where r =

(x2+y2)112. Then the curvature K=f'f"/r(l +f'2)2 is negative if/is decreasing and
strictly convex. (In fact, M is the warped product RXgS1, where r=g(z) is the
inverse off.) If we choose g bounded away from 0 by c>0 and so that limr-.cf(r)
= +00, then the /--monotone geodesic through a point is not unique. Indeed, a
geodesic is r-monotone if it continues up the tube without doubling back. Let a
be the angle a geodesic makes with the vertical geodesic. It is well known that
r sin a is constant on the geodesic. By choosing the initial value of a so that
r sin a e [ — c, c], we prevent a from ever becoming 7r/2, so the geodesic must be
r-monotone. Thus we can get infinitely many of these from any given point.

Our aim now is to show that uniqueness does obtain when M has strictly negative
curvature, that is, Á^c<0.

9.10 Lemma. Let p and a be distinct geodesic rays starting at me M (complete,
Kfí c < 0). There is a geodesic y such that y + is asymptotic to a andy~ is asymptotic
to p.

Proof. We can suppose that M is simply connected, and p and o have unit
speed. For i'^ 1, let y¡ be the unit speed geodesic through p(i) and a(i). Since
d2(m, ■ ) is strictly convex, the foot yfa) of m on y¡ lies between p(i) and a(i). Let
d¡ = d(m, y¡(/¡))- Let A¡ be the area of the triangle composed of all geodesic segments
from m to points of y¡ between p(i) and a(i). On each such radial segment the
points with distance at most d{ from m form a patch of surface that standard
estimates show to have area greater than that of a euclidean sector of angle
&= <£(/>'(0), a'(0)) and radius a\. Thus Ai>&d?/2. On the other hand, the Gauss-
Bonnet theorem implies that ^¡<7r/|c|, where K^,c<0. Hence dt remains bounded
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as /' goes to infinity. Thus some subsequence of y[(t¡) converges to a tangent vector
x and the geodesic y with initial velocity x has the required properties.

9.11 Proposition. Let M be complete and have strictly negative curvature. If fis
convex on M, has no minimum, and is not constant on any geodesic, then the f-
monotone geodesic starting at a point of M is unique. In particular this obtains iff is
strictly convex without minimum.

Proof. Again it suffices to prove the simply connected case. Assume p and a
are distinct/-monotone geodesies starting at me M. Let y be as in the preceding
lemma. Then by Proposition 9.8,/is monotone on both y+ and y", so/is constant
on y, a contradiction.

By an asymptote class we mean an equivalence class of mutually asymptotic
geodesies. By Proposition 9.8, /-monotonicity is a property of asymptote classes.

9.12 Theorem. If M (complete, K^c<0) admits a strictly convex function and is
not simply connected, then M contains a unique asymptote class that is f-monotone
for every convex function f on M. (We call this the principal asymptote class of M.)

Proof. Let g be strictly convex on M. Since M is not simply connected, g has no
minimum. We show first that the set A of all g-monotone geodesies constitutes
exactly one asymptote class. By Proposition 9.7, A is not empty. If p, a e A, let r
be an asymptote to p from a point of a. Then t is g-monotone by Proposition 9.8;
hence ct=t by Proposition 9.9. Thus p and o are asymptotic. By Proposition 9.8.
again, A is exactly one asymptote class.

To show that A is principal, let/be a convex function on M, and assume that A
is not /-monotone. Then lim/oy = oo for one (hence every) ye A. Now consider
h = ef + e9. If ye A, then lim « ° y = oo since lim/o y = co. If y ÇA, then lim « ° y
= oo, by Proposition 9.11. Thus no geodesic is «-monotone, contradicting Proposi-
tion 9.7.

Nonsimple connectedness is necessary in the preceding theorem, for if M is
simply connected we have seen that d2(m, ■ ) is strictly convex with minimum ; thus
M cannot have a principal asymptote class.

