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Abstract

We propose a systematic modeling of the nonholonomic mobile ma-

nipulators built from a robotic arm mounted on a wheeled mobile

platform. We use the models derived to generalize the standard def-

inition of manipulability to the case of mobile manipulators. The

effects of mounting a robotic arm on a nonholonomic platform are

shown through the analysis of the manipulability thus defined. Sev-

eral applications are evoked, particularly applications to control.

The optimization of criteria inherited from manipulability consider-

ations are given to generate the controls of our system when its end

effector motion is imposed.

KEY WORDS—mobile manipulation, manipulability, non-

holonomy, motion planning

1. Introduction

Nowadays, mobile manipulator is a widespread term which

refers to robots built from a robotic arm mounted on a mo-

bile platform. Such systems allow the most usual missions of

robotic systems which require both locomotion and manipula-

tion abilities (Arai 1996; Khatib 1997). Actually, such systems

combine the advantages of mobile platforms and robotic arms

and reduce their drawbacks. For instance, the mobile platform

extends the workspace, while the arm offers many operational

functionalities (simply opening a door for the robot). So, they

seem particularly suited for field and service robotics. Al-

though quite old in the robotics history (Pavlov and Timofeyev
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1976), this concept has mainly been studied for less than 15

years (Dubowsky and Tanner 1988; Liu and Lewis 1990; Pin

and Culioli 1990).

The publications devoted to these systems are numerous—

see, for example, Bayle, Fourquet, and Renaud (2001a) for a

survey—and cover a wide range of research areas. The clas-

sification of the various contributions is made difficult by the

poor description of the original problems related to mobile

manipulation. Among these contributions, we can classify

some major concerns:

• control (Cameron, MacKenzie, and Ward 1993; Chong

et al. 1997; Chung, Velinsky, and Hess 1998; Dong,

Xu, and Wang 2000; Hootsmans and Dubowsky 1991;

Huang, Sugano, and Tanie 2000; Liu and Lewis 1990;

Pissard-Gibolet 1993), optimal control (Desai et al.

1996; Lee, Kim, and Cho 1996), elastic band (Brock

and Khatib 1997; Quinlan 1994);

• path optimization problems (Carriker, Khosla, and

Krogh 1991; Chen and Zalzala 1997; Pin, Culioli, and

Reister 1994; Pin et al. 1997; Zhao, Ansari, and Hou

1994);

• operational motion planning problem (Seraji 1993,

1998), generalized motion planning problem (Foulon,

Fourquet, and Renaud 1998), operational path planning

problem (Foulon, Fourquet, and Renaud 1998, 1999)

or generalized path planning problem (Bayle, Four-

quet, and Renaud 2000a; Foulon, Fourquet, and Renaud

1999; Fourquet and Renaud 1996);

• dynamic modeling (Dubowsky and Tanner 1988;

Fukuda et al. 1992; Inoue, Miyamoto, and Okawa 1996;
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Yamamoto and Yun 1996, 1997), stability, effects of

mechanical disturbances (Huang, Sugano, and Tanie

1998, 2000; Rey and Papadopoulos 1997);

• multi-robot cooperation (Desai and Kumar 1996;

Hashimoto, Oba, and Zenitani 1995; Khatib et al. 1996;

Sugar and Kumar 1999), etc.

In spite of the great number of studies, quite few efforts

have been made on the systematic modeling of the mobile ma-

nipulators. Among the works on the modeling of a particular

mobile manipulator, we can cite Yamamoto and Yun (1994,

1997) and Tchoń and Muszyński (2000). There is a simple

explanation for this. Indeed, if the systematic modeling of

robotic arms is well known, this is not necessarily the case for

mobile platforms.

In the case of wheeled mobile platforms, which include a

large part of the land mobile manipulators, except mainly hu-

manoids and all-terrain systems, the rolling without slipping

(r.w.s.) of the wheels on the ground introduces specific dif-

ficulties in the modeling. The platform, which cannot move

instantly in any arbitrary direction, is then said to be non-

holonomic. If we restrict our study to that large category of

wheeled mobile platforms, we must evoke the excellent con-

tribution of Campion, Bastin, and D’Andréa-Novel (1996),

which offers good tools for the generic modeling of robotic

systems built from wheeled mobile platforms. We propose

this modeling in this paper after we introduce the kinematic

modeling of the subsystems: platform and robotic arm. This

is the purpose of Section 2. This reveals, in particular, the

existence of the control of mobility of the mobile manipu-

lator, which represents the control producing instantaneous

velocities of the end effector (EE) of the mobile manipulator.

