MANIFOLDS OF POSITIVE RICCI CURVATURE WITH ALMOST MAXIMAL VOLUME

G. PERELMAN

1°. In this note we consider complete Riemannian manifolds with Ricci curvature bounded from below. The well-known theorems of Myers and Bishop imply that a manifold M^{n} with Ric $\geq n-1$ satisfies $\operatorname{diam}\left(M^{n}\right) \leq \operatorname{diam}\left(S^{n}(1)\right)$, $\operatorname{Vol}\left(M^{n}\right) \leq \operatorname{Vol}\left(S^{n}(1)\right)$. It follows from [Ch] that equality in either of these estimates can be achieved only if M^{n} is isometric to $S^{n}(1)$. The natural conjecture is that a manifold M^{n} with almost maximal diameter or volume must be a topological equivalent to S^{n}. With respect to diameter this is true only if M^{n} satisfies some additional assumptions; see [An, O, GP, E]. With respect to volume however no extra restriction is necesary.
Theorem 1. For any integer $n \geq 2$ there exists $\delta_{n}>0$ with the following property. Let M^{n} be a complete Riemannian manifold with Ric $\geq n-1$. Suppose that $\operatorname{Vol}\left(M^{n}\right) \geq\left(1-\delta_{n}\right) \operatorname{Vol}\left(S^{n}(1)\right)$. Then M^{n} is homeomorphic to S^{n}.

In fact, we prove only that $\pi_{i}\left(M^{n}\right)=0$ for all $i<n$ and refer to the work of Hamilton $[\mathrm{H}]$ for $n=3$ and to the solution of generalized Poincaré conjecture (Smale [S], Freedman [F]) for $n \neq 3$.

Vanishing of homotopy groups is a simple consequence of the Main Lemma below. Its further simple corollaries are a noncompact version of Theorem 1 and a corresponding finiteness theorem (cf. [P, Corollary B]).

Let $B^{H}(R)$ denote a ball of radius R in the simply connected space form of constant curvature H.
Theorem 2. Let M^{n} be a complete Riemannian manifold with Ric $\geq 0 ; p \in M$. Suppose that $\operatorname{Vol}\left(B_{p}(R)\right) \geq\left(1-\delta_{n}\right) \operatorname{Vol}\left(B^{0}(R)\right)$ for all $R>0$. Then M^{n} is contractible.
Theorem 3. For any n, H, \mathscr{D}, R the set $\mathscr{M}_{\delta_{n}}(n, H, \mathscr{D}, R)$ of all complete Riemannian manifolds M^{n} with $\operatorname{diam}\left(M^{n}\right) \leq \mathscr{D}$, Ric $\geq(n-1) H$, and $\operatorname{Vol}\left(B_{p}(R)\right) \geq\left(1-\delta_{n}\right) \operatorname{Vol}\left(B^{H}(R)\right)$ for all $p \in M^{n}$, contains only finitely many homotopy types.
2°. Henceforward we fix $n \geq 2$ and ignore the dependence on n in our notations. We denote by M an arbitrary compact n-dimensional Riemannian manifold with Ric $\geq n-1$; all parameters below are supposed to be independent of M.

Main Lemma. For any $c_{2}>c_{1}>1$ and integer $k \geq 0$ there exists $\delta=$ $\delta_{k}\left(c_{1}, c_{2}\right)>0$ with the following property. Let $p \in M, 0<R<\pi c_{2}^{-1}$. Suppose that $\operatorname{Vol}\left(B_{q}(\rho)\right) \geq(1-\delta) \operatorname{Vol}\left(B^{1}(\rho)\right)$ for every ball $B_{q}(\rho) \subset B_{p}\left(c_{2} R\right)$. Then
(A) Any continuous map $f: S^{k}=\partial D^{k+1} \rightarrow B_{p}(R)$ can be continuously extended to a map $g: D^{k+1} \rightarrow B_{p}\left(c_{1} R\right)$.
(B) Any continuous map $f: S^{k} \rightarrow M \backslash B_{p}(R)$ can be continuously deformed to a map into $M \backslash B_{p}\left(c_{1} R\right)$.
Remark. The Main Lemma can obviously be modified for n-manifolds with Ric ≥ 0 or Ric $\geq-(n-1)$, in the latter case δ may depend on R as $R \rightarrow \infty$.