9.13 Remarks. We give some properties of the principal asymptote class of a
manifold M as in Theorem 9.12.

(1) Each point of M is on a unique principal asymptote.
(2) Principal asymptotes minimize arc length. (This follows from the minimality

property in Proposition 9.7.)
(3) If tt : My -> M is the simply connected covering, the lifts to My of the principal

asymptotes of M constitute a single asymptote class. In fact, if g is strictly convex
on M (hence without minimum), then g ° tt is strictly convex without minimum
on Mx. But the (g o 7r)-monotone class consists of the lifts of all g-monotone
geodesies, and the latter form the principal asymptote class of M.

The following proof uses two properties of a Killing field X: If y is a geodesic,
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then (X, y'> is constant on y. If a is an integral curve of X, then || A"|| is constant
on a. (Both properties follow at once from the skew-symmetry of Ax.)

9.14 Proposition. For M as in Theorem 9.12, (1) the principal asymptote class is
invariant under all isometries of M, and (2) every Killing field X on M is orthogonal
to every principal asymptote.

Proof. (1) If tp is an isometry and/is strictly convex, then any principal asymptote
y is/-monotone. Hence tp o y is (/o <p" ̂-monotone. Then by Theorem 9.12,
tp o y is a principal asymptote.

(2) Let/= ¡A"||, so/is convex. By Proposition 5.5 there are three cases: (a) A"is
zero at some point pe M, (b) X has a nonconstant geodesic integral curve ce,
(c)/is strictly convex without minimum. In Case (a), let a be the principal asymptote
through p. Since a is /-monotone, /is zero on o+, hence on all of a. Now let p be
an arbitrary principal asymptote, and let {p¡} be an approximating sequence from
m = p(0) to o. Since p¡ meets a, one of the above mentioned properties of Killing
fields shows that <A, />!>=0; in particular, <A(m), p'i(0)y=0. Taking limits gives
<A-(m),p'(0)>=0.

Case (b) cannot occur. In fact, since M is not simply connected, Lemma 6.2
shows that a cannot be one-one, and since M admits a strictly convex function,
a cannot be closed.

Finally, for Case (c), let me M, and as in the proof of Proposition 9.7 let {a¡}
be a sequence such that a¡ <f(m) and lim a¡ = mí f. Let yt be a geodesic that is
minimal from m to f~1(ai). We have seen that for a subsequence, lim y[(0) = y'(0),
where y is /-monotone, hence principal. Suppose y¡(í¡) is the first point of y¡ in
f'1(ai). Then by minimality, y't(s¡) is orthogonal to the hypersurface/"1^)- By
the other Killing field fact above, X is tangent to this hypersurface and hence
orthogonal to y¡(Si). Thus <A(w), yi(0)>=0, and so X is orthogonal to y'(0)—and
in fact to y .

10. Fundamental group. Let M be a complete manifold with K^O, and let
y: [0, oo) -^ M be a geodesic ray with y(0) = «z. If a: I-> M is a geodesic loop at
m, let at be the unique geodesic loop at y(t) contained in the homotopy class
[y | [0, r]_1-ofy|[0, t]] etTy(M, y(t)). Thus [a] -> [at] is the isomorphism TTy(M, m)
XiTy(M, y(t)) determined by y|[0, t].

10.1 Lemma. The length function t^- |a,| is C°° convex. If K<0, this function is
constant or strictly convex.

Proof. Let tt: My -> M be the simply connected covering of M. Fix my such that
Tr(my) = m. Let yx be the lift of y starting at mx and let ßt be the lift of at starting at
yx(t). Thus r(u, t)=ßt(u) defines a C00 rectangle r in My whose length function is
L(t)= \at\ = \ßt\, which we wish to show is convex.

Let X= 8r/8u and Y= dr/dt be the longitudinal and transverse vector fields on r.
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Since the ßt are geodesic segments parametrized on I, their lengths coincide with
those of X, that is, L=||A'||. Note that Y is a Jacobi field along each ßt and
VxA"=0. Now differentiating L2 yields:

LL' = <vyA-, xy = <vxt, xy = ¿ < y, xy.

Differentiating again:

LL" = yu «VyT, A-> + <7, VyA-»-(L')2

= ¿ <VyT, A-> + <7, VXVXF> + <VXF, VXF>-<VXF, A->2/<A", Xy

= ^<vyT,xy-K(x, Yy\\x a y\\2+\\x a vxf||2/l2.

