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MANIFOLDS WITH QUADRATIC CURVATURE DECAY
AND SLOW VOLUME GROWTH
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ABSTRACT. — We show that there are topological obstructions for a noncompact manifold to admit a
Riemannian metric with quadratic curvature decay and a volume growth which is slower than that of the
Euclidean space of the same dimensior2000 Editions scientifiques et médicales Elsevier SAS

RESUME. — Nous montrons qu'il y a des obstructions topologiques pour qu’une variété non compacte
admette une métrique Riemannienne a courbure quadratiquement décroissante ainsi qu’une croissance de
volume plus lente que celle de I'espace Euclidien de méme dimensi@000 Editions scientifiques et
médicales Elsevier SAS

1. Introduction

A major theme is Riemannian geometry is the relationship between curvature and topology.
For compact manifolds, one can constrain the curvature and diameter and ask whether
one obtains topological restrictions on the manifold. If the manifold is noncompact then a
replacement for a diameter bound is a constraint on how the curvature behaves in terms of
the distance from a basepoint. More precisely,Métbe a complete connecteddimensional
Riemannian manifold. Fix a basepoing € M.

DEFINITION 1.1.— M has quadratic curvature decay (with constant 0) if for all m € M
and all 2-planeg’ in T,,, M, the sectional curvaturk (P) of P satisfies

(1) |[K(P)| < C/d(mo,m).

Note that condition (1) is scale-invariant in that it is unchanged by a constant rescaling of
the Riemannian metric. One can show that any connected smooth paracompact manifold has a
Riemannian metric with quadratic curvature decay; see [10, p. 96] or Lemma 2.1 below. Let us
contrast this with the result of Abresch [1] thatiif(P) > —C'/d(mo, m)?*¢ for somes > 0 then
M has finite topological type in the following sense.

DEFINITION 1.2.— M has finite topological type if\/ is homotopy-equivalent to a finite
CW-complex.

1 Supported by NSF Grant DMS-9704633.
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276 J.LOTT AND Z. SHEN

See [1,9] for results on manifolds with faster-than-quadratic curvature decay. In this paper we
concentrate instead on the case of quadratic curvature decay. We will show that if in addition one
restricts the volume growth of the metric, then one does obtain topological restrictiahs on
The first question is whethéil has finite topological type.

DerINITION 1.3.—M has lower quadratic curvature decay (with constént 0) if for all
m € M and all 2-planes in T},, M, the sectional curvaturk& (P) of P satisfies

) K(P)> —C/d(mo,m)?.

Let B; denote the metric ball of radidsaroundmg and letS; denote the distance sphere of
radiust aroundmg. If M has lower quadratic curvature decay then by a standard arguiient,
has at most polynomial volume growth; see [7, Theorem 4.9(iii)] or Lemma 3.1 below.

ProPOSITION 1.1. — Suppose thafl/ has lower quadratic curvature decay. \bl(B;) =
o(t?) ast — oo and M does not collapse at infinity, i.énf,c; vol(Bi(x)) > 0, then M has
finite topological type.

The o¢?) bound in Proposition 1.1 cannot be improved ta®®(as shown in Example 3
below. Proposition 1.1 is an improvement of [11, Theorem 1.2], where an additional assumption
of nonnegative Ricci curvature was made.

Next, we consider manifolds with volume growth slower than that of the Euclidean space of
the same dimension.

DEFINITION 1.4.— M has slow volume growth if
(3) Iitm inf vol(By)/t" =0.

There is a notion of aend £ of M and of ' being contained in an open sBtC M ; see, for
example, [2, p. 80].

DerINITION 1.5.— AnendFE of M istameif it is contained in an open set diffeomorphic to
(0,00) x X for some smooth connected closed manif&ld

We remark thatX is determined by® only up toh-cobordism. Hereafter we assume tiét
is oriented.

