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Abstract 

In his study of Dirac structures, a notion which includes both Poisson struc-
tures and closed 2-forms, T. Courant introduced a bracket on the direct sum 
of vector fields and 1-forms. This bracket does not satisfy the Jacobi identity 
except on certain subspaces. In this paper we systematize the properties 
of this bracket in the definition of a Courant algebroid. This structure 
on a vector bundle E —>• M, consists of an antisymmetric bracket on the 
sections of E whose "Jacobi anomaly" has an explicit expression in terms 
of a bundle map E —>• TM and a field of symmetric bilinear forms on E. 
When M is a point, the definition reduces to that of a Lie algebra carrying 
an invariant nondegenerate symmetric bilinear form. 

For any Lie bialgebroid (A, A*) over M (a notion defined by Macken-
zie and Xu), there is a natural Courant algebroid structure on A © A* which 
is the Drinfel'd double of a Lie bialgebra when M is a point. Conversely, if 
A and A* are complementary isotropic subbundles of a Courant algebroid 
E, closed under the bracket (such a bundle, with dimension half that of E, 
is called a Dirac structure) , there is a natural Lie bialgebroid structure 
on (A, A*) whose double is isomorphic to E. The theory of Manin triples is 
thereby extended from Lie algebras to Lie algebroids. 

Our work gives a new approach to bihamiltonian structures and a 
new way of combining two Poisson structures to obtain a third one. We also 
take some tentative steps toward generalizing Drinfel'd's theory of Poisson 
homogeneous spaces from groups to groupoids. 

1. Introduction 

The aim of this paper is to solve, in a unified way, several mysteries 
which have arisen over the past few years in connection with general-
izations of the notion of Lie algebra in differential geometry. 
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T. Courant [4] introduced the following antisymmetric bracket op-
eration on the sections of TP ®T*P over a manifold P: 

[Xi + 6 , X 2 + 6 ] = [X1,X2] + {Lx&-Lx& + d{\{tZ1 (X2) -UXi))). 

Were it not for the last term, this would be the bracket for the semidirect 
product of the Lie algebra X(P) of vector fields with vector space Çtl(P) 
of 1-forms via the Lie derivative representation of X(P) on Î71(P). The 
last term, which was essential for Courant 's work (about which more 
will be said later) causes the Jacobi identity to fail. Nevertheless, for 
subbundles E C TP®T*P which are maximally isotropic for the bilinear 
form (X! + 6 , X2 + 6 ) + = ±(6(X2) + 6 ( X i ) ) , closure of T(E) under 
the Courant bracket implies that the Jacobi identity does hold on T(E), 
because of the maximal isotropic condition on E. These subbundles are 
called Dirac structures on P; the notion is a simultaneous generalization 
of that of Poisson structure (when E is the graph of a map TÏ : T*P —> 
TP) and that of closed 2-form (when E is the graph of a map û : TP —> 
T*P). 

P r o b l e m 1. Since the Jacobi identity is satisfied on certain sub-
spaces where ( , )+ vanishes, find a formula for the Jacobi anomaly1 

[[ei,e2],e3] + c.p. 

in terms of ( , ) + . 

The vector space x(P) ® ^ 1 ( P ) on which the Courant bracket is de-
fined is also a module over C°°(P). Projection on the first factor defines 
a map p from x(P) © ^ 1 ( P ) to derivations of C°°(P). If one checks the 
Leibniz identity which enters in the definition of a Lie algebroid [20], 

[ei, fe2] = f [e i , e2] + (p(e1)f)e2 . 

It turns out that this is not satisfied in general, but that it is satisfied 
for Dirac structures. This suggests: 

P r o b l e m 2. Express the Leibniz anomaly [e\, fe2] — f[ei,e2] — 

{p{e1)f)e2 in terms of ( , ) + . 

When one is given an inner product on a Lie algebra, it is natural 
to ask whether it is invariant under the adjoint representation. Here 
again, a calculation turns up an invariance anomaly. 

"+c.p." below (and henceforth) will denote "plus the other two terms obtained 
by circular permutations of (1,2,3)." 
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We solve problems 1 and 2 in the paper, finding an expression for 
the invariance anomaly as well. The formulas obtained are so attractive 
as to suggest: 

P r o b l e m 3. Generalize the Courant bracket by writing down a set 
of axioms for a skew-symmetric bracket E X E —> E, a linear map E —> 
Der(C°°(M)) , and a symmetric inner product E X E —» C0<:'(M) on the 
space E of sections of a vector bundle over M, and find other interesting 
examples of the structure thus defined. 

Our solution of Problem 3 begins with the definition of a structure 
which we call a Courant algebroid2. Among the examples of Courant al-
gebroids which we find are the direct sum of any Lie bialgebroid [22] and 
its dual, with the bracket given by a symmetrized version of Courant 's 
original definition. This structure thus gives an answer as well to: 

P r o b l e m 4. What kind of object is the double of a Lie bialgebroid? 

Furthermore, within each Courant algebroid, one can consider the 
maximal isotropic subbundles closed under bracket. These more gen-
eral Dirac structures are new Lie algebroids (and sometimes Lie bial-
gebroids). Constructions in this framework applied to the Lie bialge-
broid of a Poisson manifold [22] lead to new ways of building Pois-
son structures and shed new light on the theory of Poisson-Nijenhuis 
structures used to explicate the hamiltonian theory of completely inte-
grable systems [13]. In particular, we find a composition law for cer-
tain pairs of (possibly degenerate) Poisson structures which generalizes 
the addition of symplectic structures: namely, if U : T*P —> TP and 
V : T*P —T- TP define Poisson structures such that U + V is invertible, 
then U(U + V)~lV again defines a Poisson structure. 

When the base manifold P is a point, a Lie algebroid is just a Lie 
algebra. A Courant algebroid over a point turns out to be nothing but 
a Lie algebra equipped with a nondegenerate ad-invariant symmetric 
2-form (sometimes called an orthogonal structure [25]). (The formulas 
for the anomalies all involve derivatives, so they vanish when P is a 
point.) Such algebras and their maximal isotropic subalgebras are the 
ingredients of the theory of Lie bialgebras and Manin triples [6]. In fact, 
just as a complementary pair of isotropic subalgebras in a Lie algebra 
with orthogonal structure determines a Lie bialgebra, so a complemen-
tary pair of Dirac structures in a Courant algebroid determines a Lie 

We apologize to our French colleagues for possible confusion with the nearly 
homonymous and somewhat less synonymous term, "algebre de courants" . 
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bialgebroid. It is this fact, which exhibits our theory as a generalization 
of the theory of Manin triples, which is responsible for the application 
to Poisson-Nijenhuis pairs mentioned above. 

We mentioned earlier that the notion of Dirac structures was in-
vented in order to treat in the same framework Poisson structures, which 
satisfy the equation [n, IT] = 0, and closed 2-forms, which satisfy du = 0. 
One could look for a more direct connection between these equations. 