The terms in this formula may individually depend on u, but the sum is a function
of t only. Because r(0, •) and r(\, •) are both lifts of the geodesic y, Vy F=0 when
u = 0 or 1. Hence by Rolle's theorem there exists h(t) such that (d/du)C\7Y F, A"> =0
when u = h(t). Thus L"äO if L is nonzero. However, if L ever vanishes, then a is
the constant loop, so L always vanishes and L is certainly convex.

Now suppose A^<0, a is nonconstant, and L"(t)=0. We conclude that Y(h(t), t)
and ( Vx Y)(h(t), t) are both multiples of X(h(t), t). Since Y(u, t) is a Jacobi field
as a function of u, it must equal (au + b)X(u, t) for some constants a, b. Setting
m = 0, 1 and applying tt*, it follows that y'(t) = ba'l(0) = (a + b)a't(\); thus a = 0, at is
a closed geodesic, and at is a reparametrization of y. Clearly this makes a a repara-
metrization of y and L constant.

10.2 Remark. In the above proof, if S: Mx —> Mx is the deck transformation
corresponding to a, then L is the displacement function of 8 along yx'.L(t) =
d(yx(t), 8yx(t)). Thus we have shown that this displacement function g6 is convex
on Mx- This same result also can be obtained from Proposition 4.7 because
gô(p)l\/2 is the distance in Mx x Mx (with the product metric) from a point (p, 8(p))
in the graph of S to the diagonal submanifold D = {(p,p) \ p e M}. One needs to
observe further that D and the graph of 8 are totally geodesic submanifolds
homometric to A7X.

If r ^ cí¿ is the motion of a geodesic loop a along a geodesic ray y, we define a
to be y-monotone provided r->|at| is monotone nonincreasing. If Â^<0, this
length is strictly decreasing or, in the exceptional case, constant.

10.3 Remark. With the notation as above, the following are equivalent:
(1) a is y-monotone.
(2) yx is ^¿-monotone.
(3) 8 o y± is asymptotic to yx.

The equivalence of (2) and (3) follows from Corollary 9.3.
The set of elements of ^(M, m) containing a y-monotone geodesic loop is
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denoted -rry(M, m, y). These subsets of ny(M, m) are called ray subgroups, the
terminology being justified by

10.4 Proposition. Let me M (complete, K^O).
(1) For each ray y starting at m, TTy(M, m, y) is a subgroup of-TTy(M, m).
(2) TTy(M, m) is the union of the ray subgroups 7r1(A7, m, y) for all such rays y.

Proof. (1) Suppose a, ße TTy(M, m, y) and that 8, e are the corresponding deck
transformations. Then for each p e My

gô(p)+gÂP) = d(p, 8p)+d(p, ep)
= d(p, 8p) + d(8p, 8ep)
ä d(p, 8ep) = gós(p).

Since g6 and g£ are bounded on ylt so is gôs; that is, aß is y-monotone.
Since a loop and its reverse have the same length, a-1 is y-monotone.
(2) We must show that any geodesic loop at m is monotone on some ray, or

equivalently, that for any deck transformation 8, some ray yy from m is gá-mono-
tone. If gó has no minimum, this follows from Proposition 9.7. If g6 (and hence
also g2) has a minimum, then by Proposition 4.2, 8 translates a geodesic rit so g6
is constant on rv By Proposition 9.8, the asymptote to Ty from mx is also gd-mono-
tone.

We now check that there is no essential change in the ray groups when the base
point m of iTy(M, rri) is changed. In fact, we can distinguish the ray subgroups in
the deck transformation group -ny(M), which is a basepoint-free version of TTy(M, rri).
Indeed, it is clear from Remark 10.3 and Proposition 9.8 that one of these sub-
groups of TTy(M) is associated to each asymptote class A of rays in My. Thus we
define the asymptote class subgroup ttx(M, A) to be those deck transformations 8
such that A is stable under S. If we choose a base point my e My, then there is an
associated isomorphism between TTy(M) and TTy(M, Tr(my)), under which the sub-
group TTy(M, [yy]) corresponds to the ray subgroup -ny(M, Tr(my), tt o yy). Here yx is
any ray starting at my and [yj is its asymptote class. In the light of this discussion
the following is a restatement of Proposition 10.4.