PROPOSITION 1.2. — Suppose that\/ has quadratic curvature decay and slow volume
growth. LetE be a tame end of\/ as in Definition1.5. Then for any produc{], p;, (T'X)
of Pontryagin classes of and any bounded cohomology class H'(X;R) with{ +4>", i), =
n—1,

@) wu[[pa(@x)=0.
[T

COROLLARY 1.1.—If M isasin Propositiori.2then the signature and the simplicial volume
of X vanish.

Example— There is no metric of quadratic curvature decay and slow volume growth on
R x CP?.

Next, we give a sufficient condition fav/ to have a metric of quadratic curvature decay and
slow volume growth.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 277

PrROPOSITION 1.3. — Let X be a closed manifold with a polarizdd-structure[5]. Suppose
that X = 9N for some smooth compact manifdid Then there is a complete Riemannian metric
on M = Int(N) of quadratic curvature decay and slow volume growth.

It follows from Proposition 1.3 that when is even, there is a metric dR™ of quadratic
curvature decay and slow volume growth. The case whisnodd is less obvious.

PrRoPOSITION 1.4.— For all n > 1, there is a complete Riemannian metric &% of
guadratic curvature decay and slow volume growth.

If X is a closed oriented manifold with a polarizédstructure then the Pontryagin numbers
and Euler characteristic of vanish. Based on Proposition 1.3, one may think that under the
hypotheses of Proposition 1.2, one could also show that the Euler characteristigaofishes.
However, Proposition 1.4 shows that this is not the case, as the Euler characterfgtic'aé
two if n is odd.

We can combine Propositions 1.2—1.4 to obtain some low-dimensional results.

COROLLARY 1.2.—Let N be a smooth compact connected oriented manifold-with-boundary
of dimensiom.

(1) If n=2thenInt(V) has a metric of quadratic curvature decay and slow volume growth.

(2) If n=3thenInt(/V) has a metric of quadratic curvature decay and slow volume growth if
and only ifON consists oR-spheres an@-tori.

(3) If n =4, suppose that Thurston’s Geometrization Conjecture holds. TitéN) has a
metric of quadratic curvature decay and slow volume growth if and only if the connected
components ad N are graph manifolds.

Finally, by an argument similar to that of [6, Theorem 0.8], there is an integrality result for the
integral of the Gauss—Bonnet—Chern form, which we state without proof.

PROPOSITION 1.5. — Suppose thaf\/ has a complete Riemannian metgcof quadratic
curvature decay with

o0

vol(B;) =o(t™) and /

1

vol(B)di _
tr t

Lete(M, g) € £2"(M) be the Gauss—Bonnet-Chern form. THepe(M, g) € Z.

As mentioned above, any connected smooth paracompact manifold admits a Riemannian
metric with quadratic curvature decay. An interesting question, which makes no reference to
volume growth, is how small the consta@t in Definition 1.1 can be made. That is, given
C > 0, what are the topological constraints on the noncompact manifolds which admit complete
Riemannian metrics satisfyird (P)| < C/(1 + d(mo, m))??

We thank Mikhael Gromov for pointing out the relevance of bounded cohomology, Frank
Connolly for a topological remark and the referee for useful comments.

2. Examples

(1) Let N be a smooth compact connectedimensional manifold-with-boundary. Létbe a
metric ondN. Givenc > 1, consider the metric on [&) x N given by d? + t>h. Extend this
to a smooth metrig on Int(V) = N Ugn ([1,00) x ON). Theng has quadratic curvature decay
and polynomial volume growth. By choosindarge, the degree of volume growth can be made
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278 J.LOTT AND Z. SHEN

arbitrarily large. Taking: = 1, we see that having quadratic curvature decay and volume growth
of order O¢™) in no way restricts the topology of the ends.

(2) Forc € R, consider the metric on [bp) x S* given by d? + t2©dg?. Cap this off by a
disk at {1} x S* to obtain a smooth metrig on R2. Theng has quadratic curvature decay. If
c < —1 then R?, g) has finite volume. Hence the assumption of quadratic curvature decay gives
no nontrivial lower bound on volume growth.