Also we obtain the instantaneous kinematic location model

(IKLM) of the mobile manipulator, which sets the derivative

of the EE location as a function of the control of mobility.

The previous modeling is then used in Section 3 to extend

the theory of manipulability of Yoshikawa (1985), proposed

for the robotic arms, to the case of wheeled mobile manipula-

tors. This proves a very appropriate tool to characterize their

instantaneous kinematics.

Section 4 points out some possible applications of this

instantaneous kinematic analysis, particularly from a con-

trol point of view. Notably we address the operational mo-

tion planning problem (Bayle, Fourquet, and Renaud 2000b).

Since our system is redundant, the inversion of the IKLM of

the mobile manipulator allows us to solve this problem and, in

the meantime, to take into account an additional criteria based

on a measure of the mobile manipulator manipulability.

This study aims at understanding the use of manipulability,

usually defined for robotic arms, in the case of nonholonomic

mobile manipulators.

2. Modeling

In this section, we illustrate the generic modeling of the mobile

manipulator using the example of a planar mobile manipula-

tor, represented in Figure 1. We first model independently its

platform in Section 2.1 and its robotic arm in Section 2.2. The

modeling of the mobile manipulator will be finally established

in Section 2.3.

As we will see later, the ellipsoids of manipulability are

six-dimensional in the most general case. For obvious rea-

sons of visualization and thus of pedagogy, we only provide

examples of planar systems in this paper; in this case, the el-

lipsoids of manipulability are simple ellipses. Nevertheless,

the techniques of modeling and manipulability analysis de-

tailed here are absolutely general and thus apply to systems

with more complex structures. For instance, they were suc-

cessfully applied to the mobile manipulator of the LAAS. This

mobile manipulator is built from a two independently driven

wheel mobile platform and a six revolute joint robotic arm

(Bayle, Fourquet, and Renaud 2002).

2.1. Wheeled Mobile Platform Case

Wheeled mobile platforms are properly described and mod-

eled by Campion, Bastin, and D’Andréa-Novel (1996). In this

section, we introduce only the elements which are necessary

in our study. Only minor changes have been done purposely

to be consistent with the modeling of mobile manipulators.

2.1.1. Description

We assume that the mobile platform moves on a planar hori-

zontal surface. Let R = (O, �x, �y, �z) be any fixed frame with

�z vertical and R
′ = (O ′, �x ′, �y ′, �z′) a mobile frame linked to

the platform. The origin of R
′ is usually chosen as a remark-

able point of the platform (e.g., the midpoint of the rear axle).

The location1 (Fourquet and Renaud 1999) of the platform

is given by a vector ξξξp of mp = 3 coordinates which define

the position and the orientation of the platform in R. They are

called the operational coordinates of the platform. We write

ξξξp = [x y ϑ]T, where x and y are, respectively, the abscissa

and the ordinate of O ′ in R and ϑ is the angle (�x, �x ′). The

set of all the locations constitutes the operational space of the

platform, denoted by Mp.

The mobile platform wheels can be classified into four

categories:

• the fixed wheels for which the axle has a fixed direction;

• the steering wheels, for which the orientation axis

passes through the center of the wheel;

1. It is called as posture in Campion, Bastin, and D’Andréa-Novel (1996) but

the choice of location allows us to use the same name for the robotic arms,

the platforms and later for the mobile manipulators.
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Fig. 1. Planar mobile manipulator with a car-like platform.

• the castor wheels, for which the orientation axis does

not pass through the center of the wheel;

• the Swedish wheels, which are similar to the fixed

wheels, with the exception of an additional parameter

that describes the direction, with respect to the wheel

plane, of the zero component of the velocity at the con-

tact point.

It is assumed that the wheels always keep their shape, which

is sensible in indoor robotics. We will consider that they all

have the same radius, denoted by r .

Let N = Nf + Ns + Nc + Nsw be the total number of

wheels.Nf ,Ns ,Nc, andNsw represent, respectively, the num-

ber of fixed, steering, castor and Swedish wheels. From now

on, these indices correspond to the different types of wheels.