10.5 Proposition. Let M be complete with K^O. Then for every deck transforma-
tion 8 of the simply connected covering My of M, there is an asymptote class of rays
in My which is stable under 8. Every ray subgroup of-iry(M, rri) corresponds, by choice
of base point in My above m, to the stability subgroup of some asymptote class of
rays in My.

10.6 Corollary. The inner automorphisms of TTy(M, rri) permute the ray sub-
groups.

Let TTy(M, m, y)0 = {H e ^(M, m, y) | lim |at| =0 on y}. The argument in Propo-
sition 10.4 (1) shows that TTy(M, m, y)0 is also a subgroup. This group can be
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nontrivial, for example, when y runs to infinity on a tube whose diameter shrinks
toward zero.

Now we assume that M has strictly negative curvature. We need the following
lemma.

10.7 Lemma. If M has KSc<0, then the distance between two asymptotic rays is
zero.

Proof. We may assume that M is simply connected, since a covering space
projection is distance nonincreasing.

Let a and t be asymptotic rays in M, with t having unit speed. Let ßt be the
minimizing geodesic segment from r(t) to a, parametrized on 7. Define a rectangle
r: Ix [0, oo) -> M by r(u, t) = ßt(u). For sufficiently large t, say iäO, r is C°°. As in
Lemma 10.1, we obtain the same formula for LL", where L(t)=\ßt\. This time
Y(-,t) is not only a Jacobi field along each ßt, but also satisfies the end condition
at the totally geodesic submanifold a(0, oo). Thus<VyF, A">(0, r) = 0and II F||(-, t)
is an increasing function (of u) on 7 Applying Rolle's theorem again we obtain
inequalities

LL"(t) ^ -K(X, Y)\\X a Y\\2(h(t),t)
= -CL2(i)||F(0,0||2.

Let f(v) = || F(0, v) ||. Since F(0, • ) is the velocity field of the parametrization
r(0, ■ ) of a, the triangle inequality gives

^f(v)dv = d(r(0,O),r(0,t))
^   -d(r(0, 0), r(0)) + d(r(0), r(t))-d(r(t), r(0, t))
S í-27(0).

However, by Schwarz's inequality (with second function g= 1), for r>27(0),

tjj(v)2dv ^ (Jj(v)dv^ ä (r-2L(0))2.

Hence we also have, for some k > 0 and t > 2L(0),

f f(v)2dv ä t-k.

Now noting that/(y)^ || F(l, v)\\ = 1, we have

l- (L'(t)-L'(0))+ T L(v) dv =  f (l(v) + -c L"(v)\ dv

Ú^L(v)(\-f(v)2)dv

ÚL(0) \\\-f(v)2)dv
Jo

Ú kL(0).
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Since limA'(?) = 0, this shows that the integral J" L(v) dv converges, and hence
limA(0 = 0.

10.8 Corollary. If M (complete, ASc<0) is simply connected and </>: M-> M
is an isometry, then for every geodesic ray y, \\ms^x g<t,(y(s)) is an invariant of the
asymptote class of y, where gà(m) = d(m, </>(m)). Moreover, this limit has only two
possible values, oo and inf g¿. If g<¡, has no minimum, there is a unique g^-monotone
asymptote class. If g^ has a nonzero minimum, then </> translates a geodesic r and the
only g^-monotone asymptote classes are [t + ] and [t~].

Proof. If gó goes to oo on y, the same obtains for every ray asymptotic to y.
Thus we may assume inf g^ ° y<oo. Suppose t is asymptotic to y. Let e>0. Then
by the triangle inequality, for every s, t such that d(r(t), y(s))<e

\d(y(s),Ms))-d(r(t),tpr(0)\ ^ d(y(s),T(t)) + d(<t>r(t),4>y(s)) < 2e.
Hence inf g^, ° T = inf gà ° y.

Now let a be a geodesic ray on which a = infg¡¡> ° cr = infgi)<oo and suppose that
on some other ray y we have inf g0 ° y = b<co. By what we have just proved, we
may assume that o and y intersect, so by Lemma 9.10 there is a geodesic t such
that t+ is asymptotic to a and t" is asymptotic to y. Thus gé is bounded, hence
constant on t, and b = a.