P r o b l e m 5. What is the relation between the equations [n, IT] = 0 
and du = 0? 

Our solution to Problem 5 is very simple. In a Courant algebroid of 
the form A © A*, the double of a Lie bialgebroid, the equation which a 
skew-symmetric operator I : A —> A* must satisfy in order for its graph 
to be a Dirac structure turns out to be the Maurer-Cartan equation 
dI + ^[I , I] = 0 for the corresponding bilinear form I G T(A2A*). The 
structure of the original Courant algebroid TM © TM* (also viewed 
dually as T*M © TM) is sufficiently degenerate that one of the terms 
in the Maurer-Cartan equation drops out in each of the two cases. 

The next problem arises from Drinfeld's study [8] of Poisson homo-
geneous spaces for Poisson Lie groups. He shows in that paper that the 
Poisson manifolds on which a Poisson Lie group G acts transitively are 
essentially (that is, if one deals with local rather than global objects, as 
did Lie in the old days) in 1-1 correspondence with Dirac subspaces of 
the double of the associated Lie bialgebra (g,g*). It is natural, then, to 
look for some kind of homogeneous space associated to a Dirac subbun-
dle in the double of a Lie bialgebroid. 

The object of which a Lie bialgebroid E —> P is the infinitesimal 
limit is a Poisson groupoid, i.e. a Poisson manifold T carrying the struc-
ture of a groupoid with base P, for which the graph of multiplication 
{(k,g,h)\k = gh} is a coisotropic submanifold of T X T X T. (T is T 
with the opposite Poisson structure. See [22] [23] and [33].) Unlike 
in the case of groups, a Poisson groupoid corresponding to a given Lie 
bialgebroid may exist only locally. 

P r o b l e m 6. Define a notion of Poisson homogeneous space for a 
Poisson groupoid. Show that Dirac structures in the double of a Lie 
bialgebroid (A, A*) correspond to (local) Poisson homogeneous spaces 
for the (local) Poisson groupoid T associated to (A, A*). 

Our solution to Problem 6 will be contained in a sequel to this 
paper [17]. Even if we work locally, it is somewhat complicated, since 
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the "homogeneous spaces" for groupoids, which are already hard to 
define in general (see [3]), in this case can involve the quotient spaces 
of manifolds by arbitrary foliations. 

To give a flavor of our results, we mention here one example. For the 
standard Lie bialgebroid (TM,T*M), the associated Poisson groupoid 
is the pair groupoid M X M with the zero Poisson structure. A Dirac 
structure transverse to T*M is the graph of a closed 2-form UJ on M. The 
corresponding Poisson homogeneous space for M X M is M X (M/F), 
where the factor M has the zero Poisson structure, and the factor M/F 
is the (symplectic) Poisson manifold obtained from reduction of M by 
the characteristic foliation F of UJ. (Of course, the leaf space M/F 
might not be a manifold in any nice sense.) Dually, our Dirac structure 
also defines a Poisson homogeneous space for the Poisson groupoid of 
the Lie bialgebroid (T*M,TM), which is T*M with the operation of 
addition in fibres and the Poisson structure given by the canonical 2-
form. The homogeneous space is again T*M, with the Poisson structure 
coming from the sum of the canonical 2-form and the pullback of UJ by 
the projection T*M —> M. 

We turn now to some problems which remain unsolved. 
The only examples of Courant algebroids which we have given are the 

doubles of Lie bialgebroids, i.e. those admitting a direct sum decompo-
sition into Dirac subbundles. For Courant algebroids over a point, there 
are many examples which are not of this type, even when the symmetric 
form has signature zero, which is necessary for such a decomposition. 
For instance, we may take the direct sum of two Lie algebras of di-
mension k with invariant bilinear forms, one positive definite and one 
negative definite. Any isotropic subalgebra of dimension k must be the 
graph of an orthogonal isomorphism from one algebra to the other. Such 
an isomorphism may not exist. Even if it does, it might be the case that 
the graphs of any two such isomorphisms must have a line in common. 
(For instance, take two copies of su{2) and use the fact that every rota-
tion of R has an axis.) These examples and a further study of Manin 
triples from the point of view of Lie algebras with orthogonal structure 
may be found in [26]. 

O p e n P r o b l e m 1. Find interesting examples of Courant algebroids 
which are not doubles of Lie bialgebroids, including examples which 
admit one Dirac subbundle, but not a pair of transverse ones. Are there 
Courant algebroids which are not closely related to finite dimensional 
Lie algebras, for which the bilinear form is positive definite? 
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In his study of quantum groups and the Knizhnik-Zamolodchikov 
equation, Drinfeld [7] introduced quasi-Hopf algebras, in which the ax-
iom of coassociativity is weakened, and their classical limits, the Lie 
quasi-bialgebras. The latter notion was studied in depth by Kosmann-
Schwarzbach [11] (see also [2]), who defined various structures involving 
a pair of spaces in duality carrying skew symmetric brackets whose Ja-
cobi anomalies appear as coboundaries of other objects. Her structures 
are not subsumed by ours, though, since our expression for the Jacobi 
anomaly is zero when the base manifold is a point. Jacobi anomalies 
as coboundaries also appear in the theory of "strongly homotopy Lie 
algebras" [14] and in recent work of Ginzburg [9]. The relation of these 
studies to Courant algebroids is the subject of work in progress with 
Dmitry Roytenberg. 

O p e n P r o b l e m 2. Define an interesting type of structure which 
includes both the Courant algebroids and the Lie quasi-bialgebras as 
special cases. 

At the very beginning of our study, we found that if the bracket on 
a Courant algebroid is modified by the addition of a symmetric term, 
many of the anomalies for the resulting asymmetric bracket become 
zero. This resembles the "twisting" phenomenon of Drinfeld [7]. 

O p e n P r o b l e m 3. What is the geometric meaning of such asym-
metric brackets, satisfying most of the axioms of a Lie algebroid? 

The next problem is somewhat vague. The Maurer-Cartan equation 
da + i [ a , a] appears as an integrability condition in the theory of con-
nections and plays an essential role in modern deformation theory. (See 
[28] and various original sources cited therein.) 

O p e n P r o b l e m 4. Find geometric or deformation-theoretic inter-
pretations of the Maurer-Cartan equation for Dirac structures. 

Lie algebras, Lie algebroids and (the doubles of) Lie bialgebras are 
the infinitesimal objects corresponding to Lie groups, Lie groupoids, and 
(the doubles of) Poisson Lie groups respectively. Moreover, Kosmann-
Schwarzbach [11] has studied the global objects corresponding to Lie 
quasi-bialgebras, and Bangoura [1] has recently identified the dual ob-
jects. Yet the following problem is unsolved, even for TM © T*M. 