Let ϕϕϕf , ϕϕϕs , ϕϕϕc, and ϕϕϕsw be the vectors giving the rotation an-

gles of the wheels about their horizontal axle; they all are

variables. Let βββf , βββ s , βββc, and βββ sw be the vectors giving the

orientation of the wheels; βββf and βββ sw are constants whereas

βββ s and βββc are variables. The N -dimensional rotation vector

is ϕϕϕ = [ϕϕϕT
f
ϕϕϕT
s
ϕϕϕT
c
ϕϕϕT
sw

]T. Then, the platform configuration is

given by the np-dimensional vector, qqqp = [ϕϕϕT ξξξ
T

p
βββT
s
βββT
c
]T,

with np = N +mp +Ns +Nc � 3.

2.1.2. Models

We assume that the conditions of r.w.s. of the wheels on the

ground are always satisfied. Campion, Bastin, and D’Andréa-

Novel (1996) show that there exists a systematic writing of

the r.w.s. constraints.

By writing the r.w.s. constraints, we find out that there

exist a vector, denoted by ηηηp, that we call control of mobility

of the platform, and a matrix�(βββs), which allow us to set the

derivative of ξξξp

ξ̇ξξp = R(ϑ)�(βββs)ηηηp, (1)

where

R(ϑ) =





Cϑ −Sϑ 0

Sϑ Cϑ 0

0 0 1



 ,

with Cϑ = cosϑ and Sϑ = sin ϑ , is the rotation matrix ex-

pressing the orientation of R
′ with respect to R. The model

(1) relates the derivative of the platform location, in a given

configuration, to its control of mobility. So it is called the

IKLM of the mobile platform. The dimension δmp of ηηηp is

called the degree of mobility of the platform.

Additionally there exists an Ns-dimensional vector, de-

noted byζζζ p, that we call control of steerability of the platform,

which represents the kinematic control of the steering wheels

orientation:

β̇ββ s = ζζζ p. (2)

The dimension δsp = Ns of ζζζ p is called the degree of steer-

ability of the platform.
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The control (of maneuvrability) of the mobile platform is

then uuup = [ηηηT
p
ζζζ T
p
]T. Its dimension, δMp

= δmp + δsp , is called

the degree of maneuvrability of the platform.

If we define zzzp = [ξξξ T

p
βββT
s
]T, then

żzzp = Bp(ϑ, βββs)uuup,

with

Bp(ϑ, βββs) =

[

R(ϑ)�(βββs) 0

0 INs

]

.

where INs is the Ns order identity matrix.

The r.w.s. constraints also allow us to set the derivative

of qqqp

q̇qqp = Sp(ϑ, βββs, βββc)uuup, (3)

which relates the derivative of the platform configuration,

in a given configuration, to its control (of maneuvrability).

The corresponding model is called the instantaneous kine-

matic configuration model (IKCM) of the platform (Campion,

Bastin, and D’Andréa-Novel 1996).

From now on, we assume that the mobile platform al-

ways has a number of actuators equal to its degree of

maneuvrability.

2.1.3. Example

We consider the case of the car-like platform shown in Fig-

ure 2. The car is reduced to an equivalent vehicle (car-like

platform) with only one steering wheel in the front, on the

longitudinal axis of the vehicle,2 and two fixed wheels on the

same axle, in the back. The wheels are numbered in Figure 2.

We denote by β3 = βs1 the orientation of the steering wheel,

by ϕ1 = ϕf1
, ϕ2 = ϕf2

, and ϕ3 = ϕs1 the rotation angles of the

right fixed wheel, of the left fixed wheel and of the steering

wheel, respectively (we hide indices .f and .s for simplicity).

So we obtain ϕϕϕ = [ϕ1 ϕ2 ϕ3]
T and qqqp = [ϕ1 ϕ2 ϕ3 x y ϑ β3]

T.

If we write the r.w.s. constraints, we obtain (Bayle 2001)

RT(ϑ)ξ̇ξξ p =





−DSβ3

0

Cβ3



 ηp,

with Cβ3
= cosβ3 and Sβ3

= sin β3. The control of mobility

ηp is a scalar and then δmp = 1. The platform IKLM is thus

ξ̇ξξp =





−DCϑSβ3

−DSϑSβ3

Cβ3



 ηp. (4)

As β̇3 = ζp (then δmp = 1), in this case, uuup = [ηp ζp]
T and

then δMp
= 2.

