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MANIFOLDS OF NONPOSITIVE CURVATURE AND

THEIR BUILDINGS

by KEITH BURNS (*) and RALF SPATZIER (**)

Abstract

Let M be a complete Riemannian manifold of bounded nonpositive sectional

curvature and finite volume. We construct a topological Tits building A(M) associated

to the universal cover of M. If M is irreducible and rank (M) ^ 2, we show that A(M)

is a building canonically associated with a Lie group and hence that M is locally

symmetric.

INTRODUCTION

Let M be a complete connected Riemannian manifold of bounded nonpositive

sectional curvature and finite volume. For any geodesic y? let rank y be the dimension

of the space of parallel Jacobi fields along y- Let rank M be the minimum of the ranks

of all geodesies. This definition and the basic structure of such manifolds M with

rankM^ 2 were discussed in [BBE] and [BBS] (cf. also [El] and [S]). W. Ballmann

in [B] and independently ourselves, though somewhat later in the generality presented

here, found the following

Main Theorem. — Let M. be a complete connected Riemannian manifold of finite volume

and bounded nonpositive sectional curvature. Then the universal cover M. of M. is aflat Euclidean

(*) Supported in part by NSF Grant MCS-82-04024 and M.S.R.L, Berkeley.
(**) Supported in part by NSF Grant DMS-84-01760 and M.S.R.L, Berkeley.
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space, a symmetric space of noncompact type, a space of rank 1 or a product of spaces of the above

types.

Corollary. — Suppose in addition that M does not have a Euclidean factor. Then M has

a finite cover that splits as a Riemannian product of spaces of rank 1 and a locally symmetric space.

This follows from the Main Theorem by [E2, Proposition 4.5]. Using Proposi-

tion 4.1 of [E2], the Main Theorem follows from

5.1. Theorem. — If M. is as in the Main Theorem, M is irreducible and rank M ̂  2,

then M is locally symmetric.

Therefore we may assume that M is irreducible and has rank at least 2. In parti-

cular, we will always assume that M has no Euclidean factor.

Ballmann's proof relies on Berger's characterization of symmetric spaces by their

holonomy [Be, Si, B], Our approach generalises Mostow's proof of the Mostow-Margulis

Rigidity Theorem [M, Ma] and the arguments of Gromov's Rigidity Theorem [BGS],

It is also closely related to Gromov's notion of the Tits distance on the ideal boundary

of a manifold with nonpositive curvature [BGS, §4].

Let us give a brief outline of the paper.

Section 1 discusses preliminaries.

In Section 2 we refine the notion of Weyl simplices introduced in [BBS], Recall

that they are subsets of the unit tangent spheres to ^-flats F at points p e F where

k === rank M. Weyl simplices are very rigid. In fact, we show that they are all isometric.
In Section 3 we define Weyl simplices at infinity. We show that they fit together to

form a spherical Tits building A = A(M) covering M(oo). This is a simplicial complex

together with a family { S } of finite subcomplexes called apartments satisfying the axioms

(Bl) A is thick i.e. every codimension 1 simplex in a top dimensional simplex is contained

in at least 3 top dimensional simplices;

(B2) every apartment is a Goxeter complex;

(B3) any two elements of A belong to an apartment;

(B4) if S and S' are two apartments containing A and A' e A, then there is an iso-

morphism of S onto S' which leaves A, A' and all their faces invariant.

Our version of Axiom B2 is stronger than needed (cf. [T, 3.1]).

The building A(M) is set up to formalise the intersection pattern of the regular

A-flats at oo. For example, any Weyl simplex G in M(oo) arises as the intersection

F^(oo) n Fa(oo) for two regular A-flats F^ and Fg; see Figure 1.

Buildings are very rigid objects. Quite generally, they arise as the buildings of

parabolic subgroups of an algebraic group over some field [T], Our first aim is to prove

that A(M) is the building attached to a real algebraic group. This calls for topology.
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FIG. 1

In [BS] we developed the notion of topological Tits buildings and classified some of

them with

Theorem [BS, Main Theorem], — Let A be an infinite, irreducible, locally connected,

compact, metric, topologically Moufang building of rank at least 2. Then A is the building of para-

bolic subgroups of a real simple Lie group G.

The group G is the group of all automorphisms of A which are also homeomor-

phisms of A. Topologically Moufang means that there are plenty of topological auto-

morphisms of A [BS, 3.1]. We finish Section 3 by showing that A(M) with the topology

induced from M(oo) satisfies all the topological hypotheses of the last theorem.

In Section 4 we show that A(M) is irreducible if and only if M is irreducible.

In Section 5 we finally show that M is symmetric. By the above, A(Kl) is the

building of a real simple Lie group G. The symmetric space G/K (K a maximal compact

subgroup of G) provides us with a model space, as in Gromov's Rigidity Theorem.

Adapting Gromov's arguments [BGS, Chapter 4], we show that after a change of

scale M is isometric to G/K. Actually our proof is considerably simpler, since M(oo)

already carries a building structure.

We are indebted to V. Schroeder for explaining Gromov's Rigidity Theorem

and showing how its proof should be adapted. Before, we could prove the Main Theorem

only for compact M. We would also like to thank H. Garland, S. Hurder and A. Katok

for their help and encouragement.

Most of this work was done at the Mathematical Sciences Research Institute

in Berkeley to which we are grateful. We would also like to thank the University of

Maryland, State University of New York and the National Science Foundation for
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financial support. The second named author is also grateful to the Institut des Hautes
fitudes Scientifiques.

1. Notation and Preliminaries

The results of [BBE] and [BBS] are fundamental to our work. We will use the

notation and concepts introduced there. In particular we refer the reader to [BBE, §1]

for a survey of basic information about manifolds with nonpositive curvature.

By M we will always denote a complete, connected Riemannian manifold with

bounded nonpositive sectional curvature and finite volume. Also we assume that the

Riemannian universal cover M has no Euclidean factor. We denote by k the rank of M

[BBE, §2]. Unless otherwise specified, geodesies will have unit speed.

As in [BBE] and [BBS], M(oo) denotes the sphere of points at infinity for % and

M == M u M(oo). If v eSM or SM, then y,, is the unique geodesic with Yv(0) == v
'

I f ^ e M and x e M\{p}, then V(^, x) is the unique vector in Sp M with Yv(p x)W
 = x

for some t e (0, oo]. The geodesic symmetry about a point p e 'M. is denoted by d y . If F

is a flat in M, then F( oo) is the set of points at infinity for F, i.e.

F( oo) = { y»( °°) : ^ e SM is tangent to F }.

The horosphere H(») of a unit vector v is defined in [BBE, §1]. If v e SM and p e M,

then v(p) is the unique vector of Sy M asymptotic to v.

The reader might like to review the definitions of regular and ^-regular vectors

([BBE, §2] and [BBS, 2.1]). We denote by ^ the set of all regular unit vectors. If v

is regular or ^-regular, F(y) is the unique ^-flat to which v is tangent (cf. [BBE, §2] and

[BBS, §2]). The strong stable and unstable manifolds and horospheres W^y), W^y), H\v)

and H"^) of a regular vector v are defined in [BBE, §3].

We call a geodesic y of M periodic if it is a lift of a closed geodesic in M, and we

call v e SM periodic if y,, is periodic. An isometry 9 of M is an axial isometry of a periodic

geodesic y if there is a constant T > 0 such that 9 o y(^) = y(^ + T-) tor all t. We call T
the period of 9. Axial isometries of y arise from the covering transformations of M cor-

responding to the closed geodesic covered by y-

1 .1 . Lemma. — Let y be a periodic regular geodesic tangent to the k-flat F. Suppose 9 is

an axial isometry for y and x e M( oo). If n ̂  0

^(oX?^ T(^)) < -W^ Y(^))-

If n is large enough, equality holds if and only if x e F( oo). Any limit point of{^nx:n^ 0}

lies in F(oo).