The final remarks follow from Propositions 4.2 and 9.11.

10.9 Proposition. If 8 is a deck transformation of the simply connected covering
tt: My-^M (complete, K^c<0), then either (1) infg0 = 0 or (2) 8 translates a
geodesic.

Proof. Suppose infg¿ = a>0. Let y be a gö-monotone geodesic, parametrized
with unit speed so that d(8y(0), y) < a. We also may assume that the foot y(ty) of
Sy(0) on y is in the positive half, that is, ty >0, since otherwise we replace S by S"1
and y by Sy. Define a sequence {/} recursively by:

y(f¡) is the foot of Sy(r¡_1) on y.

Let d¡ = d(8y(ti), y(ti + y)) = d(8y(ti), y) and a¡ = ¿/(y(í¡), fy(h)\ so a^a. Since Sy is
drawing steadily closer to y, it follows by continuity that tt + 1 > t¡, and hence that
a¡ and d, are nonincreasing. From the right triangle with vertices y(t¡), 8y(t¡), and
y(h+i) we have a—dt^ai—diiti+1 — tt^ai. Thus limf¡ = co, and hence lima¡ = a,
lim d¡=0, and lim (í¡ + y — ti) = a.

We now show that the series 2 dt converges, and hence that the sequence
{Try(t¡)} converges to some point me M. As in Lemma 10.7, with r = 8y, a — y, we
have that the infinite integral of L(t) = d(8y(t), y) converges and A is decreasing, so

^ L(t)dt £ f L(ti + y)(ti + y-td
JO i=l

2: (a-dy)^L(ti + 1)

= (a-dy)^di + 1.
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It follows that the sequence {8_iy('i)} converges in Mx to some point mx above m.
But gô is invariant under 8, so gi(mx) = h^g0(h-iy(t/)) = \imgi(y(t/f) = a. Thus gd
has a minimum point m,, so S translates a geodesic by Proposition 4.2.

10.10 Theorem. Let a be a nonconstant geodesic loop at me M (complete,
K<:C<0).

(1) If a is not freely homotopic to a closed geodesic then:
a. a is monotone on exactly one ray y from m,
b. ttx(M, m, y)o = iTx(M, m, y),
c. y diverges.

(2) If a is freely homotopic to a closed geodesic t, then:
a. a is monotone on exactly two rays p and o from m,
b. itx(M, m, p) = ttx(M, m, o), and this group is infinite cyclic,
c. t is a limit cycle of p and a with p asymptotic to t, a to its reverse curve t~ 1,
d. ttx(M, m, p)o = ttx(M, m, o)0 = {\}.

Together with Proposition 10.4, this gives

10.11 Corollary. If M is a complete manifold with strictly negative curvature,
then the fundamental group ^(M, m) is the disjoint (except for {1}) union of its ray
groups.

Proof. Let S be the deck transformation corresponding to a. Since the geodesic
loops in the free homotopy class of a are the projections of segments from p to 8p,
the cases correspond to the cases (1) and (2) of Proposition 10.9.

In (1), inf gô = 0, so by Corollary 10.8 there is a unique gó-monotone asymptote
class. Thus [a] is in a unique ray group nx(M, m, y) and lim |a(|=0, that is,
[a] e ttx(M, m, y)0. To prove c, let B be any compact subset of M. There is an £>0
such that e is a normal radius at each point of B. If y(t) e B, then we must have
|o£t| > e. Thus for some t0, y(t) <£ B for all /> t0. To prove b, let ß be a geodesic loop,
[ß] e 7Tx(M, m, y). If [ß] is not in -nx(M, m, y)0, then by Proposition 10.9, the deck
transformation of ß would translate a geodesic t. Hence y would be asymptotic
to the closed geodesic -m, contradicting c.

In (2), parts a and c are immediate consequences of Corollary 10.8. Moreover,
d follows easily from b, so it remains to prove b. We first note that the subgroup
of ttx(M) which leaves invariant a given geodesic is infinite cyclic and is generated
by a unique smallest positive translation. Thus we want to show that every member
of ttx(M, m, p) corresponds to a deck transformation which translates the same
geodesic tx which S translates.