O p e n P r o b l e m 5. What is the global, groupoid-like object corre-
sponding to a Courant algebroid? In particular, what is the double of 
a Poisson groupoid? 
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A solution to Open Problem 4 might come from a solution to the 
next problem. When one passes from an object such as a Lie bialgebra or 
even a Lie quasi-bialgebra to its double, the resulting object is frequently 
"nicer" in the sense that some of the anomalies possessed by the original 
object now vanish. 

O p e n P r o b l e m 6. What is the double of a Courant algebroid? 

Finally, we would like to remark that many of the constructions in 
this paper can be carried out at a more abstract level, either replacing 
the sections of a vector bundle E by a more general module over C°°(P), 
as in [10], or in the context of local functionals on mapping spaces as in 
[5] by Dorfman. 

A c k n o w l e d g e m e n t s 
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2. D o u b l e of Lie bialgebroids 

Definit ion 2 .1 . A Courant algebroid is a vector bundle E —> P 
equipped with a nondegenerate symmetric bilinear form (•, •) on the 
bundle, a skew-symmetric bracket [•, •] on T(E) and a bundle map p : 
E —> TP such that the following properties are satisfied: 

(i) For any e1,e2, e3 G T(E), [[ei, e2], e3] + c.p. = DT(e1,e2, e3); 

(ii) for any e1,e2 G T(E), p[e1,e2] = [peu pe2}; 

(iii) for any e1} e2 G T(E) and f G C°°(P), 

[ei, fe2] = f[eu e2] + (p(e1)f)e2 - {eue2)Df; 

(iv) poD = 0, i.e., for any f,ge C°°(P), (Df,Dg) = 0; 

(v) for any e, hi,h2 G T(E), 

p{e){hx, h2) = ([e, hx] + D(e, ht), h2) + {hu [e, h2] + D(e, h2)), 
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where T(e\, e2, e3) is the function on the base P defined by: 

(1) T(e1, e2, e3) = - ( [ e i , e2], e3) + c.p., 

and D : C°°(P) —> T(E) is the map defined3 by D = \ß~lp*d0, ß 
being the isomorphism between E and E* given by the bilinear form. 
In other words, 

(2) (Df,e)=
l
-p(e)f. 

Remark . Introduce a twisted bracket (not antisymmetric!) on 
Y{E) by 

[e,h]=[e,h] + D(e,h). 

Then (iii) is equivalent to 

(3) [ei, fe2] = f[eu e2] + (p(e1)f)e2; 

(v) is equivalent to 

(4) p(e)(hi, h2) = ([e, hi], h2) + (hu [e, h2]); 

and (ii) and (iv) can be combined into a single equation: 

(5) p[ei,e2]=[pe1,pe2]. 

It would be nice to interpret equation (i) in terms of this twisted bracket. 
The geometric meaning of this twisted bracket remains a mystery to us. 

Definit ion 2.2. Let E be a Courant algebroid. A subbundle L 
of E is called isotropic if it is isotropic under the symmetric bilinear 
form (•,•). It is called integrable if T(L) is closed under the bracket 
[•,•]. A Dirac structure, or Dirac subbundle, is a subbundle L which is 
maximally isotropic and integrable. 

The following proposition follows immediately from the definition. 

Propos i t ion 2.3 . Suppose that L is an integrable isotropic subbun-
dle of a Courant algebroid (E, p, [•, •], (•, •)). Then (L, p\i, [•, •]) is a Lie 
algebroid. 

In this paper, do denotes the usual differential from functions to 1-forms, while d 
will denote the differential from functions to sections of the dual of a Lie algebroid. 
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Suppose now that both A and A* are Lie algebroids over the base 
manifold P, with anchors a and a* respectively. Let E denote their 
vector bundle direct sum: E = A © A*. On E, there exist two natural 
nondegenerate bilinear forms, one symmetric and another antisymmet-
ric, which are defined as follows: 

(6) (X1 + £ i , X 2 + 6 ) ± = i « £ i , X 2 > ± ( 6 , X ! » . 

On F(E), we introduce a bracket by 

, s [ei,e2] = ( [ X i , X 2 ] + L X 2 - ^ 2 X 1 ~ d*(e1,e2)-) 

+ ([6,61 + L 6 - L 2 6 + d(ei,e2)-), 

where e\ = X i + £1 and e2 = X 2 + £2. 

Finally, we let /> : E —> TP be the bundle map defined by p = a+a*. 
That is, 

(8) p{X + Ç) = a{X) + a*{Ç), VX G r (A) and Ç G r (A*) . 

It is easy to see that in this case the operator D as defined by Equation 
(2) is given by 

D = d* + d, 

where d* : C°°(P) —> F (A) and d : C°°(P) —> F (A*) are the usual 
differential operators associated to Lie algebroids [22]. 

When (A, A*) is a Lie bialgebra (g,g*), the bracket above reduces 
to the famous Lie bracket of Manin on the double g © g*. On the other 
hand, if A is the tangent bundle Lie algebroid TM and A* = T*M with 
zero bracket, then Equation (7) takes the form: 

[Xi + 6 , X2 + 6 ] = [Xi, X2] + {L X& - L X t i + d{eu e 2 ) _ } . 

This is the bracket first introduced by Courant [4], and then generalized 
to the context of the formal variational calculus by Dorfman [5]. 

Our work in this paper is largely motivated by an a t tempt to unify 
the two examples above, based on the observation that Courant 's bracket 
appears to be some kind of "double." In order to generalize Manin's 
construction to Lie algebroids, it is necessary to have a compatibility 
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condition between Lie algebroid structures on a vector bundle and its 
dual. Such a condition, providing a definition of Lie bialgebroid, was 
given in [22]. We quote here an equivalent formulation from [12]. 

Definit ion 2.4. A Lie bialgebroid is a dual pair (A, A*) of vector 
bundles equipped with Lie algebroid structures such that the differential 
d* on T(A*A) coming from the structure on A* is a derivation of the 
Schouten-type bracket on T(A*A) obtained by extension of the structure 
on A. 

The following two main theorems of this paper show that we have 
indeed found the proper version of the theory of Manin triples for the 
Lie algebroid case. 

T h e o r e m 2 .5 . If (A, A*) is a Lie bialgebroid, then E = A © A* 

together with ([•, •], p, (•, -)+) is a Courant algebroid. 

Conversely, we have 

T h e o r e m 2 .6 . In a Courant algebroid (E, p, [•,•],(•, •)), suppose 
that L\ and Li are Dirac subbundles transversal to each other, i.e., 
E = L\ © Li- Then, (Li,L ̂ ) is a Lie bialgebroid, where Li is consid-
ered as the dual bundle of L\ under the pairing 2(-, •). 

An immediate consequence of the theorems above is the following 
duality property of Lie bialgebroids, which was first proved in [22] and 
then by Kosmann-Schwarzbach [12] using a simpler method. 

Corollary 2.7. If (A, A*) is a Lie bialgebroid, so is (A*, A). 