Proof. — Let T > 0 be the period of 9. Consider the ideal triangle T with ver-
tices y(0), Y(^r) and 9" x. The sum of its angles at y(0) and Y(m-) is at most TT. Hence

^(o)^^^00)) ^ ^(nT^?^^00)) =^r(o)(^Y(00)) as 9 fixes Y(°°)- ^ is clear
that equality holds i f ^ e F ( o o ) .
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If n is large enough, any parallel Jacobi field along the regular geodesic y between

y(0) and ^{nr) must be tangent to F. If ^^(^^ Y(00)) = "^Y(O)(^ Y(°°))? ^e ideal
triangle T is flat. Hence 9" x eF(oo). Since F is invariant under 9, x eF(oo).

Finally suppose y is a limit point of { 9^ x : % ^ 0 }. Then

^(o)(?^ Y( ̂ )) == ^(0)(^ Y( ̂ )) ^ all ̂  0.

Hence y e F( oo). •

2. Isometry of Weyl Simplices

We define Weyl simplices for so-called /-regular vectors. This extends the defi-

nition of the set ^(v) for ^-regular vectors v in [BBS], Since the set of/-regular vectors

is a union of asymptote classes this allows us to define Weyl simplices at infinity from

which we then construct a Tits building (cf. Section 3). Our main goal in this section

is to show that all Weyl simplices are isometric.
Gall v e SM ^-regular if v is asymptotic to a regular vector. Let oSf be the set of all

/-regular vectors. Since the set 3i of all regular vectors is open and dense, so is J?\

2.1. Examples. — (i) If M has rank 1 then every unit vector v is /-regular. In

fact, if Y is a periodic regular geodesic with y( °°) + Yv( °°) ^len Yi?( °°) is joined to y( °o)

by a geodesic y' (cf- Lemma 3.6). Clearly y' is regular.
(ii) Suppose M = M^ X M^ and TT, : M -> M^ is the projection onto the i-th factor.

If v e SM, set y, = Ac, v for i == 1, 2. Then v is /-regular if and only if ^ + 0 and

|| ^ ||~'1 ^ is /-regular for i == 1, 2.
(iii) Unlike /^-regular vectors, /-regular vectors can be tangent to more than one

ft-flat, where k is the rank of M. Suppose that in Example (ii) both M^ and M^ have

rank 1. Then v e SM is /-regular if ^ + 0 + z^. But if either ^ is tangent to a 2-flat

in M,, then v is tangent to a flat of dimension at least 3 (cf. Proposition 2.22).

If v e JSf, set

A(») == { q e M : v[q) is ̂ -regular }.

2.2. Definition. — If v e oSf, the M^/ simplex of y is

<^(o) = { w e S^ M : w(y) is tangent to F(&(y)) for all y e A(u)}.

We will see later (cf. Theorem 3.8) that this set actually is a spherical simplex.

It is easy to check that this agrees with Definition 2.4 of [BBS] when v is /^-regular.

Clearly ^(v) is closed for any v e JSf and, ifcp is an isometry ofM, ^{d^{v)) == d^^^v)).

When v is ̂ -regular, ^(v) is a convex subset of the k — 1 dimensional unit sphere S^ F(^)

by Lemma 2.5 of [BBS], If », w e oSf are asymptotic, there is a bijection ^(v) -^ ^(w)

defined by u -> u(r:w). It follows from the Convexity Lemma [BBE, 1.5] that this map

is an isometry if v and w are both j^-regular.
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2.3. Remark. — If v is uniformly recurrent and regular, A{v) = M by [BBS, 2.2].

Hence the map u ->u{q) defines an isometry ^(v) -^^(v[q)) for every q e M .̂

We now define the interior of a Weyl simplex. If v is ^-regular, Int ^{v) will be

the (topological) interior of ^{v) in S^F(y). For v e oSf, set

Int ^{v) = { w e ^(zQ : w{q) e Int ^(y(y)) for all q e A(z/) }.

Set 8^{v) = ^(y)\Int^(y).

We begin our proof that all Weyl simplices are isometric by studying Weyl sim-

plices where this is true locally. The first major step will be to show in Proposition 2.12

that all of these Weyl simplices are isometric.

2.4. Definition. — A vector v e oSf is rigid if v has an open neighborhood UC 2?

such that for every u e U we have :

(Rl) uelnt^{u);

(R2) Int̂ ) cU;

(R3) ^(^) == ^(u) for every u' e Int ̂ (u);

(R4) V(u) ̂  V(v).

A n^irf M^/ simplex is the Weyl simplex of a rigid vector.

Note that ^(v) is a A — 1 dimensional convex set when v is rigid. This follows

from [BBS, 2.7], since U must contain a regular uniformly recurrent vector. The next

lemma shows that the set of rigid vectors is dense; it is clearly open. Also it is invariant

under the action of isometrics of M, and Lemma 2.8 shows that it is a union of asymp-
tote classes.

2.5. Lemma. — If v e SM is regular and uniformly recurrent in both the positive and

negative directions^ then v is rigid.

Proof. — Let U c 3t be the neighbourhood of v defined in the Rigidity Lemma

[BBS, 2.10]. Recall that [BBS] defined the Weyl chamber ^{w) ofa^-regular vector w,

and ^(w) as the (topological) interior of ^(w) in S^y, F(w). It is easy to prove the

following:

a) If w is /^-regular and w' e ̂ (w), then ^(a/) == ^(w).

b) If w and w' are ^-regular and asymptotic, then the map u -> u{nw') on S ,̂ M

defines isometrics from ^(w), Int^(w), ^{w) and ^(w) to ^(w'), Int^(w'), ^{w')

and ^(w') respectively.

The construction of hy in the proof of the Rigidity Lemma shows that any u e U

is asymptotic to a vector u' e^(y') for some y' eW^y). Moreover it is clear that U

can be constructed so that v ' e 31 for each u e U. Hence all the vectors in the following

argument are ^-regular.
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We note some obvious consequences of part 1) of the Rigidity Lemma and its

proof:

c) Int^(z0 = V{v') and so Int̂ ) == ^{u).

d) ̂ ') ̂  <T(,).

e) v' e^(o').

(Rl), (R3) and (R4) follow from a) —e)\ (R2) follows from c), since it is clear

from 2) of the Rigidity Lemma and its proof that ^{u) c U if u E U. •

2.6. Lemma. — Let a sequence {v^} s -Z7 converge to v e oSf.

(i) Then lim ̂ (yj c ̂ ).

(ii) If in addition v is rigid, ^(^J ->^(v) and ^(v^) -^^(v) in the Hausdorjf metric

on compact subsets of SM.

Proof. — (i) is proved in almost the same way as Lemma 2.8 of [BBS], (ii) fol-

lows easily from (i), since ^{v) is convex and ^(^) ^ ^{v) for all large enough n. •

2.7. Lemma. — If v is rigid and q e M, the map ^(v) -> ^(o(?)) given by u -> u[q)

is an isometry.

Proof. — Define a: SM ->SgM by y.(u) = u[q). Then a is continuous and for

any w e oS?, a | ^{w} is a bijection onto ^S(w[q)). Choose a sequence { v^} of uniformly

recurrent regular vectors converging to v. By Remark 2.3, a | ̂ (^) is an isometry for

each n. Since ^(^J -> ̂ (v) by Lemma 2.6, it follows that a [ ^{v) is an isometry. •

2.8. Lemma. — If v is rigid and v' is asymptotic to v, then v' is rigid.

Proof. — Let U be an open neighborhood of v satisfying (Rl), (R2), (R3) and

(R4). Then U' == { u{q) : u e U, q e M } is an open neighborhood of v\ If u' is asymp-

totic to M, then ^(M') = { W(TO') : w e ̂ (u)} and Int ^{vf} = { W(TO') : w e Int V{u)}.

We see easily that U' satisfies (Rl), (R2) and (R3)$ (R4) follows from the previous

lemma. •

2.9. Lemma. — Suppose VQ e SM is rigid and w e SM has ̂ (vo, w^v^)) < ̂ .{vo, ^(po)).

Then w is rigid and ^{w} ̂  ^(v^).