(3) Start with the Euclidean metric on the annulus

(5) A={(z,y) e R% 1< a? +y? <4} = By(0) — Bi(0).

Add a handle to Intd), keeping the metric the same nead. Consider this as a metric on
T2 — D? — D?. With an obvious notation, fof € N, let 2 - (T2 — D? — D?) denote the rescaled
metric. Consider the infinite genus surface

(6) ¥ =B1(0)Ug: (I*— D*— D?*) Ug1 2+ (T* — D* = D*) Ug1 4+ (T* — D* — D*) Ugs - --

with its corresponding metrigs;. Forn > 2, let gr»—2 be a flat metric on then(— 2)-torus.
Then the product metric’{, gx) x (I"™~2, gr»—2) has quadratic curvature decay, volume growth
of ordert? and infinite topological type. This shows that theé?pcondition in Proposition 1.1
cannot be improved to &).

LEMMA 2.1.—If M is a smooth connected paracompact manifold théadmits a complete
Riemannian metric of quadratic curvature decay.

Proof. —First, M admits a complete Riemannian mettiof bounded sectional curvature [8].
Giveng¢ € C* (M), putg = e?*h. We have

() Riglg)=Rip(h) — dihj + btk — 8idji + 8idjn — bt (St — ihin),

Whereqzab = ¢.ap — P:a@p. Let dy, denote the distance function with respectit@nd letd,,
denote the distance function with respecytd®y [6, Theorem 1.8], there is@c C>*(M) and a
constant > 0 such that

(1) ¢(m) < dn(mo,m) < ¢(m) + c.

2) [IVel|o <c.

(3) |[HessE)lo < c.
Then from (7), in order to show thathas quadratic curvature decay it suffices to show that there
is a constan€ > 0 such thatl, (mo,m) < Ce®™ for all m € M. Lety be a normalized minimal
geodesic, with respect fg, from mg to m. Then measuring the length efwith respect tqy,

dp(mo,m) dp(mo,m)
(8) dg(mo,m) < / A TS / el dt = edn(mom) _ 1 L ee?m)
0 0

The lemma follows. O

3. Proof of Proposition 1.1

First of all, every manifold with lower quadratic Ricci curvature decay has polynomial volume
growth [7, Theorem 4.9(iii)]. For completeness, and as we will need Eq. (11) below, we give the
proof here.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 279

LeEmMA 3.1.— Suppose that there is a constart> 0 such that for eacln € M and each
unit vectorv € T,,, M, the Ricci curvature satisfies

C

(9) Ric(’U,’U) 2 —(TL — 1)W

PutN = (n — 1)((v1+4C —1)/2)+ n. Then there is a constanly = Co(n, C) > 0 such that
fort >3,

(10) vol(B;) < Covol(S1)tY + vol(By)
and
(11) VOI(Byi1 — By_1) < co%.

Proof. —Let IT, = -5 E;”:_ll k; denote the mean curvature of the regular parsgfwhere

{k:} ?;11 are the principal curvatures. Lettingld and d4,,,, denote the volume forms a% and
SmeM respectively, defing, : S,,, M — S, by

(12) () = expy,,(tv)

and definey; : S,,,M — (0,00) by

(13) (@t)*dAt |1J =M (U) dAmo-

We have

(14) vol(S;) = / ne(v) dAn,
SmgM

and

(15) (n = DI g, () = 11.(v) /7 (v).-

Ast — 0,

n—1_ Ric(v,v)
t 3
Putil(t) = II;|,, ) andv(t) = (exp,,,)«(tv). The Riccati equation implies

(16) (’I’L - l)Ht|<pf,(v) = t+ O(t)'

/ 2 Ric(u(), v(t))
a7) ') + I1(t) <—T.
Puta = (v1+ 4C + 1)/2 and consider
(18) F(t) = i 1o [t TT (1) — at*1].