2. This model is convenient to describe the system equipped with two front

wheels sharing the same instantaneous center of rotation.

The platform IKCM computation is detailed in Bayle

(2001) (see Figure 2):

q̇qqp =





ϕ̇ϕϕ

ξ̇ξξp
β̇3



 = Sp(ϑ, β3)uuup, (5)

with

Sp(ϑ, β3) =























1

r
(DSβ3

− LCβ3
) 0

− 1

r
(DSβ3

+ LCβ3
) 0

−D

r
0

−DCϑSβ3
0

−DSϑSβ3
0

Cβ3
0

0 1























.

2.2. Robotic Arm Case

2.2.1. Description

We consider a robotic arm built from na mobile bodies (sup-

posed perfectly rigid) articulated by na revolute and/or pris-

matic joints. The most usual way to model a robotic arm con-

sists of using the Denavit–Hartenberg modified parameters

(Craig 1989; Khalil and Kleinfinger 1986). We associate the

frame Ri = (Oi, �xi, �yi, �zi), with i = 0, 1, . . . , na , to the

ith body of the robotic arm. So, the frame R0 is linked to

the base. The center of the EE (tool or grip) is denoted by

Ona+1. So, both points Ona and Ona+1 are linked to the EE.

The Denavit–Hartenberg modified parameters define the lo-

cation (position and orientation) of all the bodies of the robotic

arm, i.e., its whole geometry.

The robotic arm configuration is known when the posi-

tion of all its points in R0 are known (Neimark and Fufaev

1972). It is defined by a vector qqqa of na independent coor-

dinates. These coordinates, called generalized coordinates of

the robotic arm, characterize the values of the different joints:

rotation angles for the revolute ones, translations for the pris-

matic joints. The configuration qqqa = [qa1
qa2

. . . qana ]
T is an

element of the configuration space of the robotic arm, denoted

by Na .

The location of the robotic arm EE is given by an ma-

dimensional vector, denoted by ξξξ a = [ξa1
ξa2

. . . ξama ]
T. Its

ma coordinates are the operational coordinates of the robotic

arm. They define the position and the orientation of the

EE in R0. The set of the locations constitutes the opera-

tional space of the robotic arm, denoted by Ma . We define:

(i) the position of the EE in R0 by the Cartesian coordi-

nates of Ona+1, which is the most usual choice, [ξa1
ξa2
ξa3

]T;

(ii) the orientation of the EE with the Euler classical angles

(Paul 1981), [ξa4
ξa5
ξa6

]T = [ψ θ ϕ]T. This choice is particu-

larly relevant in this study (see Section 2.3).

REMARK. The location of the robotic arm EE can be defined

in different ways according to the task to achieve. So, for a

 © 2003 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Bernard Bayle on November 22, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Bayle, Fourquet, and Renaud / Manipulability of Wheeled Mobile Manipulators 569

D

β3

w
he

el
 n.

 1

w
he

el
 n.

 2

w
he

el
n.

 3

y

O
�x

O′

ϑ

y

�x′

�y′

x

L

�

Fig. 2. The car-like mobile platform.

planar problem, we will consider only the EE position and

orientation in the plane. Also, we can consider only the planar

position of the EE, as in the coming example.

2.2.2. Models

The kinematic model (KM) of a robotic arm sets the location

of its EE as a function of its configuration (or its operational

coordinates as functions of its generalized coordinates):

fff a : Na −→ Ma

qqqa �−→ ξξξ a = fff a(qqqa).

The instantaneous kinematic model (IKM) of a robotic arm

sets the derivative of its location as a function of the derivative

of its configuration (or its operational velocities as functions

of its generalized velocities):

Ja(qqqa) : TqqqaNa −→ TξξξaMa

q̇qqa �−→ ξ̇ξξ a = Ja(qqqa)q̇qqa.

It uses the Jacobian matrix Ja(qqqa) of the functionfff a: Ja(qqqa) =
∂fff a

∂qqqa
. The configurations such that the rank of Ja(qqqa) decreases

are singular kinematic configurations and the problem, robotic

arm and task, is redundant when na > ma .