Suppose that <f>eitx(M, A), <f>^\, where A = [t1¥]. By (1) b, since infg0^0, we
also have inf g$¥=0, and hence </> translates a geodesic yx asymptotic to tx. We may
suppose that both S and </> are the smallest positive translators of rx and yx. Then
for every t, lim?t_00 d(8BT1(r), yi)=0, which shows that wt^í) is in the closed
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geodesic wy,. Thus by reparametrizing, wri=fryu and there is a deck transforma-
tion /x such that p.TX = yx- But /xSix-1 translates the geodesic p.rx, in fact by a mini-
mum positive amount, hence p8p~1 = </>, and 8 and </> translate by the same amount
a. Now for e>0, let t be large enough so that d(rx(t), yx) = d(rx(t), y,(y))<e/2 for
some s. Since d(Tr(t + u), yx(s + u)) is a convex function of«, bounded for u positive,
we also have d(rx(t+a), yx(s+a))<e/2. By the triangle inequality and the fact
that </> is an isometry we have

d(rx(t),cp-^rx(t)) < d(yx(s),<f>-1rx(t + a)) + e/2

= d(yx(s + a), Tx(t + a)) + e/2
< e.

This shows that infg<s>-iô = 0. But by (l)b, the only deck transformation in
7T1(M, A) having this property is 1. Thus 8 = <f> and rx=yx-

10.12 Proposition. Let M be complete, K=c<0; and let G = -nx(M, m, y) be a
ray subgroup ofnx(M, m). If ß £ G, then ßGß-1 n G = {1}.

Proof. Let 8 be the deck transformation corresponding to ß and let yx be the
lift of y to the base point mx above m. By hypothesis S $ttx(M, [yi]) = G1, so 8yY
is not asymptotic to yx. If Gx is of the second type, consisting of translations of a
geodesic rlt then 8tx is not asymptotic to rf either. But 8(7,8_1 is the asymptote
class subgroup ^(M, [8yx]) (which also equals ^x(M, [8rf ]) in the second case),
so it meets Gx only in {1} by the disjointedness properties of ray subgroups.

Geometrically this property of ray groups means that if a nonconstant geodesic
loop a shortens as it moves out a ray y, but ß does not, then the geodesic loop in
[ßaß'1] also does not shorten. The example of a riemannian product, with each
factor having negative curvature and nontrivial homotopy, shows that this property
fails if we assume merely K^O, even with the additional assumption of negative
mean curvature.

10.13 Corollary. If M has strictly negative curvature, there are 0, 1, or oo
nontrivial ray subgroups. Furthermore, if there are oo, then there are either 0 or oo of
each of the types (1) and (2) of Theorem 10.10.

Proof. If there were a finite number (^0, 1) of ray subgroups, then inner auto-
morphism by any element would permute them, and hence have a power leaving
them fixed. The same power of the element must be the identity, but only the
identity has finite order. Furthermore, the types (1) and (2) are preserved under
inner automorphisms (since g6 °</>=gu, where p,=</>~18<p), so the same argument
may be used with each type separately.

10.14 Remarks. In case there are oo ray subgroups of type (2), Corollary 10.13
does not necessarily mean that there are infinitely many distinct closed geodesies
(as point sets). In fact, each closed geodesic is counted infinitely many times,
because conjugate group elements are freely homotopic to the same closed geodesic
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and each element has infinitely many conjugates. The corresponding condition
when there are infinitely many type (1) subgroups, the existence of finitely many
rays from a point such that every type (1) ray is asymptotic to one of them, definitely
does occur; for example, a thin tube of strictly negative curvature can be attached
to a compact surface ; or two such tubes can be attached to the hyperbolic plane.
However, we suspect that the existence of two closed geodesies or a closed geodesic
and a type (1) ray implies the existence of infinitely many closed geodesies.

Some other simple consequences of Proposition 10.12 are: (1) No proper ray
subgroup is normal.