We give below a detailed proof of (A) and outline a similar proof of (B) leaving the details to the reader.
3°. At first we state explicitly all the properties of manifolds with Ricci curvature bounded from below, which are relevant to the proof.

Let $\overline{a b}$ denote a shortest geodesic with endpoints a, b.
(κ) There exists a positive function $\kappa, \kappa(t) \rightarrow 0$ as $t \rightarrow 0$, such that
$|a b|+|a c|-|b c| \leq \kappa(|a, \overline{b c}| / \min \{|a b|,|a c|\}) \cdot|a, \overline{b c}|$ for all $a, \overline{b c} \subset M$.
This is a weakened version of the Abresch-Gromoll inequality [AG].
(γ) For any $c_{2}>c_{1}>1, \epsilon>0$ there exists $\gamma=\gamma\left(c_{1}, c_{2}, \epsilon\right)$ with the following property. Let $p \in M, 0<R<\pi c_{2}^{-1}$. Suppose that $\operatorname{Vol}\left(B_{p}\left(c_{2} R\right)\right) \geq$ $(1-\gamma) \operatorname{Vol}\left(B^{1}\left(c_{2} R\right)\right)$. Then for every $a \in B_{p}(R)$ there exists $b \in M \backslash B_{p}\left(c_{1} R\right)$ such that $|a, \overline{p b}| \leq \epsilon R$.

This is a simple corollary of (the proof of) the Bishop-Gromov volume comparison inequality.
Warning. In the proof of the Main Lemma, we do not use the existence of the injectivity radius and avoid explicit induction on R.
4°. Outline of the proof of (A). Assertion (A) is proved by induction on k. The case $k=0$ is obvious. Assume that (A) holds in dimensions less than k. Fix $c_{2}>c_{1}>1$ and let $d_{0}>0$ and $\delta>0$ be small enough. Now given M, p, R, satisfying the conditions of (A), and a continuous map $f: S^{k} \rightarrow B_{p}(R)$, we can construct another continuous map $\tilde{f}: S^{k} \rightarrow B_{p}\left(\left(1-d_{0}\right) R\right)$ such that the uniform distance between f and \tilde{f} is small in comparison with R. This is the crucial step, it uses both properties $(\kappa),(\gamma)$ and the inductional assumption.

The map \tilde{f} is not known yet to be homotopic to f, and there is no obvious way to construct such a homotopy at once. To go around this difficulty, we take a fine triangulation of S^{k} and construct a "small" homotopy between f and \tilde{f} on the $(k-1)$-skeleton of this triangulation. In fact, the homotopy is constructed consecutively on i-skeleta, $i=0,1, \ldots, k-1$, using the inductional assumption.

The result of previous steps can be interpreted as an extension of f from $S^{k}=\partial D^{k+1}$ to the k-skeleton of a finite cell decomposition of D^{k+1}. Recall

Figure 1
that the boundary of the "central" cell is mapped into $B_{p}\left(\left(1-d_{0}\right) R\right)$, and the size of the images of the boundaries of all other cells is small in comparison with R. Now we repeat the previous steps for each cell separately and obtain an extension of f to the k-skeleton of a finer cell decomposition (Figure 1), etc. The limit of the infinite repetition of this procedure is the required extension g.

Apparently the argument above cannot be convincing until the choice of "small" parameters is specified. We give a formal exposition below.

5°. Proof of (A).

5.1. Consider the following general situation. Let $f: S^{k} \rightarrow B_{p}(R) \subset M$ be a continuous map, and let sequences of finite cell subdivisions K_{j} of D^{k+1} and continuous maps $f_{j}:$ skel $_{k} K_{j} \rightarrow M$ satisfy
(a) K_{j+1} is a cell subdivision of K_{j} and $f_{j+1} \equiv f_{j}$ on $\operatorname{skel}_{k}\left(K_{j}\right)$.
(b) For each $(k+1)$-cell $\sigma \in K_{j}$ there exist $p_{\sigma} \in B_{p}\left(c_{1} R\right)$ and $R_{\sigma}>0$ such that $f_{j}(\partial \sigma) \subset B_{p_{\sigma}}\left(R_{\sigma}\right)$ and

$$
B_{p_{\sigma^{\prime}}}\left(c_{1} R_{\sigma^{\prime}}\right) \subset B_{p_{\sigma}}\left(c_{1} R_{\sigma}\right), \quad R_{\sigma^{\prime}} \leq\left(1-d_{0}\right) R_{\sigma}
$$