We define the vector of the kinematic control of the robotic

arm by

uuua = q̇qqa. (6)

We do not evoke the other models of the robotic arms. For

further precision, we will refer to general robotics books, for

example Craig (1989) or Sciavicco and Siciliano (2000).

2.2.3. Example

These concepts are easy to illustrate on the robotic arm of the

mobile manipulator shown in Figure 3 (see Figure 1). This

robotic arm is built from two bodies (the lengths of which

are, respectively, a1 and a2), articulated by two revolute joints

with vertical parallel axes. O0 is linked to the base of this

robotic arm and O3 to the center of the EE. The robotic arm

configuration is given by the rotation angles qa1
and qa2

and so

qqqa = [qa1
qa2

]T. It is not possible to take into account both the

position and orientation of the EE, sincema = 3 > na . Conse-

quently, we define the EE location only by the planar position

ofO3 in R0: ξξξ a = [ξa1
ξa2

]T. Therefore, the operational space

Ma is two-dimensional.

The robotic arm KM is

ξa1
= a1C1 + a2C12,

ξa2
= a1S1 + a2S12,

(7)

where Ci = cos qai, Si = sin qai, Cij = cos(qai + qaj )

and Sij = sin(qai + qaj ), ∀i, j = 1, 2. Thus, the IKM is

ξ̇ξξ a = Ja(qqqa)q̇qqa , with

Ja(qqqa) =

[

−(a1S1 + a2S12) −a2S12

a1C1 + a2C12 a2C12

]

.
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Fig. 3. A planar robotic arm with two revolute joints.

2.3. Mobile Manipulator Case

2.3.1. Description

We consider the general case of a mobile manipulator built

from a mobile platform equipped with an on-board robotic

arm, introduced respectively in Sections 2.1 and 2.2. The co-

ordinates of O0 in R
′ are given by [a b 0]T (see Figure 4).

The mobile manipulator configuration is known when the

position of all its points in R are known (Neimark and Fufaev

1972). It is defined by a vectorqqq ofn independent coordinates,

called generalized coordinates of the mobile manipulator. We

can choose qqq = [q1 q2 . . . qn]
T = [qqqT

a
qqqT
p
]T. We notice that

n = na + np, where na and np are, respectively, the dimen-

sions of the generalized spaces associated with the robotic

arm and the platform. The configuration qqq is an element of

the configuration space of the mobile manipulator, denoted

by N.

The location of the mobile manipulator EE is given by the

m-dimensional vector ξξξ = [ξ1 ξ2 . . . ξm]T. Its m coordinates

are operational coordinates of the mobile manipulator. They

define the position and the orientation of the EE in R. The

set of all the locations constitutes the operational space of

the mobile manipulator, denoted by M. We define: (i) the

position of the EE in R by the Cartesian coordinates ofOna+1,

[ξ1 ξ2 ξ3]
T; (ii) the orientation of the EE with the Euler classical

angles (Paul 1981), [ξ4 ξ5 ξ6]
T = [β θ ϕ]T. Note that ξ5 = ξa5

and ξ6 = ξa6
. This property justifies the choice of the Euler

classical angles.

REMARKS. The remark in Section 2.2.1 is still relevant; the

location of the mobile manipulator EE can be defined in dif-

ferent ways according to the task to achieve, as in the example

in Section 2.3.3, in which we only consider the planar position

of the EE.

2.3.2. Models

The KM of a mobile manipulator sets the location of its EE

as a function of the robotic arm configuration and of the plat-

form location (or its operational coordinates as functions of

the robotic arm generalized coordinates and of the mobile

platform operational coordinates):

fff : Na × Mp −→ M

(qqqa, ξξξp) �−→ ξξξ = fff (qqqa, ξξξp).

The shape of the mobile manipulators we are studying

is shown in Figure 4, regardless of the type of wheels. For

any wheeled mobile platform with location ξξξp = [x y ϑ]T

equipped with a robotic arm with configuration qqqa and lo-

cation ξξξ a , the position of the mobile manipulator EE in R

is

ξ1 = x + (a + ξa1
)Cϑ − (b + ξa2

)Sϑ
ξ2 = y + (a + ξa1

)Sϑ + (b + ξa2
)Cϑ

ξ3 = ξa3

(8)

and its orientation is

ξ4 = β = ϑ + ψ

ξ5 = θ

ξ6 = ϕ.