Proof. — If v is close enough to VQ, then v is rigid, ^(v) ^ ^(po) and it is clear

from Lemma 2.6 (ii) that ^.(v, w^nv)) < ̂ f.{v, ^(v)). By the Closing Lemma [BBS,

4.5], there is a periodic regular vector v with all the above properties. Let 9 be an axial

isometry ofy,,. Let w^ == (Ap" w) {nv). By Lemma 1.1, { w^ } has a limit vector w' e S^ F(^)

with ^.{v.w') ^ ^{v,9^{v)). Since Int V(v) is open in S^ F(z/) by [BBS, 2.7],

w' elnt^(^). Hence w' is rigid and ^(w') == ^(y) ^ ^(yo). F01* some large w, w^ is

6
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rigid and ^(wj ^ ^{w). Since ̂  is asymptotic to d^w, it follows from Lemma 2.8

that d^ w is rigid, and hence that w is rigid. By Lemma 2.7, ^(w) ̂  ^(d^w) ̂  ^(wj

and hence ^(w) ^ ^(vo). •

2.10. Corollary. — Suppose {v^} is a sequence of rigid vectors such that <=):(»„, ̂ (^J)

is bounded away from 0. If' v^ converges to v, then v is rigid. •

Before we show that all rigid Weyl simplices are isometric we introduce:

2.11. Definition. — The center c{^(v)) of a Weyl simplex ^(v) is the unit vector
in the same direction as

k1^
where S is the (unique) great subsphere of smallest dimension which contains ^{v), (Jig ls

Lebesgue measure on S, and I: S^ M -> Ty^ % is the inclusion.

We list some obvious properties of c which will be used in the following.

(i) If v is rigid, c{^(v)) e^{v).

(ii) For any isometry 9 of M,

c[V{d^v))] == d^(v))}.

(iii) If v and v ' are rigid and asymptotic, c(^{v)) and c(^{v')) are asymptotic.

(iv) If v is rigid and »„ -> », c{^(v^) ->c(^(v)).

2.12. Proposition. — All rigid Weyl simplices are isometric.

Proof. — By [BBS, 4.5] there is a periodic regular vector w such that Yu, has an
axial isometry 9 which is a pure translation ofF(^). Lemma 2.5 tells us that w is rigid.

By Lemma 1.1, we can assume, after replacing <p by a power 9*", that if ;c e jKl(oo),

then ^u,(<p;v,T«,(00)) < ^w(^ Yw(0 0)) unless x e F{w) (oo). Let Q be a rigid Weyl

simplex. We shall show that S ^ ^(w). Let D be the set of all rigid vectors in SM that

are centers of Weyl simplices isometric to Q). It follows from the properties of the center

and Corollary 2.10 that D is closed. Let Do == D n S^ M.

We shall show below that if v e Do and v ^ ^(w), there is a vector v^ e Do with
•<^(v^ w) < <^{v, w). Since Do is compact, it follows that there is V^E'DQ r^^(w).

Since VQ and w are both rigid, we see that if WQ e Int ^{w) is close enough to z^, then

V{w) = <^o) ^ ̂  ̂  S.

Now we construct ^ from v. Either v belongs to S^F(w) or it does not. In the latter

case, we take ^ = {d^v} {nv). It is clear that z^eDo and ^:(^, w) < -^c(y, w) by our
choice of w and 9, since y,,(oo) ^ F(w) (oo).

In the former case we use the next two lemmas.
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2.13. Lemma. — If v e S^ F(w)\^(a/), there is a vector w' e Vf^w) such that v^w')

is not tangent to F(w').

Proof. — Since w is periodic and regular, A(w) == M which is the union of all

F(M/') for zi/" eW^w), by [BBE, 2.12]. Since v i^(w), there is /» e M with v(p) not

tangent to F(w(^)). Choose w' e W^w) so thatj& e F(w'). Ify(Trw') were tangent to F(w'),

we would have v(q) tangent to F(w') for every ^eF(w'). •

2.14. Lemma. — Suppose w' eW^w). Let ^ be an axial isometry of^y,. Then/or any

v E S^ F(w), there is a vector v' e S^ F(w') .y^A ^A^ Yv(00) t>$> a limit point of{ ^~ "(y^ °°)) }•

Proof. — Let T be the period of 4s so d^iw) == g^^w), where g
1 is the geodesic

flow. For n ̂  1, let w^ = ^(rf^""" w'). Clearly w^ e H^w) for each 72. Moreover

</8M«, ^) == d^g- w\ g- w) -> 0 by [BBE, 3.10]. Define +„ : S^ F(^) -> S^ F«)

by ^n(") === (^-w^) (^^n)- Clearly ^^ = P^o^"**, where P^ is the parallel transla-
tion in F(z^) from ^""(TTW') to Trw^. Hence each ^ is an isometry. Since w is regular,

F(^) converges to F(w), so { ^ ^ } has a subsequence that converges to an isometry

^:S^F(a/) -^S^F(w). Choose v ' =^~
l
(v). Since ^{y') is asymptotic to ^""y',

we see that Y»(00) ls a
 limit point of{ 4>~n(Yt?'(oo)) }• •

Apply Lemma 2.14 with ^ = 9 and take z^ = v'^nw). Using Lemma 1.1 we see
that

-^(^ ^) == ^w(Yw( °°). Y.'( °o))

^ „ lm<^w(Yw(oo).9~woYr'(oo)) =^(^^),

with equality only if Yt»'(°°) e F(w) (oo). Note that Yt?'(00) =^Y^»( 0 0 ) by our choice
of w' in Lemma 2.13, and recall from the beginning of the proof that 9 was chosen

to fix every point in F(w)(oo) and so that ^^(9^ Yw(°°)) < ^w(^ Yw(°°)) if

x eM(oo)\F(w) (oo). We see that ^(^i, w) < ̂ ;(y, w). Now we show that v^ eDo.

Let v^ = (^"^ y') (Tcw), so y is a limit vector o f { v^}. Since y e D there is an m such

that ̂  is rigid and ^{vj ^ ^(v) ^ ̂ . It follows that v ' is rigid and ^(zQ ^ ̂ . Clearly

c(<^(y)) = y is a limit vector of {^(^))}. Since ^(z^, ̂ (^))) = ^:(»', <?(^(y)))

for all w, we see that y' = c(V[v')). Hence v ' eD and thus ^ eDo. •

Before we extend this result to all Weyl simplices we study a further class of vec-

tors—the r-periodic vectors.

We will call a vector v p-rigid if it is /^-regular and rigid. We call v r-rigid if it is

^-rigid and j&-rigid vectors are dense in S^ F{y). Note that if v and w are ^-regular and

w E S^ F(^) then F(») == F(w), since F(w) is the unique ^-flat tangent to w. If w is also

rigid, we see that Int^(w) is open in S ,̂ F(&). Moreover every vector in Int ^(w) is

frigid. Since all rigid Weyl simplices are isometric and distinct rigid Weyl simplices

have disjoint interiors, it follows that there is a number d such that a frigid vector v

is r-rigid if and only if S^ '¥(v} contains d frigid vectors with distinct Weyl simplices.
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Note that these d Weyl simplices cover S^ F(^) and are the only rigid Weyl simplices

in S^F(^).

2.15. Definition. — A vector is r-periodic if it is periodic, regular and r-rigid.

2.16. Lemma. — If w is r-periodic and u e 8^{w), then u is not p-regular.

Remarks. — We will see in Proposition 2.20 that u is not even /-regular. In the

case that M is compact, it was already known [BBS, 4.8] that the boundary of the Weyl

simplex of a ^-regular vector contains no ^-regular vectors.

Proof. — It is obvious from the discussion above that there is a ^-rigid vector

v e S^ F(w)\^{w) such that u e ̂ {v) n ^(w). Suppose now that u is ̂ -regular. Applying

Lemma 2.6 to sequences in Int^(v) and Int^(w) which converge to u shows that

^(u) 3 ̂ (v) n^(w). Hence v{p) and w{p) are tangent to F(^)) for all peA{u).

As w{p) is always ^-regular (by Remark 2.3), we see that 'F(w{p)) == 'F{u{p)) and v{p)

is tangent to 7(w{p)) for all p eA{u). Since the set of ^-regular vectors is open, A(u)

is a neighborhood of nu == nw.