Then (16) implies that lim_ o+ f(t) = 0. On the other hand, from (9) and (17), we have

(19) Pt = el OO ey L 70 — e — 17 <0,
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280 J.LOTT AND Z. SHEN

Thusf(t) <0, giving
(20) ) <ot ™t

Together with (15), we conclude thaf;(v)/t"*~Y* is nonincreasing. This implies that
vol(S;)/t™ 1« is nonincreasing, too. As

t
VOI(S.) -1y

(21) Vol(Bt) - VOI(Bl) = / s(n—l)a ds'
1
we obtain
t I(S /
22) voI(Sl)/s("_l)a ds > vol(B;) — vol(B1) > ;/(27#1)2 s(n—Da g
1 1
Hence
1
(23) Vol(B:) < oy g Yol - vol(By).
Also,
41 (5.) (5,_1) t+1
VO VOISt —
_ _ s) (n—1a _VOIWr-1) (n—1)a
(24) VOl(Bt+]_ Btfl) = / s(n—l)a S ds < (t — l)(n—l)a / S ds
1 t—1

t+1
< VOI(Bt—l) B VOI(Bl) S(n—l)oz ds
fffls(nfl)a ds

vol(B; 1)
t—1

t1
< (o

for large enougit’y. O

Proof of Proposition 1.1. We use critical point theory of the distance function; for a review,
see [3]. Let us say that a connected comporgnof S; is goodif it is part of the boundary of
an unbounded component df — B; and there is a ray fromng passing througty;.

LEMMA 3.2. —Suppose that there istg > 0 such that ift > ¢ then there is no critical point
of d,,, on any good componeni; of S;. ThenM has finite topological type.

Proof. —Let E be an end of\/. We know that there is a normalized rayuch thaty(0) = mgo
and~y exits E. Let U be the unbounded component bf — By, containing §/()} ;. By
assumption, for alk > to, the connected component, of S; which containsy(t) does not
include any critical points ofl,,,,. By the isotopy lemma [3, Lemma 1.4], for eath t, there
is somee > 0 so that a neighborhood df; is homeomorphic tot(— ¢,t + ) x X, the first
coordinate being the distance fromy. By compactness, for arty> a > to, we getan embedding
[a,b] x ¥, — U. Stacking these together, we get an embeddint,,oc) x X — U for a
fixed Y. As the image of) is relatively open and closed, we obtain thais homeomorphic to
(0,00) x X (compare [3, p. 35]). Furthermorg&; is a closed connected topological manifold [3,
Lemma 1.4]. In particular, for all > ¢, U N S; is connected and good, $bdoes not contain any
critical points. Thus\/ — B;, does not contain any critical points in its unbounded components.
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 281

A priori, M — By, may have an infinite number of bounded components. However, as distance
balls in M are precompact, it follows that only a finite number of these bounded components can
intersectS;, 1. Thus there is soma > to such thatM — B;, does not have any critical points,
from which the lemma follows. O

Remark— In fact, the proof above shows thit is homeomorphic to the interior of a compact
topological manifold-with-boundary. It follows from smoothing theory that if dind() > 6
then M is diffeomorphic to the interior of a compact smooth manifold-with-boundary. This is
basically because one can put a smooth structur@/énf one can lift the classifying map for
the tangent (micro)bundle fror@[V, BTogd to [ON, BQ]. As the interior of N is smooth, we can
deform the lifting obstruction into the interior @f, where it vanishes.

Define
(25) D(mo,t) = sup Diam¢{),

where the supremum is taken over all good compong&ptsf S; and the diameter is measured
using the metric o/ . We claim that if the manifold has lower quadratic curvature decay and if

(26) lim D(mo,t) =

t—oo t

0

there is ap > 0 such that ift > ¢ then there is no critical point of,,,, on any good component
X of S;. For a pair of point®, ¢ € M, define

epq(x) = d(p, ) + d(q, ) — d(p, q).
Clearly, for anyt > 0 and any poinin € M — By; on a ray frommg which intersects,,
(27) emom(-x) < ZD(mO, t) forx e Xy.