(9)

The IKM of a mobile manipulator sets the derivative of

its location as a function of the derivatives of the robotic arm

configuration and of the location of the mobile platform (or

its operational velocities as functions of the robotic arm gen-

eralized velocities and of the mobile platform operational ve-

locities):

ξ̇ξξ =
∂fff

∂qqqa
(qqqa, ϑ) q̇qqa +

∂fff

∂ξξξp
(qqqa, ϑ) ξ̇ξξp. (10)
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Fig. 4. Geometry of mobile manipulators.

Note that fff is a function of qqqa and ξξξp, whereas its partial

derivatives only depend on qqqa and ϑ . From eqs. (8) and (9)

∂fff

∂qqqa
(qqqa, ϑ) =

















Ja1,⋆
Cϑ − Ja2,⋆

Sϑ
Ja1,⋆

Sϑ + Ja2,⋆
Cϑ

Ja3,⋆

Ja4,⋆

Ja5,⋆

Ja6,⋆

















,

where Jak,⋆ is the kth line of the robotic arm Jacobian matrix

and

∂fff

∂ξξξp
(qqqa, ϑ) =

















1 0 −((a + ξa1
)Sϑ + (b + ξa2

)Cϑ)

0 1 (a + ξa1
)Cϑ − (b + ξa2

)Sϑ
0 0 0

0 0 1

0 0 0

0 0 0

















.

We define the control of mobility of the mobile manipulator

by ηηη = [uuuT
a
ηηηT
p
]T. Its dimension δm = na + δmp is called the

degree of mobility of the mobile manipulator. The IKLM of

a mobile manipulator sets the derivative of its location as a

function of its control of mobility. According to eqs. (1) and

(6), eq. (10) is written as

ξ̇ξξ =
∂fff

∂qqqa
(qqqa, ϑ)uuua +

∂fff

∂ξξξp
(qqqa, ϑ)R(ϑ)�(βββ s)ηηηp.

So the IKLM is written as

ξ̇ξξ = J̄ (qqqa, ϑ, βββ s)ηηη, (11)

with J̄ (qqqa, ϑ, βββ s) =
[

∂fff

∂qqqa
(qqqa, ϑ)

∂fff

∂ξξξp
(qqqa, ϑ)R(ϑ)�(βββ s)

]

being an m× δm matrix.

The configurations such that the rank of J̄ (qqqa, ϑ, βββ s) de-

creases are singular kinematic configurations and the prob-

lem, mobile manipulator and task, is redundant when δm > m.

We notice that the derivative of the mobile manipulator

EE location does not depend on the derivative of the steering

wheels orientation, for a given configuration, i.e., does not

depend on the control of steerability ζζζ p of the platform.

We define the control (of maneuvrability) of the mobile ma-

nipulator byuuu = [uuuT
a
uuuT
p
]T i.e.,uuu = [q̇qqT

a
ηηηT
p
ζζζ T
p
]T. Its dimension,

δM = na + δMp
= δm + δsp is called the degree of maneuvra-

bility of the mobile manipulator. If we define zzz = [ξξξ T βββT
s
]T,

from eqs. (11) and (2), we obtain

żzz = B(qqqa, ϑ, βββ s)uuu,

with

B(qqqa, ϑ, βββ s) =

[

J̄ (qqqa, ϑ, βββ s) 0

0 INs

]

.

We also define the IKCM of the mobile manipulator by

analogy with the case of the mobile platforms. When the plat-

form IKCM is known, from eq. (3) we write

q̇qq = S(ϑ, βββs, βββc)uuu, (12)
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where

S(ϑ, βββs, βββc) =

[

Ina 0

0 Sp(ϑ, βββs, βββc)

]

.

It is fundamental to notice that, in general, the dimension

of operational space m is less than the degree of mobility

δm of the mobile manipulator. In this case, we recall that the

problem, mobile manipulator and task, is redundant.