(for a positive constant d_{0}), in case $\sigma \in K_{j}, \sigma^{\prime} \in K_{j+1}, \sigma^{\prime} \subset \sigma$.
(c) $\operatorname{skel}_{k}\left(K_{0}\right)=S^{k}=\partial D^{k+1}, f_{0} \equiv f, R_{\sigma_{0}}=R$ for $\sigma_{0}=D^{k+1} \backslash S^{k} \in K_{0}$.

Then there exists a continuous map $g: D^{k+1} \rightarrow B_{p}\left(c_{1} R\right)$, such that $g \equiv f_{j}$ on $\operatorname{skel}_{k}\left(K_{j}\right)$ for all j.

Indeed, let $g(x)=\lim _{j \rightarrow \infty} p_{\sigma_{j}}$ for some sequence of $(k+1)$-cells $\sigma_{j} \in K_{j}$,
such that $\sigma_{j+1} \subset \sigma_{j}$ and $x \in \operatorname{clos}\left(\sigma_{j}\right)$ for all j. Obviously $p_{\sigma_{j}}$ form a Cauchy sequence for any such $\left\{\sigma_{j}\right\}$, and moreover, $\left|g(x) p_{\sigma_{j}}\right| \leq\left(1-d_{0}\right)^{j} c_{1} R$. The sequence σ_{j} is defined unambiguously if $x \notin \cup_{j} \operatorname{skel}_{k} K_{j}$, and it is clear that $g(x)=f_{j}(x)$ if $x \in \operatorname{skel}_{k} K_{j}$; therefore g is correctly defined and continuous.
5.2. Specify the choice of d_{0} and δ in the following way. Let. $d_{0}>0$ be so small that for suitably chosen positive numbers d_{1}, \ldots, d_{k},

$$
\begin{gathered}
d_{i+1} / d_{i}>100, \quad d_{0} / d_{i}>100 k \cdot \kappa\left(100 d_{i} / d_{i+1}\right) \\
100 d_{k}<10^{-k}\left(1+d_{0} / 2 k\right)^{-k}\left(1-c_{1}^{-1}\right)
\end{gathered}
$$

hold, and let

$$
\begin{aligned}
\delta & =\delta_{k}\left(c_{1}, c_{2}\right) \\
& =\min \left\{\gamma\left(c_{1}, c_{2}, d_{0}\right), \delta_{i}\left(1+d_{0} / 2 k, c_{2}\right), i=0,1, \ldots, k-1\right\}
\end{aligned}
$$

5.3. Assume that the conditions of (A) are satisfied. Then the extensions f_{j} from 5.1 can be constructed inductively using the following key assertion (see 6° for the proof).
(C) Given $\rho>0, q \in M$, such that $\operatorname{Vol}\left(B_{q}\left(c_{2} \rho\right)\right) \geq(1-\delta) \operatorname{Vol}\left(B^{1}\left(c_{2} \rho\right)\right)$, a continuous map $\phi: S^{k} \rightarrow B_{q}(\rho)$ and a triangulation T of S^{k} such that $\operatorname{diam}(\phi(\Delta)) \leq d_{0} \rho$ for all $\Delta \in T$, there exists a continuous map $\tilde{\phi}: S^{k} \rightarrow$ $B_{q}\left(\left(1-d_{0}\right) \rho\right)$ such that

$$
\operatorname{diam}(\phi(\Delta) \cup \tilde{\phi}(\Delta)) \leq 10^{-k-1}\left(1+d_{0} / 2 k\right)^{-k}\left(1-c_{1}^{-1}\right) \rho
$$