By assumption, the sectional curvaturelah— B, /, satisfies

aC
(28) Ky > —t—z.
Assume that there istg > 0 such that fot > ¢,
(29) D(mot) < ——
0 X 4)\\/51

where is a large constant which will be specified later.
Suppose that € Y, is a critical point ofd,,,. (See Fig. 1.) Take a minimizing geodesitrom
x to m. There is a minimizing geodesicfrom x to mo such that/(5(0),7(0)) < 5. Take two

pointsp = o(a) andq = 7(a) wherea = t/(A\V/C). By the triangle inequality, we have
(30) epq(x) g emom(x) g ZD(mo, t)

For\ > 100/v/C, we see that the triangle,,,., is contained in a small neighborhoodoinside
M — B, ;. Then we can apply the Toponogov inequality’tg,., and obtain

(31) cosh{cod(p, q)) < cost(coa),
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282 J.LOTT AND Z. SHEN

Fig. 1.

whereco = 21/C//t. Note that

>/|oo

(32) cod(p,q) = co [2a — epq(a:)] 2¢o [a — D(mo, t)}

We obtain

3 2
(33) cosk(x) < cosif (X)

This is impossible for sufficiently largs.

Finally, we must show that if vol§;) = o(t?) and if there is a > 0 such that volB(z)) > v
for all z € M, then (29) holds for large

Let X; be a connected component of the boundary of an unbounded compoiént &f;. For
anyz,y € Xy, there is a continuous curve[0,r] — X, from z to y. Suppose thad(x,y) > 2.
Then there is a partition & to < t1 < --- < t;, = r such that B1(c(t;))}5_, are disjoint and
Bo(c(t;)) N Ba(c(tix1)) # 0. Note thatBl(c(t )) C Biy1— B;_1. We have

k

(34) (k+ 1< ;VOI(Bl(c(ti))) <vol(By11—Bi1) < Co %
Thus
S voI(B )
(35) Diam(X;) < ;d (c(ts), cltis ) < Ttl—l
giving
(36) im. D(”Zo,t) o

This proves Proposition 1.1.0
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MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 283

4. Proof of Proposition 1.2 and Corollary 1.1

Fix an open set) containingE’ which is diffeomorphic to ((bo) x X.Foru>1, let M
denoteM with the metI’ICu_ng Let O denote the copy a® in M. Let B, andS, denote the
metric ball and metric sphere g aroundmg. Rescaling (1), there is a constarit > 0 such
that the regiorﬁloo— §1/100 has sectional curvatures bounded®y uniformly in «. Put

(37) Ty/10(51 N O) = {im € M: d(i, 511 O) < 1/10}.

By [6, Theorem 0.1], there is a constaift > 0 independent of, such that there is a connected
codimension-0 submanifold, of M with

(38) (51N 0) C Uy C Tyypo(S20 O),
(39) vol(dU,) < C"vol (T /10(S1 N O))
and

(40) <c”,

wherellsy, is the second fundamental forma(,, in M. Then by the Gauss—Codazzi equation,
the intrinsic sectional curvature 61/, is uniformly bounded in:. Rescaling ta\/, we have

(41) voI(Tl/lo(Sl N E)) = u‘“vol( Tu/10(Su N (’))) <u”"Vol(B11,/10)-
Let{u;}2, be a sequence iR approaching infinity such that

(42) ||m VOI(Bllu7/10)/u;L =0.
j—00

Forj large, letY; be a connected componentdl, ;. Let O; be the oriented cobordism between
Y; and X coming from the unbounded componentidf— Y; corresponding ta&, truncated at
some level 2;} x X. Leti:Y; — O; be the inclusion and let : O; — (0,00) x X — X be
projection. Then

(43)/wUHpik(TX)—/(WOi)*wUHpik(TYj)—/d(ﬂ*w/\Hpik(TOj)) =0
X k Y, k k

J

From (39), (41), (42) and [10, p. 37], we have tif@}(w o) wU ], pi (TY;)=0if jis large
enough. This proves Proposition 1.2. ‘

Takew = 1 € HO(X; R). Applying Proposition 1.2 to the Hirzebrudhclass, we obtain that
the signature o vanishes. Supposg has a nonzero simplicial volume. Then the fundamental
class [X] € H* }(X;R) is a bounded cohomology class and Proposition 1.2 implies that
fX w = 0, which is a contradiction. This proves Corollary 1.1.