2.3.3. Example

We consider the mobile manipulator shown in Figure 1,

where b = 0 for the sake of simplicity. Again, we reduce

the location to the planar position of the EE in the hori-

zontal plane. The position O3 in the frame R is thus given

by its Cartesian coordinates ξ1 and ξ2. The configuration is

qqq = [qa1
qa2
ϕ1 ϕ2 ϕ3 x y ϑ β3]

T. The control of maneuvrability

of the mobile manipulator is uuu = [uuuT
a
uuuT
p
]T = [q̇a1

q̇a2
ηp ζp]

T.

The degree of mobility of the mobile manipulator is δm =
na + δmp = 2 + 1 = 3. Its degree of maneuvrability is

δM = na + δMp
= 2 + 2 = 4 or δM = δm + δsp = 3 + 1 = 4.

According to eqs. (7) and (8), the KM of this mobile ma-

nipulator is

ξ1 = x + (a + a1C1 + a2C12)Cϑ − (a1S1 + a2S12)Sϑ ,

ξ2 = y + (a + a1C1 + a2C12)Sϑ + (a1S1 + a2S12)Cϑ .

(13)

Using eqs. (4), (11) and (13), we obtain

ξ̇ξξ =

[

ξ̇1

ξ̇2

]

= J̄ (qa1
, qa2

, ϑ, β3)





q̇a1

q̇a2

ηp



 ,

where

J̄ (qa1
, qa2

, ϑ, β3) =

[

D2 D1 D4

D6 D5 D7

]

,

with the following intermediate variables:

Cϑ1 = cos(ϑ + qa1
),

Sϑ1 = sin(ϑ + qa1
),

Cϑ12 = cos(ϑ + qa1
+ qa2

),

Sϑ12 = sin(ϑ + qa1
+ qa2

),

D1 = −a2Sϑ12,

D2 = −a1Sϑ1 +D1,

D3 = −DSβ3
,

D4 = CϑD3 + Cβ3
(D2 − aSϑ),

D5 = a2Cϑ12,

D6 = a1Cϑ1 +D5,

D7 = SϑD3 + Cβ3
(D6 + aCϑ).

If we take into account eqs. (2) and (13), we also obtain

żzz =





ξ̇1

ξ̇2

β̇3



 = B(qa1
, qa2

, ϑ, β3)









q̇a1

q̇a2

ηp
ζp









,

with B(qa1
, qa2

, ϑ, β3) =

[

J̄ (qa1
, qa2

, ϑ, β3) 0

0 1

]

.

The IKCM of the mobile manipulator q̇qq = [q̇a1
q̇a2
ϕ̇1 ϕ̇2 ϕ̇3

ẋ ẏ ϑ̇ β̇3]
T = S(ϑ, β3)[q̇a1

q̇a2
ηp ζp]

T is immediately obtained

using the platform IKCM (5):

S(ϑ, β3) =































1 0 0 0

0 1 0 0

0 0 1

r
(DSβ3

− lCβ3
) 0

0 0 − 1

r
(DSβ3

+ lCβ3
) 0

0 0 −D

r
0

0 0 −DCϑSβ3
0

0 0 −DSϑSβ3
0

0 0 Cβ3
0

0 0 0 1































.

For other examples, we refer to Bayle (2001).

3. Manipulability

3.1. The Manipulability of Robotic Arms

In this section we introduce elements of the manipulability

theory as developed by Yoshikawa. For more precision, the

reader may refer to Yoshikawa (1990) or Bayle, Fourquet, and

Renaud (2001b).

Let us consider a robotic arm and its IKM ξ̇ξξ a = Ja(qqqa)q̇qqa .

For a given configuration qqqa , manipulability characterizes the

subset of the realizable velocities ξ̇ξξ a such that the correspond-

ing joint velocity verifies ||q̇qqa|| ≤ 1.

Let Ja(qqqa) = Ua(qqqa)�a(qqqa)V
T
a
(qqqa) be the singular value

decomposition (SVD) of matrix Ja(qqqa) (Golub and Van Loan

1996). Ua(qqqa) and Va(qqqa) are orthogonal and �a(qqqa) has the

ordered singular values on its diagonal. Let us assume that

Ua(qqqa) = [UUU a1 UUU a2 . . . UUU ama
] and that the singular values

are σ1 ≥ σ2 ≥ . . . ≥ σma .