By Lemma 2.13, there is w' e W^w) with v(^w') not tangent to F(w'). Let ^ be

an axial isometry of y^ and define w^ e W'(w) as in Lemma 2.14. The proofs of

Lemmas 2.13 and 2.14 show that v(nw^) is not tangent to F(w^) and w^ ->w. This

contradicts the previous paragraph. •

2.17. Lemma. — The r-periodic vectors are dense in SM.

Proof. — Periodic regular vectors are dense, so it will suffice to prove that the set V

of all r-rigid vectors is open and dense. Since the set of ^-rigid vectors is clearly open

and dense, density ofV follows from 1) of [BBE, 2.7]. Ify' is close to a^-rigid vector y, v '

is^-rigid and S^ F(»') is close to S^F{y). I f o e V , S^ F(^) contains d frigid vectors

with distinct Weyl simplices. We see using Lemma 2.6 (ii) that if v ' is close enough to y,

S^ F(z/') also has this property, and so •o' e V. Thus V is open. •

2.18. Theorem. — All {-regular vectors are rigid. All Weyl simplices are isometric. If

v e oSf, ^{v) is a k — 1 dimensional convex subset of S^ M.

Proof. — First suppose v is a /^-regular vector. By Lemma 2.17, v is the limit of

a sequence { v^} of r-periodic vectors. Observe that ^(^, ^(^n)) ls bounded away

from 0. For otherwise v would be a limit of vectors in ^(v^) which is impossible by

Lemma 2.16, since the set ofj&-regular vectors is open. Since each v^ is rigid, Corol-

lary 2.10 shows that v is rigid.

Every /-regular vector is asymptotic to a ^-regular vector, so it follows from

Lemma 2.8 that all /-regular vectors are rigid. Hence all Weyl simplices are k — 1 dimen-

sional convex sets, which are isometric by Proposition 2.12. •

Using this theorem we can restate Lemma 2.6 and Corollary 2.10.
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2.19. Corollary. — Suppose {v^} c jS? converges to v.

(i) If v is /-regular, then ^(^J -> ̂ (v) in the Hausdorjf metric.

(ii) If -^(v^, 9^ (z/J) ^ bounded away from 0, ^w y i.? /-regular. •

Now it is easy to prove some useful properties of Weyl simplices.

2.20. Proposition. — The boundary of a Weyl simplex cannot contain an /-regular vector.

Proof. — Suppose v e ,S? and w e ̂ (w) is /-regular. Consider a sequence

{w^} s Int^(y) which converges to w. By Corollary 2.19, V(w) == lim ^(wj == ^(v}.

But now w e^(w), which is impossible, since w is rigid by Theorem 2.18. •

2.21. Proposition. — Every vector v e SM is contained in a Weyl simplex.

Proof. — Choose a sequence { v^} of /-regular vectors converging to v. By passing

to a subsequence we may assume that the sequence { w^} of centers of ^(»J converges

to a vector w. It is clear from Corollary 2.19 that

^(w) = lim ̂ (wj 3 { v}. •

2.22. Proposition. — If v e JS?, ^<?r<? ̂  a ̂ iy^ A-/7^ F through TO .̂ A ̂  ̂ (») c S^ F.

Moreover S^ F î  a union of Weyl simplices. (Compare Example 2.1 iii.)

Proof. — Uniqueness follows from the fact that ^S(v) is a k — 1 dimensional convex

subset ofS^, M. To prove existence, choose a sequence ofr-periodic vectors { v^ } conver-

ging to v. For each n, let v\, .. ., v^ be the centers of the Weyl simplices contained

in S^ F(^). By passing to a subsequence we can assume that F(»J converges to a A-flat F

passing through Try and v\ converges to an /-regular vector tf £ S^F{y) for i = 1, .. ., d.

^ ^
 d

It is clear that ^(^), ....^(y4) are all distinct. It follows that S^F(y) == U ^(^),
< = i

and ^(») = ^(^) for some i. •

2.23. Proposition. — If v e JSf, then — v e JSf and <^(— ») = — ̂ (y)^--^:^^)}.

Proof. — We prove this first when y is ̂ -regular. Observe that a vector u is ̂ -regular

if and only if — u is. Suppose w e ̂ (v) and — w f ^(— v). Then the great circle arc

joining v to w contains a vector ^eint^^) such that —u e 8^{—v). Then u is

^-regular by [BBS, 2.5] and — u is non-/-regular by Theorem 2.18, which is impossible.

It follows that —^(v ) c <^(—v), and hence ^(—v) == —^{v).

Now suppose v e oS? and choose a sequence {v^} of ̂ -regular vectors converging to v.

Since oS? is open, <^(^, ̂ (^J) is bounded away from 0, for otherwise v would be a limit

of non-/-regular vectors by Proposition 2.20. But <^(— ̂ , 9^{— yj) = -4(^, 3^(yj)

since ^(— ^) = — V(v^. Hence — y e JSf by Corollary 2.19 (ii). By Corollary 2.19 (i),

^J -^^) and —^J =^(—yj -^<^(—y). Thus ^(—v) =—^{v). •
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3. The Tits Building of a Manifold of Nonpositive Curvature

We define Weyl simplices at infinity and show how they give rise to a topological
Tits building.

Call a point x at infinity regular if it has /"-regular representative geodesic rays.

Otherwise we call x singular. Note that the set SS{ oo) of regular points is open and dense

in M(oo). We call x eM(oo) r-periodic if x = Y»(°°) f
01 an ^-periodic vector v.

3.1. Lemma. — The r-periodic points are dense in M(oo).

Proof. — This follows from Lemma 2.17. •

3.2. Definition. — Let x e ^%(oo) with geodesic representative Yv The Weyl simplex

of A? is the set

W={^^):we^{v)}.

The in^n'or of C{x) is the set C{x) = { y^( oo) : w e Int ^(z/)} and the boundary of G(A:)

is 0G(^) == G(A:)\G(A:). If w is the center of ^(v), we call Yw(°°) the
 ^̂

r of t^W-
Glearly these definitions do not depend on the choice of representative geodesic

for x. Since the Weyl simplex of an ^-regular vector is tangent to a (unique) ^-flat, we

see that C{x) c F(oo) for some A-flat F. Note that C{x) is closed in F(oo) and C{x) is

its topological interior as a subset ofF(oo). We see from Proposition 2.21 and 2.20 that

(i) Every point ofM(oo) lies in a Weyl simplex;

(ii) A point ofM(oo) is regular (singular) if and only if it lies in the interior (boun-

dary) of a Weyl simplex.

3.3. Proposition. — The set of Weyl simplices is compact in the Hausdorjf topology.

Proof. — Let { x ^ } c ^(oo). Fix a point p in M. Choose z^eSyM such that

y^ (oo) is the centre of C(^). Passing to a subsequence, we may assume that {w^} con-

verges to a vector w eSyM. Since all Weyl simplices are isometric, -<^.y{w^y ^{w^))

is uniformly bounded away from 0. By Corollary 2.19, w is ^-regular and V(w^) -> V{w)

in the Hausdorff metric. Hence C(A:J -> G(j/) where y == YwC 0 0 ) - •

3.4. Lemma. — If¥ is a regular k-flat^ then F(oo) is a union of finitely many Weyl

simplices.

Proof. — If F is a A-flat such that Sy F contains a dense set of regular vectors, then

F( oo) is clearly a finite union of Weyl simplices. Since these A-flats are dense in the space

of all regular ^-flats by Lemma 2.17, the claim follows from Corollary 2.19. •

Now we come to the key lemma of this section. We say that a flat F joins two

points A*,^eM(oo) i f ^ e F ( o o ) andj^eF(oo) .
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3.5. Lemma. — Let v e SM be r-periodic (Definition 2 .15} . Then any point y e M( oo)

can be joined to y^(— °o) by a regular k-flat F. Moreover^ if ̂  is an axial isometry of^y^ there is a

sequence of integers n^ -> oo such that ^nk \ F( oo) converges to a homeomorphism 0 : F( oo) -> F(^)

that maps Weyl simplices to Weyl simplices and is the identity on F( oo) n F(&) (oo).