3. Jacobi anomaly 

In this section, we begin the computations leading to the proofs of 
our main theorems. Throughout this section, we assume that A is a Lie 
algebroid with anchor a and that its dual A* is also equipped with a Lie 
algebroid structure with anchor a*. However, we shall not assume any 
compatibility conditions between these two algebroid structures. 

For simplicity, for any e,- = X{ + £,- G T(E), i = 1,2, 3, we let 

J{ei,e2, e3) = [[ei, e2], e3] + c.p. 

The main theorem of this section is the following. 

T h e o r e m 3 . 1 . Assume that both (A, a) and (A*, a*) are Lie alge-



m a n i n t r i p l e s f o r l i e b i a l g e b r o i d s 557 

broids. Then, for e i = X i + i G T(E), i = 1,2, 3, we have 

(9) J(ei ,e 2 ,e 3) = VT(e1,e2,e3) - (Ji + J2 + c.p), 

where 

J = i 3 ( d 6 , 6 ] - L^d^ + L^dZi) + i^{d*[Xi,X2] 

- L X1d*X2 + L X d*Xi), 

and 

J = L d.(e i,e2)_6+ [d(ei,e2)_, 6 ] + L d(e i ,e2)_X+ [d(ei ,e 2 )_ , X3]. 

We need a series of lemmas before proving this theorem. 

Lemma 3.2. For e i = X i + i G T(E),i = 1,2,3, T is skew-
symmetric, and 

T(e1,e2,e3)=-([X1,X2],Ç3) + {[&,&], X3, 

(10) + a(X3)(ei,e2)_ - a*(£3)(ei, e2)_o 

+ c.p. 

Proof. The first assertion is obvious from the definition of T. For 
the second one, we first have 

([ei,e2],e3) + 

= ^n([X1,X2],$3) + (L^X2,$3) - (L^Xub) - a*(6)(ei,e2)_ 

+ ( [ 6 , 6 ] , X> + (L Xlb,X3) - (L X t i , X 3 ) + a(X3)(e i , e2) 

= ^n[([Xi,X2U3) + <[6,6] ,X>] + c.p.o 

+ 2n a*(6)(X2,6) - a*(6)<Xi,6) - a*(6)(ei,e2)_ 

+ a ( X 1 ) ( 6 , X 3 ) - a ( X 2 ) ( 6 , X 3 ) + a(X3)(e i ,e2)_o 

<[Xi, X2], 6 ) + <[£i,6],X> + a(X3)(e i ,e2)_ 

+ 2^(ei)(e2,e3)+ - -/)(e2)(e3,ei) + . 

a*(6)(ei,e2)_ + c.p. 
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Therefore, by taking the sum of its cyclic permutations, one obtains 

T(e1,e2,e3) = -([ei, e2], e3) + + c.p. 

= ^n h[X1,X2],$3i + h[^,^],X3i + a(X3)(e1,e2)-

-a*(Ç3)(e1,e2)-o + c.p. 

q.e.d. 

As a by-product, we obtain the following identity by substituting 
Equation (10) into the last step of the computation of ([ei, e2], e ) + in 
the proof above. This formula will be useful later. 

([ei, e2], e3)+ =T(e1, e2, e3) + -p(e1)(e2, e3) + 
(H) ! 2 

- -p{e2){e3,el) + . 

Lemma 3.3. 

, , i X Lçdi] = [£, L Xv] - LL(XV + [dhv, Xi, £] 

+ d(am(QhrììXi)-dh[Cìrì]ìXi. 

Proof. For any Y G r(A), 

hi X L(dVlYi = {L ̂  dri){X,Y) 

= a* (0 [dri(X, Y)] - dri(LtX, Y) - d^X, L(Y) 

= a40aX)hv,Yi - a*($)a(Y)hri,Xi 

+a{Y)hrì,LiXi + hrì,[LiX,Y\i 

-a(X)hr,, L(Yi + a^Y)^, Xi + hr,, [X, L(Y]i 

= am(QhL XrììYi-am(Qa(Y)hrììXi + a(Y)am(QhrììXi 

-a(Y)h[tv],Xi-hLL(XVlYi 

-hL X ̂ LY i + hLYd^Xii 

= h[ç,L Xî?],Yi + h[dhî?,Xi,ç],Y i 

+a{Y)am{Ç)hri,Xi-a{Y)h[Z,rj\,Xi 

-hLL(XV,Yi-

The lemma follows immediately. 
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L e m m a 3.4. 

([ei ,e 2] ,e 3)_ + c.p. 

(13) = T ( e i , e 2 , e 3 ) 

+ [{a(X 3 ) (e i ,e2) - + 2 a * ( 6 ) ( e i , e 2 ) -

- ( [ 6 , 6 ] , X i g + c.p.]. 

Proof. By definition, 

( [ei ,e 2] ,e 3)_ + ([ei, e2], e3)+ = ([e1,e2]*,X3i, 

where [ei, e2]* refers to the component of [ei, e2] in r (A*) . 
It thus follows that 

{([ei, e2], e3)_ + c.p.g + 3T(ei , e2, e3) 

= ([ei ,e2]*,X3 i + c.p. 

= ([6,6] + £Xi6 - L X 6 + d(ei,e2)_, X3i + c.p. 

= {([6,6],Xi + a(Xi)(6,Xi - (6, [Xi,X]i 

+ a ( X 3 ) ( e i , e2)_ - a ( X 2 ) ( 6 , X 3 i + ( 6 , [X2, X3]ig + c.p. 

= { ( [ 6 , 6 ] , X i + 2([X1 ,X2] ,Ç3 i + 3a (X 3 ) ( e i , e 2 )_g + c.p. 

= 4T(e i , e 2 , e 3 ) + [{a(X3)(ei , e2)_ + 2a*(£3)(ei, e2)_ 

-<[6,6],Xig + c.p.], 

where the second from the last step follows essentially from reorganizing 
cyclic permutation terms, and the last step uses Equation (10). Equa-
tion (13) thus follows immediately. q.e.d. 

Proof of Theorem 3.1. We denote by I\ and I 2 the components of 
J ( e i , e 2 , e 3 ) on r(A*) and r (A) respectively. Thus, by definition, 

I = {[[6,6],6] + [ i X 1 6 - L 2 6 , 6 ] + [d(ei,e2)-,6] 

+L[X1 ,X2]+L^ X2 -Li2 Xx-d, (ei ,e2 ) _ 6 

+L X L X £ i - L X L X^2 - L 3 [ 6 > 6 ] 
-d[a(X3)(e1, e2)_] + d([eu e2], e3)_g + c.p.. 