for all $\Delta \in T$.
Indeed, represent a $(k+1)$-cell $\sigma \in K_{j}$ as $S^{k} \times(0,1] \cup\{0\}$, choose a fine triangulation T of S^{k} and apply (C) to $f_{j}: S^{k} \times\{1\} \rightarrow B_{p_{\sigma}}\left(R_{\sigma}\right)$. (The volume condition is satisfied since it follows from 5.1 (b) that $B_{p_{\sigma}}\left(c_{2} R_{\sigma}\right) \subset B_{p}\left(c_{2} R\right)$.) Define K_{j+1} by $\sigma \cap \operatorname{skel}_{k}\left(K_{j+1}\right)=S^{k} \times\{1 / 2\} \cup S^{k} \times\{1\} \cup \operatorname{skel}_{k-1}(T) \times[1 / 2,1]$, and let $f_{j+1} \equiv f_{j}$ on $S^{k} \times\{1\}$ and $f_{j+1} \equiv \tilde{f}_{j}$ on $S^{k} \times\{1 / 2\}$. Now f_{j+1} can be extended consecutively to $\operatorname{skel}_{i}(T) \times[1 / 2,1], i=0,1, \ldots, k-1$, in such a way that

$$
\operatorname{diam} f_{j+1}(\Delta \times[1 / 2,1]) \leq 10^{i-k}\left(1+d_{0} / 2 k\right)^{i+1-k}\left(1-c_{1}^{-1}\right) R_{\sigma}
$$

for all $\Delta \in \operatorname{skel}_{i}(T)$. (Each extension to $\Delta \times[1 / 2,1]$ from its boundary, for $\Delta \in \operatorname{skel}_{i} T$, is ensured by the inductional assumption in dimension i and the inequality $\delta \leq \delta_{i}\left(1+d_{0} / 2 k, c_{2}\right)$.) It is easy to check that $f_{j+1}:$ skel $_{k} K_{j+1} \rightarrow M$ satisfies the conditions of 5.1 , since the boundary of the "central" cell $S^{k} \times$ $(0,1 / 2] \cup\{0\}$ is mapped into $B_{p_{\sigma}}\left(\left(1-d_{0}\right) R_{\sigma}\right)$, and the images of the boundaries of all other cells have diameters less than $(1 / 2)\left(1-c_{1}^{-1}\right) R_{\sigma}$.
6°. Proof of (C). We construct $\tilde{\phi}$ consecutively on $\operatorname{skel}_{i}(T), i=0, \ldots, k$, to satisfy $\left.\left.\tilde{\phi}\right|_{\Delta} \equiv \phi\right|_{\Delta}$ if $\phi(\Delta) \subset B_{q}\left(\rho\left(1-2 d_{0}\right)\right)$,

$$
\begin{gather*}
\tilde{\phi}(\Delta) \subset B_{q}\left(\left(1-d_{0}(2-i / k)\right) \rho\right) \tag{1}\\
\quad \operatorname{diam}(\phi(\Delta) \cup \tilde{\phi}(\Delta)) \leq 10 d_{i} \rho \tag{2}
\end{gather*}
$$

for all $\Delta \in \operatorname{skel}_{i}(T)$.
To begin with, define $\tilde{\phi}$ on $\operatorname{skel}_{0}(T)$ by

$$
\tilde{\phi}(x) \in \overline{\phi(x) q}, \quad|q \tilde{\phi}(x)|=\rho\left(1-2 d_{0}\right) \quad \text { if }|q \phi(x)|>\rho\left(1-2 d_{0}\right)
$$

Assume that $\tilde{\phi}$ is defined on $\operatorname{skel}_{i}(T)$ for some $i<k$ and consider a $(i+1)$ simplex Δ, such that $\phi(\Delta) \not \subset B_{q}\left(\rho\left(1-2 d_{0}\right)\right)$. Applying (γ) choose a point $r_{\Delta} \in M \backslash B_{q}\left(c_{1} \rho\right)$, such that $\left|\overline{q r_{\Delta}}, \phi(\Delta)\right| \leq d_{0} \rho$ and let $q_{\Delta} \in \overline{q r_{\Delta}}$ be such that $\left|q q_{\Delta}\right|=\rho\left(1-d_{i+1}\right)$; see Figure 2 on the next page. It follows from (2) and the choice of $\left\{d_{i}\right\}$ that for any $x \in \partial \Delta$

$$
\left|\tilde{\phi}(x), \overline{q_{\Delta} r_{\Delta}}\right|<20 d_{i} \rho, \quad\left|\tilde{\phi}(x) q_{\Delta}\right|>d_{i+1} \rho / 2, \quad\left|\tilde{\phi}(x) r_{\Delta}\right|>d_{i+1} \rho / 2
$$