5. Proof of Proposition 1.3

Suppose thatd(t)} te[1,) IS @ smooth 1-parameter family of Riemannian metricsYowith
sectional curvatures that are uniformly boundedt .ifThen one can check thatd+ t?g(t)
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284 J.LOTT AND Z. SHEN

is a metric of quadratic curvature decay ondd), x X if |g~%(t)dg/dt||.c = O(1/t) and
lg~(t) d?g/dt?|| .o = O(1/1?). Puts = t—* and letg(t) be the Riemannian metric ok defined
in [5, Section 3]. Then §(t)} :c[1,00) has uniformly bounded sectional curvature inVe claim
that||g~1(t) dg/dt || = O(1/t) and||g—2(t) d®g/dt?|| .. = O(1/t?). The metrigy(t) is defined by
a finite recursive process. One starts with an invariant Riemannian megfoc the F-structure
and putsgs (f) = log*(1 + t)go. Clearly||g; *(t) dg/dt[| . = O(L/) and||gy () PPg1/d?]| o =
O(1/t?). Then

p39;(t) + hy(t), onUj,

(44) gialt) = {gj o o

where

(1) U; is a certain open subset &f,

(2) g;(t) is the part ofg;(t) corresponding to tangent vectors to thestructure o/,

(3) h;(¢) is the part ofg;(¢) corresponding to normal vectors to thestructure ort/; and

(4) pj = t71°09U/100/2) with f;: X — [1/2, 1] a certain smooth function which is identically

one onX —Uj.

It follows by induction onj that there is a metric of quadratic curvature decay and small

volume growth on [1e0) x X. Gluing [1,00) x X onto N, we obtain the desired metric o .

6. Proof of Proposition 1.4

If n is even thers™ 1 has a polarized -structure coming from a freg!-action and the result
follows from Proposition 1.3. The first nontrivial case is whesa: 3.

Suppose that = 3. By [4, Example 1.4], there is a metricon R® with finite volume and
bounded sectional curvature. Our metric will be conformally relateh. tbet us first give the
construction of: in detail. Forj € Z*, let C; be the complement of a small solid torus in a solid
torus. (See Fig. 2.) Then topologically,

(45) R3 = (S x D?)Ug2 C1 Ugz Co Uz - - -
We takemg € S* x D?. EachC; can be decomposed &§ = (X; x 53;) Uz (32511 X 53;,4),

wherel),; is a 2-sphere with three disks removed,; ; is a 2-disk andSzlj, Szlj+l are circles.
(See Fig. 3. Each block is to be rotated around the axis and then have its left and right faces

N @

Fig. 2.
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O O
= +
[ |
Fig. 3.
1 1
52 Soirt 1
st O
S1 2j,3
2i2
2 .
2j 2j+1
Fig. 4.

identified.) PuidX,; = S3; , U S3;,U S3; 5, wheresSs; , is the top side of the rectangléj; , is
the bottom side of the rectangle aﬁ’g,.’3 is the circle enclosing the removed disk. (See Fig. 4.)
PutoXsji = Szle’l. The identifications of the toroidal boundaries are

(46) Szlj+1,1 x 521j+1 ~ Szlj,z x Szljv
Szlj,s X Sle ~ 5213'72,1 x Szljfza
where
(47) 521j+1,1 ~ 5213'!
521j+1 ~ Szlj,z
Szlj,a ~ Szljfzv
Szlj ~ Szlj—z,l-
We will put product metrics o, x Szlj and X1 X Szle. Lete; be the length ob} and

let 6, . be the length OS&*. Then (47) gives the relations

(48) 02,1 = €2j42, 0252 = €211, 0253 = €22, 02j41,1= €25

We will take ¢; = e~ %. Let X, be a thrice-punctured sphere with a Riemannian metric
such that three endg1, E», F53 = (1,00) x ST are isometric to £ + e~ 2" d?. Put Xy =
Yo — (E1U E> U E3). Letu € C>°([0, 1]) be a nondecreasing function such that

oy [s ifse0,1/3],
(49) “(S){l if se[1/2,1].