Remark. — It is possible for two points in M(oo) not to be joined by a ^-flat. In

rank 1 for instance, the Heintze examples [BBE, Introduction] contain 2-flats. If x ^y

are two nonopposite points at infinity of such a 2-flat, then x andj/ cannot be joined by

a geodesic.

FIG. 2

Proof. — By Corollary 3.4, F(^) (oo) is the union of finitely many Weyl simplices,

which are permuted by <p. After replacing 9 by a power of 9 if necessary, we may assume

that 9 fixes each point of F(^) (oo).

It is clearly sufficient to prove the lemma in the case that y is regular and the

center of C(jy). By Lemma 1.1 there is an increasing sequence n^n^ ... such that

^ky ->y eF(») (oo). By Proposition 3.3, j^' is regular and is the center of C(^'). Let

w == V(TO,J') and set z ' == Yw(— °o) eF(y)(oo). By Proposition 2.23, z ' is the center

of C{z'). Since v is r-periodic andy is regular, we see from the discussion before Defi-

nition 2.15 that w is^-regular. Hence F(z>) contains a regular geodesic y? parallel to Yw?

with y(— oo) = 2;' and Y(°°) ==J '• Let H" be the strong unstable horosphere of Y(0)-
Consider the continuous injective map yr IPxC^ ' ) ->M(oo) given by

f(py z " ) = Yv(»,2")(— °°)- ^s H" X C^z') and M(oo) have the same dimension, / maps
a neighbourhood of(y(0), z ' ) homeomorphically onto a neighbourhood U ofj/'. Moreover

f{p, z " ) is the center of its Weyl simplex if and only if z" = z ' . Since ^y ->y\ we
can assume that ̂ y e U for every k > 1. We see that for each k there is a geodesic Y&

joining z ' to ^y which passes through a point q^ of H". As k -> oo, q^ -> y(0) 3in
^

Y^ -> Y« Since y ls regular, we can assume that every y^ is regular.
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Since 9 fixes F{y) (oo), y^^oy^ is a regular geodesic joining z ' to y for each k.

These parallel regular geodesies must all lie in a regular ^-flat F. Clearly y e F(oo).

Also {9~ n k
 q^} S F. Since {q^} is a bounded sequence in M, 9 is an axial

isometry for ^ and n^ —> oo, it is easily shown that lim 9""^^ = Yv(— °°)*

Hence y,,(— oo) eF(oo). Finally, since 9^ F contains y^ ^d { Y & } converges to the
regular geodesic y which lies in F(^), we see that 9^ F( oo) -> F(») (oo). It is clear from
Lemma 3.3 that the Weyl simplices of 9"^F(oo) converge to those of F[y) (oo). •

Before proceeding to construct the Tits building, we extend the argument used

in the above proof to join z ' to 9^^.

3.6. Lemma. — Let v be a regular vector. There are neighbourhoods U of y,,(— °o) and

V °f Tt»(°°) anc^ continuous maps Q: U X V -> SM, y : U X V ->• M(oo) with

Q^(Ti>(— °°)9 Ti»(00)) == y J^ that for each [x^y) eU X V the geodesic Yo(^y) joi^ x to

y\x,y) eGOO.

H^(a,0))

FIG. 3

py.̂  — Let 'Bn
~

k
be the unit ball in R""*. Since the foliations Vf

9 and W" are

transverse near v, there is an injective and continuous map ^B^^ X B^^-^SM

such that ^(0, 0) = o, .g^-, 0) is a diffeomorphism onto a neighborhood of v in W^y)

and g{a, • ) is a diffeomorphism onto a neighborhood of g{a, 0) in 'W
8
{g{a, 0)) for

each a eB""^ Given ^ e^(»), we let A(fl, 6, ^) be the vector at TT(^(<Z, b)) asymptotic

to the vector u' at ^{g{a^ 0)) that is negatively asymptotic with u. Note that h maps
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{ a } x { b } x ^(v) isometrically onto ^{g(a, b)). Also h is continuous and injective.
Define

H:K
n
-
k
 x B"-* x ^(v) x ^(v) -^M(oo) x M(oo)

^ H^ ̂  ̂  w) = (Y^a, b.u)(—— °0)> Yft(a. b,w)( °0))-

Note that H maps { a} x { b } x ^{v) x V(v) onto G(Y,(,, ,,,)(— a))) x G(Y^^(oo)).

Also H is continuous and injective. By invariance of domain, the image of H is a

neighbourhood of (Yi,(— oo), Y<?(00)) in M(oo) x M(oo). Let U, V c ^(oo) be

neighbourhoods of y,,(— oo) and Yv(00) respectively such that U X V £ im H.

Given {x,y) e U X V, let (a, b, u, w) == H"1^,^). Then the geodesic y^a, &, u> Joins

A; to y = Yft(o,ft,u)(°°)- since
 V = Y^.b,w)(00)? ^

e
 ê that jy' e G(j») because

C(j0 = C(j^') == C(Y^o, (,,<,)( oo)). It is clear that y^a, &,«) varies continuously with x andj\

We define Q/A:,jQ === A(^'&, ^). •

Consider a regular A-flat F. Let S = Sp be the set of Weyl simplices in F(oo)

and all their intersections. For A, B e S we say that A is a face of B if A C B. Our first

goal is to show that S with this order relation is a Goxeter complex.

We identify F(oo) with SyF for some point/? e F. This gives F(oo) the geometric

structure of the unit sphere in ^-dimensional Euclidean space. Clearly this structure
is independent of the choice of p.

Let G, G' e S. Then C n C' is convex. Hence we can speak of the codimension

ofCn C', codim G n C', in F( oo). I fC+C' then codim G n G' ^ 1 since C n C' = 0.

If codim C n C' = 1 then C n G' lies in the set H of points at infinity of a unique

hyperplane in F. We call such a set H a hypersphere. Denote by Jf7 the collection of hyper-

spheres in F(oo). Let W be the group generated by the orthogonal reflections in the
hyperspheres H e J^.

3.7. Lemma. — (i) Let C, D e S. If codim G n D = 1 and if w is the reflection in

the hyper sphere H spanned by G n D, then w(D) == C.

(ii) If G, D e S are Weyl simplices^ then there is a sequence of Weyl simplices

G = Go, GI, ..., C^ = D in S such that codim G(_I n C, = 1 for i = 1, ..., m.

(iii) If w e W then w{^) C Jf.

Proof. — (i) Because the r-periodic vectors are dense, we may assume by the conti-

nuity of Weyl simplices and flats that F contains an r-periodic vector v with Yv(°°) e G.
Let 9 be an axial isometry of ̂ .

By the definition of Weyl simplices, there is a regular ^-flat F' such that G C F'( oo)

but D n F'(oo) == 0. By Lemma 3.5 there is a sequence of integers n^ -> oo such that

9^ | F'(oo) converges to a homeomorphism 0:F'(oo) ->F(oo) that maps Weyl sim-

plices to Weyl simplices. By Corollary 3.4 there is a Weyl simplex D'CF'(oo) such

that O(D') = D. Clearly D' 4= C and D' n G == D n C. As n -> oo, 9~"(D') sub-
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converges to a simplex in F(oo). Clearly any such limit contains D n C. Since (p^D'

converges to D it is clear from Lemma 1.1 that lim © " D ' = G. Since all the © " D '
n->oo • T

are isometric there is a sequence m^ -> oo such that ^"^D' converges to an isometry

Y : D' -> G. Also 0 : D' -> D is an isometry. Thus the map Y o O-1: D -> C is an

isometry that leaves G n D pointwise fixed. Hence Y o 0~1 = w [ D. Hence w(D) == C.

(ii) Since S is finite the set

X = U { E n E': E, E' e S, codim E n E' ^ 2 }

has codimension at least 2 in F(oo). Since the simplices in S cover F(oo), there is a

path y^ F(°°) that starts in G, ends in D and does not intersect x. Furthermore we

may assume that y consists of great circle arcs which have only transverse intersections

with the hyperspheres H e J^. Clearly the sequence of Weyl simplices that y intersects
satisfies the claim of (ii).