By using the Jacobi identity: [ [ 6 ? 6 ] ? 6 ] + c-p- = 0 and the relation: 
L[Xi,X] = [L X 1 , L X] , we can write 

I = {[L Xx 6 - L X 6 , 6 ] + LL^ X2 -LÌ2 Xi 6 

(14) -L d,(eue2)_£3 + [d(e1,e2)-, 6 ] - L 3 [ 6 , 6 ] 

+ d % i , e 2 ] , e 3 ) _ - d(a(X3)(e1, e2)-)g + c.p.. 
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Now, 

L XS [6, 6 ] = (di Xs + i Xs d) [6, 6 ] 

= d(X3l [ 6 , 6 ] ) + i X LCid^2 - i X LC2d^i 

+ i X ( d 6 , 6 ] - L^d^2 + Li2d^). 

Applying Lemma 3.3 twice, we have 

L 3 [ 6 , 6 ] + cp. 

= { [ L 6 - L 2 6 , 6 ] + L 1 X - L ^2X16 + 2[d(ei,e2)-, 6 ] 

(15) +2d(a*(6)(ei,e2)_) _d (X 3 , [ 6 ,6 ] ) 

+i X ( d 6 , 6 ] - L(ldÇ2 + L^dÇx)g + c.p. 

Substituting Equation (16) into Equation (15) yields 

I ={d( [e i>e2] ,e 3 ) - - a ( X 3 ) ( e i , e 2 ) - - 2a*(6) (e i , e2)_ 

+ ([$i,$2],X3)]-K1-K2g + c.p., 

where 

K\ = i 3 ( d 6 , 6 ] - L(ldÇ2 + L^dÇx) 

and 

K 2 = L d„(e i , e 2 )_6 + d e l , e 2 ) - , 6 ] -

It follows from Lemma 3.4 that 

I = dT(e1, e2, e3) - {Ki + K 2 + c.p.g. 

A similar formula for I 2 can be obtained in a similar way. The conclusion 
follows immediately. 

4. P r o o f of T h e o r e m 2.5 

This section is devoted to the proof of Theorem 2.5. Throughout 
the section, we assume that (A, A*) is a Lie bialgebroid and E = A® A* 
as in Theorem 2.5. We also let D : C°°(P) — • r ( E ) and p : E — • T P 
be defined as in Section 2. To prove Theorem 2.5, it suffices to verify all 
the five identities in Definition 2.1. First, Equation (i) follows directly 
from Theorem 3.1 and properties of Lie bialgebroids. Equation (iv) 
is equivalent to saying that aa% is skew symmetric, which is again a 
property of a Lie bialgebroid (see Proposition 3.6 in [22]). Below, we 
shall split the rest of the proof into several propositions. 
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Proposi t ion 4 .1 . For any f G C°°(P) and e\,e2 G Y(E), we have 

(16) [ei, fe2] = f[ei, e2] + (p(e1)f)e2 - (e1,e2)+Df. 

Proof. Suppose that e\ = X\ + £i and e2 = X2 + £2- Then, we have 

[ei,fe2] = [Xu fX2] + [Xu f&] + [6, fX2] + [6, f 6 ] , 

where 

[Xu fX2] = f[XuX2] + (a(X1)f)X2; 

[6,f6] = f[6,6] + (a6 ) f )6 ; 

[Xi , f6 ] = f [X i , 6 ] + ((aX1)f)^2 - ^hXu&iDf; 

[ti,fX2] = f , X 2 ] + ((a^)f)X2 - \hX2i^iDf. 

The conclusion follows from adding up all the equations above. 

Proposi t ion 4.2. For any e\,e2 G Y(E), we have 

p[ei,e2] = [pei,pe2]. 

We need a lemma first. 

Lemma 4.3. If (A, A*) is a Lie bialgebroid with anchors (a, a*), 
then for any X G r(A) and £ G r(A*), 

[a{X),am{®] = a*(L XO - a(L(X) + aa d hÇ, Xi. 

Proof. For any f G C°°(P), 

(aa:d0h$,Xi)f 

= hd*h$,Xi,dfi 

= L df h t X i 

= hL dfÇ,Xi + hÇ,L df Xi 

= -hLidf,Xi + hZ,[X,dmf\i 

= - a , (£)hdf, Xi + hdf, L(Xi + a(X)am(Qf - hL XÇ, dmfi 

= [a(X),a*($)]f - a*(L XQf + a(L(X)f, 

where in the fourth equality we have used the fact that L df X = [X, d*f], 
a property of a general Lie bialgebroid (see Proposition 3.4 of [22]). 

q.e.d. 
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Proof of Proposition Jh2. Let e\ = X\ + £1 and e2 = X2 + £2. 

p[e1,e2] = a{[X1,X2] + LilX2 - LÌ2Xt - dif(e1,e2)-g 

+a*{[Çii&] + L Xl& - L XÇi + d ( e i , e 2 ) -g 

= a[X1,X2] + a{LilX2)-a{LÌ2X1) 

~aa:d0((^,X2)-($2,X1)) 

+ a * [ 6 , 6 ] + a*(-^X16) -a*{L X £ i ) 

+ \a,a*d0({^,X2)-^2,X1)) 

= a[XuX2] + [a{L^X2) - a*(L X 6 ) - aa*d 0(£i ,X 2)] 

-[a{L ^2Xi) - a*(L XlÇ2) ~ aa d ( 6 , X i ) ] + a * [ 6 , 6 ] 

= [aXi, aX2] + [a*£i, a*£2] + [aXi, a*£2] + [a*£i, aX2] 

= [/»(ei),/>(e2)], 

where in the third equality we have used the skew-symmetry of the 
operator aa^, and the second from the last follows from Lemma 4.3. 

Propos i t ion 4.4. For any e,h\,h2 G T(E), we have 

p(e)(h1,h2)+=([e,h1] + V(e,h1) + , h2) + 

+ (hi, [e,h2]+V{e,h2) + ) + . 

Proof. According to Equation (11), 

([e, hi], h2)+ = T(e, hu h2) + -p(e)(hu h2)+ - - p ( h i ) ( e , h2) + 

and 

(hu [e, h2])+ = T(e, h2, hx) + -p(e)(h2, h1)+ - -p(h2)(e, h1) + . 

By adding these two equations, we obtain Equation (17) immediately 
since T(e,h\,h2) is skew-symmetric with respect to h\ and h2. 

5. P r o o f of T h e o r e m 2.6 

This section is devoted to the proof of Theorem 2.6. We denote 
sections of L\ by letters X, Y, and sections of L2 by £, r], etc.. For any 
X G r ( L i ) and £ G T(L2), we define their pairing by 
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(18) (Ç,X) = 2(Ç,X). 

Since (•, •) is nondegenerate, Li can be considered as the dual bundle 
of L\ under this pairing. Moreover, the symmetric bilinear form (•, -) + 

on E defined by Equation (6) coincides with the original one. 
By Proposition 2.3, both L\ and Li are Lie algebroids, and their 

anchors are given by a = p\L1 and a* = p\L respectively. We shall use 
d : r(A*L2) — • r (A* + 1 L 2 ) and d* : r (A*Li) — • T(A*+ 1Li) to denote 
their induced de-Rham differentials as usual. 