Hence we can apply (κ) to $\tilde{\phi}(x), \overline{q_{\Delta} r_{\Delta}}$ and obtain

$$
\left|\tilde{\phi}(x) r_{\Delta}\right|+\left|\tilde{\phi}(x) q_{\Delta}\right|-\left|q_{\Delta} r_{\Delta}\right|<20 \kappa\left(100 d_{i} / d_{i+1}\right) d_{i} \rho .
$$

Adding this to the triangle inequality

$$
\left|q_{\Delta} r_{\Delta}\right|+\rho\left(1-d_{i+1}\right)=\left|q r_{\Delta}\right| \leq\left|\tilde{\phi}(x) r_{\Delta}\right|+|\tilde{\phi}(x) q|
$$

and taking (1) into account we get

$$
\begin{aligned}
\tilde{\phi}(\partial \Delta) & \subset B_{q_{\Delta}}\left(\rho\left(d_{i+1}-d_{0}(2-i / k)+20 \kappa\left(100 d_{i} / d_{i+1}\right) d_{i}\right)\right) \\
& \subset B_{q_{\Delta}}\left(\rho\left(d_{i+1}-d_{0}(2-(2 i+1) / 2 k)\right)\right),
\end{aligned}
$$

where the last inclusion follows from the choice of $\left\{d_{i}\right\}$.
Since $\operatorname{dim} \Delta=i+1 \leq k$, the inductional assumption can be applied to extend $\tilde{\phi}$ from $\partial \Delta$ to Δ. It follows from the choice of δ that the extension satisfies

$$
\tilde{\phi}(\Delta) \subset B_{q_{\Delta}}\left(\rho\left(d_{i+1}-d_{0}(2-(i+1) / k)\right)\right) .
$$

It remains to observe that the last inclusion implies (1), (2) with i replaced by $i+1$.
7°. The proof of (B) can be carried out along the same lines. An argument similar to the proof of (C) shows that a map $f: S^{k} \rightarrow M \backslash B_{p}(\rho), R \leq \rho \leq$ $c_{1} R$, can be transformed to a map \bar{f} with image outside a markedly larger ball, in such a way that $\operatorname{diam}(f(\Delta) \cup \bar{f}(\Delta))$ is small for every simplex Δ of a fine triangulation T of S^{k}. A deformation from f to \bar{f} can be constructed consecutively on $\operatorname{skel}_{i}(T), i=0, \ldots, k$ making use of the assertion (A). After a bounded number of such deformations we obtain the required map with image outside $B_{p}\left(c_{1} R\right)$.

Figure 2

Acknowledgment

I would like to thank Jeff Cheeger and the referee for suggestions that led to improvement of the exposition.

References

[An] M. T. Anderson, Metrics of positive Ricci curvature with large diameter, Manuscripta Math. 68 (1990), 405-415.
[AG] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), 355-374.
[Ch] S.-Y. Cheng, Eigenvalue comparison theorems and their geometric applications, Math. Z. 143 (1975), 289-297.
[E] J.-H. Eschenburg, Diameter, volume and topology for positive Ricci curvature, J. Differential Geom. 33 (1991), 743-747.
[F] M. Freedman, The topology of four-manifolds, J. Differential Geom. 17 (1982), 357-453.
[GP] K. Grove and P. Petersen, A pinching theorem for homotopy spheres, J. Amer. Math. Soc. 3 (1990), 671-677.
[H] R. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306.
[O] Y. Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z. 206 (1991), 255-264.
[P] P. Petersen, A finiteness theorem for metric spaces, J. Differential Geom. 31 (1990), 387-395.
[S] S. Smale, Generalized Poincare conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406.

St. Petersburg branch of Steklov Mathematical Institute, St. Petersburg, Russia
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA

Current address: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720

E-mail address: perelman@math.berkeley.edu