(iii) It suffices to prove this for a reflection w in a hypersphere H e Jf7. Suppose H

is spanned by G n G' for some Weyl simplices C, G' in S. Let D be a Weyl simplex

in F( oo) and let Co = G, G^, ..., G^ == D be a sequence of Weyl simplices as in (ii).

By (i) we know that w{Co) e S. Suppose that w{C^) e S for i = 0, .. . , j— 1. Let w"

be the reflection in the hypersphere H" spanned by C,._i n Gj.. Clearly w(H") inter-

sects 8w{Cj_^) in a set of codimension 1 in F(oo). Since ^(Cj_i) e S it is clear that

w(H") eJ^. Let w' e W be the reflection in w(H"). By (i) we have w"(C^) == C,._i

and w'(w(G^_i)) e S. As w •== w' ww" we obtain

Z(/(G,) = w' ww"^ == w'(w(C,_J) eS.

By the obvious induction, we have w(D) e S. Since any H ej^ is spanned by the inter-

section of two simplices in S, the claim of (iii) follows. •

We refer to [T, chapter 2] or [Bou] for the definition and properties of Coxeter

complexes.

3.8. Theorem. — The ordered set (S, C) is a Coxeter complex. In particular^ the faces

of a Weyl chamber form a simplex when ordered by inclusion. Moreover', S is the geometric realization

of the Coxeter complex in the {k—1) -sphere F(oo).

Proof. — Since W permutes the Weyl simplices, W is finite. There is no common

fixed point of W in F( oo). In fact suppose A: is a common fixed point. Then x e f1 H

and hence the point opposite to x in F(oo) is also in fl H. Then the diameter of any
HG 3^

Weyl simplex in S is TC. This is impossible by [BBS, Lemma 1.6].

Fix a point p e F. For H e ̂  let H C F be the hyperplane passing through p

with H( oo) == H. By the above, the family of hyperplanes H, H eJ^, satisfies the condi-

tions (Dl) and (D2) of [Bou, V, §3]. Let S be the set of all cones G C F based atj& with

C(oo) = G for some C e S. Order S by inclusion. Clearly (S, C) and (S, C) are iso-
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morphic. By [Bou, V, 3.9, Proposition 7] the cone C for C e S is a simplicial cone.

By [Bou, V, 1.6] 5 C with all its faces is a simplex. Hence (S, C) is a complex. By

Lemma 3.7 (ii), S is a chamber complex. Clearly S is thin. Since W maps Weyl simplices

to Weyl simplices by Lemma 3.7 (iii). Lemma 3.7 (i) shows that S is a Coxeter complex.

That S is the geometric realization also follows from this construction. •

Now we will introduce the Tits building on the sphere at infinity of M. We refer

to [T, chapter 3] for the definition and basic properties of buildings.

3.9. Definition. — Let A be the set consisting of the Weyl simplices at infinity

and all their intersections. If A, B e A we say that A is a face of B if A C B.

By Theorem 3.8, (A, C) is a complex.

3.10. Definition. — A subcomplex S of A that is isomorphic to a complex Sy for

some regular ^-flat F is called an apartment if the union of the Weyl simplices in S is

homeomorphic to a {k— 1)-sphere. The collection of all apartments is denoted by e .̂

Remark. — Since the set of apartments of a spherical building is unique [T 3.1,

3.26] it is not too crucial exactly how we define an apartment.

3.11. Theorem. — The pair (A, ja^) is a spherical Tits building.

Proof. — We check the axioms B1-B4 for Tits buildings (cf. Introduction).

(Bl) Let B e A have codimension 1. Then B is a wall of a Weyl simplex G. Let ̂

be a regular geodesic with Y»(°°) e C! and let F == F(^). Let D^ be the Weyl simplex
in Sp that contains B and is adjacent to G. By the definition of Weyl simplices there

is a regular geodesic Yw ^ch that Yw(°°) e ̂  an(! F(w) (oo) n D^ = 0. Let Da be the
Weyl simplex in F(w)(oo) adjacent to G and containing B. Now BCC.D^Dg

and hence A is thick.

(B2) This axiom follows from Theorem 3.8.

(B3) For p e M let Op be the geodesic symmetry about p. Since — ^(v) = ̂ {— v)

for any ^-regular vector v by Proposition 2.23 it is clear Cy induces an automorphism

of the complex A.

Let DI, Dg be two Weyl simplices and let y be a regular geodesic with y( °°) e D^.

By Lemma 3.6 there is a neighborhood U of y(— oo) such that any x e U is joined to

a point in D^ by a regular geodesic. By Lemma 3.1 there is an r-periodic point x e U.

Let p e M be a point on a geodesic joining A: to a point in D^. Since x e dy Di, Lemma 3.5

shows that there is a regular ^-flat F joining dp Di to cr^ Dg. Hence D^ and Dg belong

to the apartment (Sy Sp. Since any two elements of A are contained in Weyl simplices,

axiom (B3) is proved.
(B4) Let S and S' be two apartments such that S n S' contains two elements A

and A' of A. We consider first the case where A is a Weyl simplex. After replacing 2

and 2' by their images under a geodesic symmetry (as in the proof of (B3)), we may
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assume that the Weyl simplex A contains an r-periodic point x. Let v be an r-periodic

vector with x == Yv(— °0)? ̂ d <p an axial isometry for y,, with A? = lim 9" "TO. Choose
*» ->• 00

a sequence of integers n^ -> oo such that, for any Weyl simplex G e S U S', 9^ C

converges to a Weyl simplex in F(^) (oo). This is possible by Lemma 3.5 since S u S'

contains only finitely many simplices. Note that ^nk | S u S' converges to a continuous

map <D : S u S' -> F{v) (oo). Clearly C n 0(S\C) = 0. Since 0 | G is the identity,

0|S\C is a map between k — 1 dimensional discs that fixes their common boundary.

Suppose p e F(^) (oo)\G is not in 0(S\C). Let P be the projection along rays emanating

from p of F(zQ (oo)\C to 9C. Then P o 0 is a retract of S\G onto 9C. By [Sp, Corol-

lary 4.7.4] this is impossible. Hence 0 [ S and similarly 0 [ S' are surjective. Since

the number of Weyl simplices in S, S' and Sp^ are the same and 0 is a morphism,

0 | S and 0 [ S' are isomorphisms. Hence (0 | S')"1 o (0 | S) is an isomorphism from 2

to S' that fixes S n S' pointwise.

Now we consider the general case. Choose Weyl simplices G and G' such that

A c G e S and A' c C' e S'. After replacing S and S' by their images under a geodesic

symmetry, we can assume that G contains an r-periodic point. By Lemma 3.5, there

is a regular ^-flat F such that G, G' c F(oo). We have seen above that there are iso-

morphisms 0 : S -> Sp and O': S' -> Sp that fix C u A' and A u G' respectively.

Hence O'^oO.-S -> S' is an isomorphism that fixes A and A' and all their faces.

This proves (B4).

Finally notice that A is spherical since there are only finitely many Weyl simplices

in an apartment. •

Note that the chambers of A are the Weyl simplices. We will use the two names

interchangeably from now on.

Finally we topologize A. We refer to [BS, Section 1] for the definition and basic

properties of topological buildings. The set \ of vertices of A is a subset of M(oo).

Give AQ the induced topology. By Proposition 3.3 the space of chambers of A, Cham A,

is closed in A^. Hence the set A, effaces of dimension i is closed in A^. Therefore A is

a topological building.

3.12. Proposition. — The topological building A is compact, metric and locally connected.

Proof. — Clearly A is metric. By Proposition 3.3, A is compact. To show that A

is locally connected, let G e Gham A. Ghoose v e S with Y»( °°) e G* By Theorem 2.18,
v is rigid. Let U c 3? be a connected open neighborhood of v satisfying the properties

of Definition 2.4. Set V = {yu(oo) : M e U }. Clearly V is a connected neighborhood

ofCinM(oo) and V is a union of interiors of Weyl simplices. Hence Cham A and thus A

are locally connected. •

3.13. Lemma. — Let y be a regular geodesic contained in the k-flat F. Set x = Y(°°)

and ^ == cr^ o or^. If y e M( oo) then ^o)(^ x) < -<^o)(^ x) /or f ̂  °- For f ̂
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ficiently big, equality holds if and only if y e F( oo). Moreover any limit point of a^y as t -> oo

lies in F(oo).