Equation (v) in Definition 2.1 implies immediately that the bracket 
between X G T(Li) and £ G r(L2) is given by 

(19) [X, £] = (-LCX + ±d,<£, X)) + (L X ̂  - ±d<£, X)). 

Thus we have 

Propos i t ion 5.1 . Under the decomposition E = L\ © L2, for sec-
tions e i G T(E), i = 1,2 if we write e i = X i + ^ , then the bracket [e\, e2] 
is given by Equation (7). 

Before proving Theorem 2.6, we need the following lemma. 

L e m m a 5.2. Under the assumption of Theorem 2.6 we have 

L d.ft = -[df,Ç\, 

L df X = -[d*f,X], 

for any f G C°°(P), X G T(Li) and £ G T(L 2 ) . 

Proof. Clearly, Equation (iv) in Definition 2.1 yields that a0d* = 
— a*od. Therefore, 

[a*£, aX] = [p£, pX] 

(20) = p ( L c X - d < e , X > - L Xe + d < e , X » 

= a(LiX - ±d,<£, X)) + a*(-L XÇ + d<Ç, X) ) 

= a(L(X)-a4L XO + (a,d)(tX). 



564 z h a n g - j u l i u , a l a n w e i n s t e i n & p i n g x u 

On the other hand, 

((amd)hÇ,Xi)f = (a(df))hC,Xi 

= hL d.fÇiXi + hÇi[dmfiX]i 

= h[Çidf]iXi-hÇiL X dmfi + hL d.fÇ+[dfiÇ]iXi 

(21) = a^)a{X)f-hdf,LiXi-a{X)a^)f 

+hL XZ,d*fi + hL dmfZ + [df,Ç[,Xi 

= [a40a(X)]f-a(L(X)f+a4L X0f 

+hL dtf$+[df,$],Xi. 

Comparing Equation (20) with ( 22), we obtain 

hL d.fÇ + [df,Ç],Xi = 0. 

Therefore, L d„f£ = —[df, £]. The other equation can be proved similarly. 
q.e.d. 

Proof of Theorem 2.6. It follows from Theorem 3.1 that J\ + J2 + 
c.p. = 0, for any ei,e2 and e ̂  G Y(E). Using Lemma 5.2, we have 
J \ + c.p. = 0. In particular, if we take e\ = X\, e ̂  = X2 and e% = £3, 
we obtain that i3(d*[Xi, X2] — L Xxd*X2 + L X d*X\) = 0, which implies 
the compatibility condition between A and A*. q.e.d. 

6. Hamiltonian operators 

Throughout this section, we will assume that (A, A*) is a Lie bial-
gebroid. Suppose that H : A* —> A is a bundle map. We denote by 
A H the graph of H, considered as a subbundle of E = A © A*. I.e., 
A H = {H$ + $\$eA*}. 

Theorem 6.1. A H is a Dirac subbundle iff H is skew-symmetric 
and satisfies the following Maurer-Cartan type equation: 

(22) d*H + ^[H,H] = 0 

where H is considered as a section of /\2A. 

In the sequel, we shall use the same symbol to denote a section of 
A2A and its induced bundle map if no confusion is caused. 

Proof. It is easy to see that A H is isotropic iff H is skew-symmetric. 
For any £, r] G r(A*), let 

(23) [Z,rj\H = L Hirì-L HriZ + dhtZ,Hrìi. 
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From 

[HÇ, rj\ = L H(i] - LVHÇ - - (d - d*)(ri, HÇ) and 

[Ç, Hrj\ = L ̂  Hr, - L Hv^ + \{d- d*){£, Hr,), 

it follows that 

[HÇ, v] + [£, Hr,} = [Ç, rj\H + L ̂  Hr, - LVH^ + d*(r,, HÇ). 

On the other hand, we have the following formula (see [13]): 

(24) [HÇ, Hr,] = H[Ç, rj\H - \[H, H](Ç, r,). 

Therefore, 

[HÇ + Ç,Hri+ri] = [HÇ, Hr,] + [Ç, Hr,] + [HÇ, r,] + [Ç, r,] 

= (LtHri-LnHÇ + d^HQ 

+H[Ç,V]H-^[H,H](Ç,V)) 

+ ([Ç,V] + [Ç,V]H), 

so that A H is integrable iff for any £, r, G r(A*) 

(25) H[Ç, r,] = L ̂  Hr, - LVH^ + d*(r,, HÇ) - ±[H, H](Ç, r,). 

On the other hand, 

(d H(£,»7,C) = a^^HQ-a^&HQ + a^Q&Hrj) 

-(ltv],HQ + ([tQ,Hv)-([VlQiHO 

= (H[Ç,ri] + LVHÇ- LtHri + dm(Ç,Hri),0. 

Hence, 

(26) (d*H)(£, »7) = H [£, »7] + LnH$ - L(HV - d*(r,, HQ. 

This implies that Equation (25) is equivalent to 

(d„H)(Ç,ri) + ±[H,H](Ç,ri) = 0, 
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or (22). 

R e m a r k (1) Because of the symmetric role of A and A*, we have 
the following assertion: the graph Ai = {X + I X | X G r ( A ) } of a bundle 
map I : A —> A* defines a Dirac subbundle iff I is skew-symmetric and 
satisfies the following Maurer-Cartan type equation: 

(27) d I+±[ I , I ] = 0. 

(2) For the canonical Lie bialgebroid (TM, T*M) where M is equipped 
with the zero Poisson structure, Equation (22) becomes [H, H] 
= 0, which is the defining equation for a Poisson structure. On the 
other hand, if we exchange TM and T*M, and consider the Lie bialge-
broid (T*M,TM), the bracket term drops out of Equation (22), whose 
solutions correspond to a presymplectic structures. Encompassing these 
two cases into a general framework was indeed the main motivation for 
Courant [4] to define and study Dirac structures. 

(3) The Maurer-Cartan equation is a kind of integrability equation. 
It is also basic in deformation theory, where it may live on a variety 
of differential graded Lie algebras. It would be interesting to place the 
occurrence of this equation in our theory in a more general context. 

Definit ion 6.2. Given a Lie bialgebroid (A, A*), a section H G 
T(A2A) is called a hamiltonian operator if A H defines a Dirac structure. 
H is called a strong hamiltonian operator if A\H are Dirac subbundles 
for all A G R . 

Corollary 6.3. For a Lie bialgebroid (A, A*), H G T(A2A) is a 
hamiltonian operator if Equation (22) holds. It is a strong hamiltonian 
operator if d*H = [H, H] = 0. 