Givenk € Z+, put E(k) = [0, k] x S* with the metric d? + e~2*("/*) dh?. Then put

(50) 525 = 5o Vo, (E(2j +2)U B(2j + 1)U E(2j - 2)),
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2.1

E(Q2j+2)

E(2))

2j+1.1

2j 2j+1

Fig. 5.

isometrically. (See Fig. 5.) Similarly, le¥’_ be a once-punctured sphere with a Riemannian
metric such that the enHl = (1,00) x S is isometric to @2 + e~2"dh?. PutX) = X’ — E and

(51) Yojr1= Yo Ugst B(2)),

isometrically. (See Fig. 5.) Then one can check th8f}{*, have uniformly bounded volume
and curvature. Glue together the product metrics.bp;{x Szlj 52y and {21 x 521j+1}§i1 to
give the metrich onR3. As Py e7 < oo, it follows thath has bounded curvature and finite
volume.

Giveng € C> (R3), putg = ¢**h. By (7), the weighted sectional curvatures

(52) {62¢(m)|K(P’g)‘}m€M,PCTmM

are uniformly bounded provided that the gradid&nd of ¢ and the Hessiari (¢) of ¢ are
uniformly bounded with respect te.

We constructy on Xy; x Szlj andXy;jq x SzljJrl to be the pullbacks of functions oxi,; and
Xoiy1, respectively. Letp,, € C°(X) be a Morse function with one critical point, of saddle
type, such that

(53) Poc| B, = 40d(-, Xo),
Poo| £, = 10d(-, X0),
Poc|Es = —80—40d(-, Xo),
$oc(X0) C[-80,0]
Then in terms of (50), put
(54) ¢|5,; =805 + 80j + oo 5, -
(See Fig. 6.) Similarly, let’ € C>(X’_) be a Morse function with one critical point, a local

4® SERIE— TOME 33 — 2000 N° 2



MANIFOLDS WITH QUADRATIC CURVATURE DECAY AND SLOW VOLUME GROWTH 287

80j+160+80

.2 .
80j+80j
80j%120j+10

2 .
80j°+80j-80 80j2+80j 80j2+100j+10
80j°

80j100j+10

2 2j+1

Fig. 6.

maximum, such that
(55) bl = —10d(-, ), ¢ (20) C [0,10]
Then in terms of (51), put

(56) Gl 5y, =80j2 + 120 + 10+ ¢ |53, -

(See Fig. 6.) Finally, defing on theS* x D? factor in (45) so as to extenglto a smooth function
onR3,
It is easy to see thal ¢ and H(¢) are uniformly bounded oR3. As

dg (mOl m)2

(57) dg(m01m)2|K(Pug)| = c20(m)

M| K(P,g)|,

in order to show thag has quadratic curvature decay, it suffices to showdh&t™d, (mo, m) is
uniformly bounded with respect ta € R3. LetT? be the first torus factor in (45). Then it suffices
to show that=*("™d (T2, m) is uniformly bounded with respect te € R3. Let {7(s)} sejo.) be

a piecewise smooth path from to 72 which is unit-speed with respect tg and along whichp

is nonincreasing. Then letting, () denote the length of with respect tay, we have

t
(58) e-¢(m)dg (TZ, m) < e—¢(m)Lg(,Y) — /e¢('y(s))—¢(m) ds.
0

We takevy to be (reparametrized) gradient flow@ftarting fromm. Although¢ is not a Morse
function, we note that gradient flow arp; x Szlj is essentially the same as gradient flowdy),

as it is constantin thSzlj-factor, and gradient flow 0’41 x SzljJrl is essentially the same as
gradient flow on¥»; 4, as it is constant in th€21j+l—factor. If the projection ofy onto X»; or
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X»;+1 meets a critical point of saddlepoint type, we extendbeyondc to become a piecewise
smooth curve with a corner, again following a downward gradient trajectory. We continue this
process untily hits 72. Changing variable ta, = ¢(v(s)), we have