Proof. — Clearly

^W^J. ̂  ̂  ̂ n^y. x) ==n— ̂ o(^o)^ x)

< 7r — "W^o)^ x
) = "*y(o)(^ A?)-

If equality holds then y^), y(0) and a^y) span a flat half strip. Suppose t is so large

that anyjacobi field along y that is parallel between y(0) and y(^) is parallel from y( oo)
to y(— oo). Then a^y) and hence y lie in F(oo). The remaining claim follows as in
Lemma 1.1. •

Let G be the topological automorphism group of A [BS, Section 1]. Clearly the

actions on M(oo) of geodesic symmetries and covering transformations are elements

of G. If G e A let G^ be the stabiliser of C in G. Let Opp G be the set of elements of A

opposite G. Clearly G^, acts on Opp C. Note that Opp G is open in Gham A [BS, 1.9].

3.14. Lemma. — If C e Cham A then G^ acts transitively on Opp G.

Proof. — As in the proof of (B3) in Theorem 3.11, we may assume that C contains

an r-periodic point x. Let D e Opp G. We first show that G^.D contains a neighborhood

of D. By Lemma 3.5 there is a regular geodesic y that joins x to a point y e D. By

Lemma 3.6 there is a ball 88 about D in Opp C such that: for all B e 3S we can pick a

geodesic YB depending continuously on B and joining A: to a point ^(B) in B so that
.(D) ==^. By Proposition 2.23, ^^(j/(B), 8B) = ̂ , BG) > 0. We may assume
that 88 is small enough so that for all B e 88,

(*) -W-^B)^) ^ -WJW, 3B).

Set af == <T^() o CT^O). Then 0
s
 e G^ depends continuously on B and t. It is clear from

Lemma 3.13 that we can choose a ball 88' with D e 88' c gs such that ^(D) e 38 for

all (B, t) e 38' x [0, oo). Let S == 9S8\ By Lemma 3.13 and (*), af(D) -> B as t -> ooy

Moreover ^^(a^j^B)) -> 0 monotonically for each B. Hence a^D) -> B as t -> oo

uniformly for B e S. We get a continuous map a : S X [0, oo] -> 38 such that a(B, oo) === B

for all B e S and a(S X [0, oo)) c G^.D. As ^(D) = D for all B e S, a gives rise to

a continuous map ~a : 38' -> 38 with ^(B) = B for each B e S and 7i[38') c G^.D. Since

S is not a retract of S3', we see that 'a{88') 3 39' (cf. the proof of (B4) in Theorem 3.11).

It follows that 38' c G^.D.

Finally we show that G^ is transitive on Opp C. Let v be an r-periodic vector

with Yr( °°) = x
- Set E = C(y^(— oo)). Let 9 be an axial isometry ofy^. IfD e Opp G,

then qT^ D -> E as n -> oo. Since GC..E contains a neighbourhood of E, we see that
DeGc.E. •
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3.15. Proposition. — The building A is topologically Moufang.

Proof. — Let S and S' be two apartments in A that intersect in a halfapartment A.

According to Definition 3.1 of [BS] we have to find g e G such that ^(S') = S and

g restricts to the identity on A. Let G be a chamber in A. Let D and E be the chambers

opposite to G in S and S' respectively. By Lemma 3.14 there is g e GQ such that
^(E) = D. Hence g(^) == S. Clearly g ^ = id^. •

4. Irreducibility

We prove the following criterion for reducibility of the building A attached to M
in the last section.

4.1. Theorem. — The building A is reducible if and only if M is reducible.

Proof, — Since M is simply connected, it is reducible if and only if it is a Rie-

mannian product of two factors of positive dimension. Clearly A is reducible if M is.

Suppose that A is reducible. This means that A is the join of two Tits buildings A^

and A^. Any vertex of A is either a vertex of A^ or of Ag. We say that a vertex of A is of

the first or second kind if it belongs to A^ or Ag respectively.

4.2. Lemma. — If x,y e M(oo) are vertices o/A of different kinds, then ̂ {x,y) = n/2

for every q e M.

Proof. — Let S be an apartment containing both x and y. Then S is the join of
apartments 2^ and Sg in A^ and Ag respectively. Since x,jy are of different kinds, it is

clear that x,y lie in a common chamber C of A. By Lemma 2.7 and Theorem 2.18,

^pO^jO is independent of p e M. Consider a point p in a regular ^-flat F such that

F( oo) D G. Since F( oo) carries the geometric realization of the Goxeter complex S in

which S^ and Sg are orthogonal we have that ^y[x,y) = Tr/2. •

Now we construct two distributions on M which will give rise to the desired split-

ting as a product. For p e M, i == 1,2, let V,(^) be the subspace of Ty M spanned by

AC?) == { y e Sy M : v points to a vertex of A(M) of the i-th kind}. Then V^ and Va

are orthogonal by Lemma 4.2. They span TM because any vector in SM lies in a Weyl

simplex whose vertices are all in Di uDg. Clearly ~D^{p) varies continuously with p

and hence dimV,Q&) is lower semicontinuous (i == 1, 2). Since V\ and Vg are comple-

mentary, we see that dim V, is constant and V, is a continuous distribution for i = 1, 2.

We will say that a G
1 curve a{s) is an integral curve of the distribution V^ if

a{s) eV,((?M) for all s.

4.3. Lemma. — Let a be an integral curve of Vi. Let x e M( oo) be a vertex of A(M)

of the second kind, and let f be the Busemann function of a vector pointing toward x [BBE, p. 179].

Then foc is constant.
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Proof. — For any q e M, grad^/=—V(y, ^) eDg^) and so is orthogonal to

Vx(y). •

Now consider a point p e M. IfveD^p), then —ve j )^ (p) , since Y-v(00) ls a

vertex of A(M) by Proposition 2.23 and cannot be of the first kind by Lemma 4.2.

It follows from Lemma 4.3 that if a is an integral curve ofVi starting atj&, then a lies in

S^)= Q H(.)nH(-.),
v£D,(p)

where H(») is the horosphere defined in [BEE, §1]. Conversely, any C
1 curve a in S^(p)

is an integral curve of V\. For it is clear that S^(y) = S^{p) for any qeS^p). Hence
for any j, a{s) is orthogonal to D^o^)), and so cs{s) eV^((r(j)).

Thus V^ is integrable and S^{p) is its integral submanifold through/?. Similarly Vg

is integrable and its integral submanifold through p is

S^(p) = n H(y)nH(—zO.
v£Di(p)

4.4. Lemma. — For p e M, i = 1, 2, S,{p) is totally geodesic and S,(p) = expy V,(^).

Proof. — It is clear from the Flat Strip Theorem [EO, Proposition 5.1] that

S,^) Sexp.V^).

As S^p) is an integral submanifold of V,, we see that S^p) is open in expy V^(^).

It follows that S^p) == expyV^p), since S,{p) is obviously closed. Busemann functions

are convex, and so it follows that S,(^) is convex and hence totally geodesic. •

It follows immediately that each of the distributions V, is parallel along its own

integral curves. Since V^ and Vg are orthogonal complements, we also see that each
of them is parallel along the integral curves of the other. It follows that \\ and V^ are

both parallel, and so, by a theorem ofde Rham [KN, p. 187], M splits as a Rieman-

nian product. This completes the proof of Theorem 4.1. •

5. Classification

We adapt the arguments of Gromov's Rigidity Theorem [BGS, Chapter 4] to
prove

5.1. Theorem. — If M. is a complete Riemannian manifold with nonpositive bounded

curvature, finite volume and rank at least 2 whose universal cover is irreducible, then M is locally

symmetric.