For a hamiltonian operator H, A H is a Dirac subbundle which is 
transversal to A in A © A*. Therefore, (A, A H) is a Lie bialgebroid 
according to Theorem 2.6. In fact, A H is isomorphic to A*, as a vector 
bundle, with the anchor and bracket of its Lie algebroid structure given 
respectively by a* = a* + a0H and [£, rj\ = [£, rj\ + [£, T]]H, for all £, r] G 
r (A*) . In particular, if H is a strong hamiltonian operator, one obtains 
a one-parameter family of Lie bialgebroids transversal to A, which can 
be considered as a deformation of the Lie bialgebroid (A, A*). 

Conversely, any Dirac subbundle transversal to A corresponds to 
a hamiltonian operator in an obvious way. For example, consider the 
standard Lie bialgebra (k, b) arising from the Iwasawa decomposition of 
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k [19], where k is a compact semi-simple Lie algebra and b its corre-
sponding dual Lie algebra. Then any real form of k which is transversal 
to b will correspond to a hamiltonian operator (see [16] for a complete 
list of such real forms for simple Lie algebras). It is straightforward 
to check that such a hamiltonian operator is not strong. On the other 
hand, for the Cartan subalgebra h of k, every element in /\2h gives rise 
to a strong hamiltonian operator H : k* —> k. 

This gives rise to a deformation of the standard Lie bialgebra (k, b) 
(see [15]). 

These examples can be generalized to any gauge algebroid associated 
to a principal K-bundle. 

Below, we will look at hamiltonian operators in two special cases, 
each of which corresponds to some familiar objects. 

E x a m p l e 6.4. Let P be a Poisson manifold with Poisson tensor 
IT. Let (TP,T*P) be the canonical Lie bialgebroid associated to the 
Poisson manifold P and E = TP © T*P equipped with the induced 
Courant algebroid structure. It is easy to see that a bivector field H 
is a hamiltonian operator iff H + ir is a Poisson tensor, H is a strong 
hamiltonian operator iff H is a Poisson tensor Schouten-commuting with 
IT. 

E x a m p l e 6.5. Similarly, we may switch TP and T*P, and consider 
the Lie bialgebroid (T*P, TP) associated to a Poisson manifold P with 
Poisson structure IT. Let E = T*P © TP be equipped with its Courant 
algebroid structure. In this case, a hamiltonian operator corresponds 
to a two-form to G Q2(P) satisfying du + ^[u^u;]^ = 0. Here, [•, •]„• 
refers to the Schouten bracket of differential forms on P induced by 
the Poisson structure IT. Given a hamiltonian operator u, its graph A ^ 
defines a Dirac subbundle transversal to T*P, the first component of E 
also being considered as a Dirac subbundle. Therefore, they form a Lie 
bialgebroid. Their induced Poisson structure on the base space can be 
easily checked to be given by — 2(7r# + Nir^), where N : TP —> TP 
is the composition 7r*oub, and to : TP —> T*P is the bundle map 
induced by the two-form u. If LO is a strong hamiltonian operator, then 
Nn^ defines a Poisson structure compatible with n. In fact, in this 
case, (IT, N) is a Poisson-Nijenhuis structure in the sense of [13]. 

We note that Vaisman [31] has studied 2-forms on Poisson manifolds 
satisfying the condition [a^a;]^ = 0. Such forms, called complementary 
to the Poisson structure, also give rise to new Lie algebroid structures 
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on TM. 
To end this section, we describe a example of Lie bialgebroids, where 

both the algebroid and its dual arise from hamiltonian operators. 

Propos i t ion 6.6. Let U and V be Poisson tensors over a manifold 
M and denote by T*M U and T*M V their associated canonical cotan-
gent Lie algebroids on T*M. Assume that U — V is nondegenerate. 
Then (T*M U ,T*M V) is a Lie bialgebroid, where their pairing is given 
by (£,77) = (U - V)(£,ri) for any £ G T*M U and r, G T*M V. Fur-
thermore their induced Poisson tensor on the base space M is given by 
-2U(U -V)-XV. 

Proof. Let E = TM © T*M be equipped with the usual Courant 
bracket. Since both U and V are Poisson tensors, their graphs A U 
and A V are Dirac subbundles, and they are transversal since U — V is 
nondegenerate. Therefore, (A U, A V) is a Lie bialgebroid, where their 
pairing is given by 

(28) ((Uv + ViVç + Q = ^i(U-V)ri). 

On the other hand, as Lie algebroids, A U and A V are clearly isomorphic 
to cotangent Lie algebroids T*M U and T*M V respectively. Moreover, 
their anchors a U : A U —> TM and a V : A V —> TM are given respec-
tively by a U(UÇ + Ç) = UÇ and a V{V^ + Ç) = VÇ. 

This proves the first part of the proposition. To calculate their 
induced Poisson structure on the base M, we need to find out the dual 
map a V : T*M —> A V ^ A U. For any £ G T*M, we assume that 
a V (£) = Ur] + r] G A U via the identification above. For any ( G T*M, 

(a V,VC + C) = (t,a V(VÇ + 0) 

On the other hand, (a VÇ,V( + () = ((Ui] + i],V( + ()) = ±((, (U-V)i]). 
It thus follows that r] = —2(U — V)~lV^. Therefore, according to 
Proposition 3.6 in [22], the induced Poisson structure a U°a V : T*M —> 
TM is given by (a U<>a V)f = -2U(U - V^VÇ. q.e.d. 

Replacing V by — V in the proposition above, we obtain the following 
"composition law" for Poisson structures. 

Corollary 6.7. Let U and V be Poisson tensors over manifold M 
such that U + V is nondegenerate. Then, U(U + V)~lV also defines a 
Poisson tensor on M. 
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Note that , if U and V are nondegenerate, then U(U + V)~lV = 
(U~l + V~l)~l is the Poisson tensor corresponding to the sum of the 
symplectic forms for U and V. Since the sum of closed forms is closed, 
it is obvious in this case that U(U -\- V)~lV is a Poisson tensor. We do 
not know such a simple proof of Corollary 6.7 in the general case. 

7. Nul l Dirac s tructures and Po i s son reduct ion 

In this section, we consider another class of Dirac structures related 
to Poisson reduction and dual pairs of Poisson manifolds. 

Propos i t ion 7.1. Let (A, A*) be a Lie bialgebroid, and h C A a 
subbundle of A. Then L = h © h1 C E = A © A* is a Dirac structure 
iff h and h1 are, respectively, Lie subalgebroids of A and A*. 

Proof. Obviously, L = h © h1 is a maximal isotropic subbundle of 
E. If L is a Dirac structure, clearly h and h1 are Lie subalgebroids 
of A and A* respectively. Conversely, suppose that both h and h1 are 
Lie subalgebroids of A and A* respectively. To prove that L is a Dirac 
structure, it suffices to show that [X, £] is a section of L for any X G T(h) 
and C e T(hr). Now 

[X,Ç] = L XÇ-LtX. 

For any section Y G T(h), 

<L X^ Y > = a ( X ) < ç , Y > - < ç , [ X , Y ] > = o . 