¢ $(m)

t
(59) / AN —0(m) g _ / pu—om____du
0 0

[Vo|(¢~H(w)

As ¢(v(s)) is nonincreasing, ifin € C; theny never entersy;, 1 x 521k+1 for k < j. Also
~ hits at most one critical point in eachy; for & < j. By the construction ob, if ¢, € Xy
is the critical point thenp|,, 51 € [80k? + 80k — 80, 80 + 80k]. Thus the singularities of

1/|V¢|(¢~(u)) are well-spaced im. If v passes through a critical pointindug = ¢(c) then

1 1

Vol W)~ u—uo|

for u ~ ug. From the uniform nature o¥¢ near the critical points, it follows that there is a
constantD > 0, independent ofr € R®, such that for allz € [80, ¢(m) — 1],

x+1

du
(60) / Vol S

x

Then

P(m)

(61) / eu-om__u D

Vol ) S1_e 1

Thusg has quadratic curvature decay.
Putt; 1 = d(mo, Cj41). Forj > 0, each path fromng to C';1 must pass througf;. Put

(62) Dj = (S8*x D?) Ugz C1Ugz -+ U2 Cj.
Then B, ,(mo) C D; and so volB;, ;) < vol(D;). With respect to (50), lef’; be the subset

[j+2,2j+2] x S3; C E(2j 4 2) x S3;. (See Fig. 7.) For largg, ¢| , _,, <802+ 120j + 80
and so Y

(63) VOI(D; — Fj) < 2407 +3601+240 5] (R3, ).
On the other hand,
2j+2 o
(64) vol(F)) = / £3(80/%+80j+40z) ,~2(2j+2) . — % 240/7+480j+240,—2(2j+2)
j+2
Thus
(65) VoI(By,,,) = O(6240jz+430j+2406—2(2j+2)).
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80j°+160+80

80j%120j+80

z
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As any path fromng to C;+1 must pass throughj,

2j+2

) ) 1—e 40 _ )
(66) tii1 > / 68032+80]+4Qc de — :0 680]2+160j+80.
j+2
Thus
(67) VOl(By,,,)/t5,1 = O(e 2@ +2)),

showing thaty has slow volume growth.
If n > 3, we can do a similar construction in whi€h is the complement of a small* =2 x D?
in T2 x D? andC; is decomposed ash; x T" %) Upn-1 (X2j41 x T"7?).

7. Proof of Corollary 1.2

(1) If n =2, put a metric on Intl{/) with flat cylindrical ends.

(2) If n =3, suppose that N consists of 2-spheres and 2-tori. For a 2-sphere component of
ON, put a metric coming from Proposition 1.4 on the corresponding end df)nfor a 2-torus
component 0PN, put a flat metric on the corresponding end«d), x T2 of Int(V). This gives
the desired metric on InN). Now suppose that Ini) has a metric with quadratic curvature
decay and slow volume growth. From Corollary 1.1, the simplicial volum@éfmust vanish.
ThusON consists of 2-spheres and 2-tori.

(3) If n =4, suppose that the connected component$éfare graph manifolds. Then/NV
has a polarized-structure and Proposition 1.3 implies that there is a metric orVintith
quadratic curvature decay and slow volume growth. Now suppose that Thurston’s Geometrization
Conjecture holds and that I@{() has a metric with quadratic curvature decay and slow volume
growth. From Corollary 1.1, the simplicial volume 8V must vanish. From [12], this implies
that the connected componentsa¥ are graph manifolds.
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