The Main Theorem of the Introduction follows using Proposition 4.1 of [E2],

Proof. — Let A be the building attached to M as in Section 3. By Propositions 3.12

and 3.15 and Theorem 4.1, A is an infinite, irreducible, locally connected, compact,

metric, topologically Moufang building of rank at least 2. Let G be the topological

automorphism group of A and G° the connected component of the identity in G. By



56 KEITH BURNS AND RALF SPATZIER

[BS, Main Theorem], G° is a simple noncompact real Lie group without center. Let

A(G°) be the topological building of parabolic subgroups attached to G° [BS, 1.2].

By [BS, Main Theorem], A is isomorphic with A(G°) as a topological building. We will

identify A with A(G°). Let X = G°/K be the symmetric space attached to G°, where

K is a maximal compact subgroup of G°. As in Section 3, X(oo) carries the

structure of a topological building which we can identify with A(G°) == A. Clearly
rank X = rank A = rank M.

Gall a V^-flat F in M ^-regular if F(oo) contains a Weyl simplex G. As in Corol-

lary 3.4 it follows that F( oo) is the union of finitely many Weyl simplices. Hence F( oo)
determines an apartment 2p in A.

For the symmetric space X the correspondence F* -> Sp* between yfe-flats F* in X

and apartments in A is bijective. Given a regular ^-flat F in M we let F* be the unique

A-flat in X with 2p == Sp». Next we define a map 0 : M -> X. Let p e M. Then the

geodesic symmetry o-y defines a continuous automorphism of A. By [M, 16.2], <jy deter-

mines an involutory isomorphism ©y of G°. As Op is continuous, Qy is analytic. Thus ©y

induces an isometry 6y : X -> X. Since 6y has order 2 it has a fixed point p* in X. Sup-

pose q* is a second fixed point. Then 6p fixes the geodesic through p* and q\ Hence dy

has fixed points in A which is impossible. Therefore 6p has a unique fixed point p\ Set
0(^)==^.

5.2. Lemma.

(i) The map 0 : M -> X is continuous.

(ii) IfF C M i s an i-regular k-flat, then <D(F) C F".

Proof.

(i) Since Oy e G depends continuously on p e M, it is clear that 0 : M -> X is
continuous.

(ii) Let p e F. Then ^ F = F, hence <jy Sp == Sp. Therefore Qy F* == F*. Since
F* is totally geodesic, F* contains the fixed point O(^) of6y. •

Call a geodesic y maximally singular if y(oo) is a vertex of A and call a vector v

maximally singular ify^oo) is a vertex of A. Suppose y is a maximally singular geodesic.

Let GI and Gg be two opposite chambers in Star v(oo). Then Ci n Gg ={Y(0 0)}-

Let F, be the /-regular ^-flat through y(0) and G,. Then F^ n F^ = y KY Lemma 5.2,

<D(Y)CFi*nF^. Since F^(oo) n F^(oo) = {y(oo) , y(—oo)}, F,* n F^ is a maximally

singular geodesic in X which we call y*. If Yi ̂ d Y2 are two parallel maximally singular

geodesies, they have the same endpoints and hence y^ is parallel to y^. Moreover, if &i

and 83 are any two maximally singular geodesies, the families of geodesies parallel to

8^ and 8^ make the same angle as do those parallel to §1 and 82.
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5.3. Lemma. — If y is a maximally singular geodesic then 0 | y : y -> y* ij o^m^.

FIG. 4

Proof. — Let F be an ̂ -regular A-flat containing y. Let G be a cone in F based at y(0)

such that 6 (oo) is a Weyl simplex with y( oo) as a vertex. Let H be the hyperplane spanned

by y(0) and the vertices ofC(oo) other than y(oo). Let y' be the mirror image of y

with respect to H. Then y' is also maximally singular. Since A is irreducible, v(0) B^d

Y'(0) are linearly independent. Also y s^d y' are both transversal to H.

Since 0 is continuous, 0 is affine on y if, for all % e N and t e R,

W(YW)^(Y(0))] == ̂ WY^^Y™,

where rf^ denotes the distance in X. Let H^ be the hyperplane through y(^) parallel to H.

Since the hyperplane H is the span of maximally singular vectors, 0(H) is parallel

to O(H^). Let Y^ and yg be the geodesies parallel to y' starting at y(^) and ^(2t). Set

q^ == Yi ^ H and ^ == Y2 n HI • Let YI be the geodesic parallel to y lhat starts at ^.

Then Yi and y^ intersect at q^. As <I>(Yi) and ^(Ya) as we^ as ^(Y^ ^(vO an(! ̂ (Y^) are

parallel, we see that

^>(Y(0)), <&(YW)] == ^[^(yi). ̂ (?2)] = <WYW), <&(Y(2^))].

Hence ^[<I>(Y(2^)), 0(Y(0))] = 2 ^[^(rW), <I>(r(0))].

The claim for general n follows similarly. •

Now consider an /-regular A-flat F. We will show that 0 : F -> F* is affine. Our

proof is virtually the same as in [BGS], Fix a point p e F and identify F with R* so thatj&

is the origin. Let C be a Weyl simplex in F(oo), and let YI? • • - 5 Yfc ^e t^le maximally

singular geodesies starting at p for which Yi(°°)5 • • 5 T f e ( 0 0 ) are t^le vertices of G.

Then YiW^ • - • ? Y f c W are linearly independent. Every point y e F can be written

uniquely as

q == Ti(^) + . • . + YA)

where ^ e R. Identify F* with R* using O(^) as the origin. Since the map 8 -^ 8* on the

set of maximally singular geodesies in F preserves parallelism and 0 maps 8 into 8*3

we have

W = ̂ iW] + ... + 0[Y^)]-

It follows from Lemma 5.3 that 0 [ F is affine.
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^ Since every geodesic of M lies in an /-regular flat, we see that, for each geodesic y
of M, there is a constant X(y) such that

^[(I)(y^)^(y2)]=^(T)^l,?2)
for any points q^ and ^ on Y- ^e will show that X(y) is independent of y.

5.4. Zmma. — Z^ p be a point of an /-regular k-flat F. Then X(y) is the same for all

geodesies y with y(0) eSyF.

Proof. — Since 0 is affine and SyF is spanned by maximally singular vectors,

we can assume that y is maximally singular. If v and v ' are vertices of a Weyl simplex

in SyF, then ^p(v, v ' ) ^ Tr/2. Moreover this inequality is strict if v ' and v are adjacent

in the Coxeter diagram for A. Since A is irreducible, any maximally singular vectors
w
)

wf e Sy F can be connected by a finite chain of maximally singular vectors

w^ = w, w^ ..., w^ = w' such that ^(w<, w,+i) < Tr/2 for i == 1, 2, .. ., m — 1.

Thus it will suffice to prove that if v, w e Sy F are maximally singular vectors
with ̂ (^ w

) < ̂ /2, then X(yJ == X(yJ. Let P be the plane in F spanned by v and w.

The circle Sy P is a union of one dimensional faces of Weyl simplices. Since such faces

have length at most Tr/2 and ̂ (v, w) < Tc/2, we see that there is a maximally singular

vector u e Sy P that is not ± v or ± w. As $ | P is affine and preserves the angles between

the maximally singular geodesies y^ Y^ and y^, we see that X(yJ = X(yJ == ^(yj- •

It follows that if F is an /-regular ^-flat, then 0 | F is a multiple of an isometry

from F to F* by a scalar Xp for any /-regular A-flat F. We show that Xp is constant. Let F

and F be/-regular A-flats through a point/? e M. Let G and 6 be Weyl simplices in F(oo)

and F(oo). Join G to C by a gallery G == Cp, Ci, ..., C^ == G. Let F, be the /-regular

^-flat through p and G,. Then F^nF^i contains a geodesic through p. Hence

^p, == ^p,^. Hence Xp = Xp depends only on p. If q eM there is an /-regular A-flat
through p and q. Hence Xp is a constant X.

Since any two points of M lie in an /-regular A-flat we see that

d^{P)^{q))=^d{p,q)

for any p, q eM.

Note that X =1= 0. Otherwise 0 maps M to a point in X. This would mean that

^ IA == ^IA fo1' a^ p , q eM. This, however, contradicts Lemma 3.13, for example.

Now it is clear that M is locally symmetric. •
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