Therefore, L XÇ is still a section of h1. Similarly, L ̂  X is a section of h. 
This concludes the proof of the proposition. q.e.d. 

It is clear that a subbundle L C E is of the form L = h © h1 iff the 
minus two-form (•,•)- on E, as defined by Equation (6), vanishes on 
L. For this reason, we call a Dirac structure of this form a null Dirac 

structure. 

An immediate consequence of Proposition 7.1 is the following: 

Corollary 7.2. Let (P, IT) be a Poisson manifold, and D a sub-
bundle of TP. Let T*P be equipped with the cotangent Lie algebroid 
structure so that (TP, T*P) is a Lie bialgebroid. Then L = D © D1- is 
a Dirac structure in E = TP © T*P iff D is an integrable distribution 
and the Poisson structure on P descends to a Poisson structure on the 
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quotient space P/D 4 such that the natural projection is a Poisson map. 

Proof. This follows directly from the following lemma. 

L e m m a 7.3. Let D be an integrable distribution on a Poisson man-
ifold P. Then P/D has an induced Poisson structure (in the above 
general sense) iff D1- C T*P is a subalgebroid5. 

Proof. For simplicity, let us assume that P/D is a manifold. The 
general case will follow from the same principle. It is clear that a func-
tion f is constant along leaves of D iff df is a section of D1. If D1- is a 
subalgebroid, then the equation 

(29) d{f, g} = [df, dg] 

implies that C°°(P/D) is a Poisson algebra. 
Conversely, a local one-form fdg is in D1- iff g is constant along D. 

The conclusion thus follows from Equation (29) together with the Lie 
algebroid axiom relating the bracket and anchor. 

Remark . Poisson reduction was considered by Marsden and Ratiu 
in [24]. Lemma 7.3 can be considered as a special case of their theorem 
when P = M in the Poisson triple (P, M, E) (see [24]). It would 
be interesting to interpret their general reduction theorem in terms of 
Dirac structures as in Corollary 7.2. 

The rest of the section is devoted to several examples of Corollary 
7.2, which will lead to some familiar results in Poisson geometry. 

Recall that , given a Poisson Lie group G and a Poisson manifold M, 

an action 
a :Gx M —> M 

is called a Poisson action if a is a Poisson map. In this case, M is called 
a Poisson G-space. 

Now consider P = G X M with the product Poisson structure and 
diagonal G-action. Then P/G is isomorphic to M, and the projection 
from P to P/G = M becomes the action map <7, which is a Poisson 
map when P/G is equipped with the given Poisson structure on M. 
By Corollary 7.2, we obtain a null Dirac structure L = D © D1- in 
TP®T*P. 

When the quotient space is not a manifold, this means that at each point there is 
a local neighborhood U such that the Poisson structure on U descends to its quotient. 

Such a foliation is also called a cofoliation by Vaisman [30] 
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Clearly, L is a Lie algebroid over P, which is G-invariant. It would 
be interesting to explore the relation between this algebroid and the one 
defined on (M X g) © T*M, which was studied by Lu in [18]. 

For a Poisson Lie group G with tangential Lie bialgebra (g,g*), the 
Courant algebroid double E = TG © T*G can be identified, as a vector 
bundle, with the trivial product G X (g©g*) via left translation. Under 
such an identification, a left invariant null Dirac structure has the form 
L = Gx (h^h1), where h is a subalgebra of g and h1 is a subalgebra of 
g*. Thus, one obtains the following reduction theorem: for a connected 
closed subgroup H with Lie algebra h, G/H has an induced Poisson 
structure iff h1 is a subalgebra of g*. 

More generally, let G be a Poisson group, M a Poisson G-space. 
Suppose that H C G is a closed subgroup with Lie algebra h. Assume 
that M/H is a nice manifold such that the projection p : M —> M/H 
is a submersion. Then the H-orbits define an integrable distribution h 
on M. According to Corollary 7.2, the Poisson structure on M descends 
to M/H iff h-1" is a subalgebroid of the cotangent algebroid T*M of the 
Poisson manifold M. On the other hand, we have 

Propos i t ion 7.4. If h1 is a subalgebra of g*, then h1- is a subalge-
broid of T*M. Conversely, if the isotropic subalgebra at each point is a 
subalgebra of h, and in particular if the action is locally free, then that 
h1- is a subalgebroid implies that h1 C g* is a subalgebra. 

Proof. It is easy to see that h-1 = (/o
_1(h_L), where <p : T*M —> g* 

is the momentum mapping for the lifted G-action on T*M, equipped 
with the canonical cotangent symplectic structure. According to Propo-
sition 6.1 in [34], ip : T*M —> g* is a Lie algebroid morphism. Before 
continuing, we need 

L e m m a 7.5. Let A —> M be a Lie algebroid with anchor a, g a Lie 
algebra, and ip : A —> g an algebroid morphism. Suppose that h C g 
is a subalgebra such that tp~lh C A is a subbundle. Then tp~lh is a 
subalgebroid. 

Conversely, given a subalgebroid B C A, if (p(Bj m) is independent 
of m £ M, then it is a subalgebra of g. 

Proof. This follows directly from the following equation (see [21]): 

<p[X,Y] = (aX)(<pY) - (aY)(<pX) + [<pX, <pY]-, VX, Y G r ( A ) , 

where (pX, <~pY and (p[X, Y] are considered as g-valued functions on P, 

and [•, •]' refers to the pointwise bracket. q.e.d. 
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Now, the first part of Proposition 7.4 is obvious according to the 
lemma above. For the second part, we only need to note that ^(h1) = 
h1 Pi Imp, and the assumption that the isotropic subalgebra at each 
point is a subalgebra of h is equivalent to that h1 C Imp. This con-
cludes the proof of the Proposition. q.e.d. 

From the above discussion, we have the following conclusion: if h1 is 
a subalgebra of g*, then the Poisson structure on M descends to M/H. 
This is a well-known reduction theorem of Semenov-Tian-Shansky [29] 
(see also [33]). 

Conversely, if the isotropic subalgebra at each point is a subalgebra 
of h, and in particular if the action is locally free, the converse also 
holds. 

Another interesting example arises when P is a symplectic manifold 
with an invertible Poisson tensor n. In this case, 7r# : T*P —> TP 
is a Lie algebroid isomorphism. Given a null Dirac structure L = D © 
D1-, D = 7T*:(D"L) is a subalgebroid of TP. It is simple to see that 
(D)1- = (7T* :)_1(D), and is therefore a subalgebroid of T*P. Thus, 

L = D © {D)1- defines another null Dirac structure. It is easily seen 
that D and D are symplectically orthogonal to each another. Thus P/D 
is a Poisson manifold (assume that it is a nice manifold) so that P/D 
and P/D constitute a full dual pair, which is a well-known result of 
Weinstein [32]. Conversely, it is clear that a full dual pair corresponds 
to a null Dirac structure. 
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