(2) If two elements a, ß ofTTy(M, m) commute, they are in the same ray subgroup.
(3) Every commutative subgroup of tt1(M, m) is contained in a single ray

subgroup.
(4) If TTy(M, m) has nontrivial center, then 7r1(M, m) itself is a ray group, that is,

there is only one nontrivial ray subgroup.
We shall say that a riemannian manifold M is full provided each nontrivial free

homotopy class of loops in M contains a closed geodesic. Equivalently, M is full if
every deck transformation of its simply connected covering space translates a
geodesic. Compact manifolds are full, but there are, of course, many full non-
compact manifolds. Preissmann [8] has proved for complete manifolds with A<0:
If the deck transformation group consists of translations, then every commutative
subgroup is infinite cyclic. We shall elaborate this result below in Proposition 10.16.
By Theorem 10.10, M (complete, A¿c<0) is full if and only if TTy(M, m, y)0 = 0}
for every geodesic ray y from m which diverges.

10.15 Proposition. If M (complete, KfíO) contains a compact totally convex
set A, then M is full.

Proof. Let a e 7r1(M, m) and let 8 be the deck transformation of My correspond-
ing to cc under some choice of base point my e My. Then the geodesic loops in the
same free homotopy class as a are just the projections of the segments from p to
8(p), as p runs through My. Choose a sequence {p¡} such that lim gó(pi) = inf gd.
Let pY: M-> A1=tt~1(A) be the continuous retraction of Proposition 3.4. Since
py is distance-nonincreasing and commutes with 8, {q¡ = pi(/»¡)} is a sequence in Ay
having lim gi(q¡) = inf g6 also. Let t¡ be the projection of the segment from q¡ to 8q¡.
Since t¡(0) e A, which is compact, we may assume that the initial velocities t¡(0)
converge, and hence that the loops t¡ converge to a loop t. The convergence of
geodesic segments is uniform, so t is in the same free homotopy class as a, and
clearly |t| =inf gd. Thus there is a lift of r to some segment from, say, p0 to 8p0,
and since p0 is a minimum point of gd, t is a closed geodesic, by Proposition 4.2.

10.16 Proposition. If M is a complete full manifold with K<0, then the funda-
mental group TTy(M) has the properties :

A. It is a disjoint union of infinite cyclic subgroups.
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B. Two commuting elements belong to the same cyclic subgroup.
C. Each of the subgroups in A is an asymptote class subgroup of type (2) as in

Theorem 10.10.

Proof. (By the method of Preissmann.) For a given geodesic t in My that is
translated by some deck transformation, the members of tt±(M) which translate t
form an infinite cyclic subgroup Dz. Since M is full each deck transformation 8
is in some A»,. Since A<0, Proposition 4.2 shows that each 8^1 is in at most one
A»T. This establishes A and C.

To prove B, suppose 8 e Dz and that p, commutes with 8 +1. Then 8p.T = p8r = ¡it,
so /¿t is the geodesic translated by 8, that is, pr=r. Hence p. e Dx.

10.17 Remarks. (1) If t is a translated geodesic in My, then every tubular neigh-
borhood of t having uniform radius is a region of strictly negative curvature.
Indeed, it is covered by isometric translates of a compact region. Thus we could
have used the method of Theorem 10.10. This also shows that the ray of a nontrivial
ray subgroup has the corresponding closed geodesic as a limit cycle.

(2) Property B is a restatement of Proposition 10.12 for this situation, and in the
presence of A is equivalent to the assertion that if xmy=yxn then x and y are in
the same cyclic subgroup.

(3) In an abstract group G the height of x e G is h(x) = sup {« | there is y e G such
that yn = x}. It requires rather ordinary group-theory technique to prove that
property A for G is equivalent to the combination of the following three properties :

a. G is torsion free.
b. Every element of G has finite height.
c. If xm=yn (rn, « not both 0), then x and y lie in the same cyclic subgroup.
(4) If a nontrivial group G satisfies A, then the number of component cyclic

subgroups is either 1 or oo. (In the presence of B this follows as in the proof of
Corollary 10.13, but it is true in general.)

(5) The fundamental group of the Klein bottle A is isomorphic to the group
with two generators x, y and one relation x2=y2. This description shows that it
does not satisfy A. Since A admits a flat metric, we have that the fundamental
groups of the following types of manifolds do not necessarily satisfy A :

a. Compact (in particular, full), AJ5|0. Example. A with the flat metric.
b. Not full, K^c<0. Example. A x e<A.
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