Then the set of realizable velocities ξ̇ξξ a , such that the cor-

responding joint velocity verifies ||q̇qqa|| ≤ 1, is given by

∑

σi �=0

(

(4̇44a)i

σi

)2

≤ 1,

with 4̇44a = Ua(qqqa)
Tξ̇ξξ a . This is the equation of an m-

dimensional ellipsoid with the main axis given by the UUU a i,

i = 1, 2, . . . , ma of associated radii σi . Its volume is propor-

tional to the product σ1σ2 . . . σma .

Thanks to these theoretical bases we can analyze the in-

stantaneous kinematics of a robotic arm from different points

of view. The visualization of the ellipsoid may be interesting

but of course it only applies when the operational space is

two-dimensional or three-dimensional. So, we often consider

only positioning of the EE. The shape of the manipulability

ellipsoid, gives information on the capabilities of the arm to

move in the different directions of the operational space.
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Additionally, we can define different algebraic measures

to characterize this ellipsoid. They are often called manip-

ulability measures and give a scalar information. The more

usual manipulability measure is wa = σ1σ2 . . . σma which is

proportional to the ellipsoid volume. It thus gives quantita-

tive information on the manipulability. Moreover, it can be

shown that wa =
√

det(Ja(qqqa)J
T
a
(qqqa)), which simplifies into

wa = | det Ja(qqqa)| when Ja(qqqa) is square; it is not necessary

to apply the SVD to compute wa .

If we look for more qualitative information, we can com-

pute the ratio of the minimum to the maximum radii of the

ellipsoid: wa2
= σma

σ1
. Yoshikawa underlines that it is the re-

ciprocal of the condition number (numerical information to

evaluate the distance to singularities) of the Jacobian Ja(qqqa),

which is an interesting computational feature. In this paper,

we define a manipulability measure3 extending the notion of

eccentricity of the ellipse:

wa5
=

√

1 −
σ 2
ma

σ 2
1

.

This measure is related to the shape of the ellipsoids, and thus

to the ability of the EE to move in privileged directions of the

operational space. For instance, in a planar case, if wa5
= 0,

the ellipse is a circle and ifwa5
= 1 it is flat, which means that

the EE can only move in one direction (it is closely related to

wa2
and thus to the condition number).

EXAMPLE. If we consider only the arm of our planar mobile

manipulator for a planar positioning task, we can illustrate the

different previous items. We could represent the manipulabil-

ity ellipses of this arm all around its workspace. Rather, we

examine the evolution of manipulability when the EE position

follows a straight line along the abscissa axis from a folded

configuration (qa1
= π

2
, qa2

= − π

2
) to a totally extended one

(qa1
= qa2

= 0). Figure 5 displays the manipulability measure

wa5
based on the ellipses eccentricity, as a function of the arm

extent, similar to Yoshikawa (1990) (see also Extension 1). It

gives information on the shape of the ellipses. Indeed, as wa5

decreases, the possible EE velocities become more isotropic

(wa5
= 0 would mean that the EE can move equally in any

direction with a bounded velocity control vector).

We notice that, in the case of the robotic arm, there is a

singularity when qqqa = [0 0]T. Indeed det Ja(qqqa) = 0 in this

configuration, which implieswa = 0, and thusσma = 0, which

implies wa5
= 1. In Figure 5, it corresponds to a degenerated

ellipse.

3.2. The Manipulability of Mobile Manipulators

We now take into account the mobile platform. The first con-

tribution, to our knowledge, that dealt with manipulability in

mobile manipulation is devoted to the manipulability of the

3. We call this measure wa5
as Yoshikawa defines four other measures.

sole arm (Yamamoto and Yun 1994). Depending on the tasks

at hand, there is an interest in considering the ability of gen-

erating velocities at the EE by acting on the robotic arm or by

acting on the whole system. Here, we develop an analysis of

the whole mobile manipulator manipulability.

We now wish to establish a similar analysis when the

robotic arm is mounted on a wheeled mobile platform. The

results recalled in Section 3.1, in the case of a robotic arm, use

the IKM. A similar framework can be used for nonholonomic

mobile manipulators from the definition of the IKLM, given

by eq. (11)

ξ̇ξξ = J̄ (qqqa, ϑ, βββ s)ηηη,

since this model describes the instantaneous velocities of the

EE for given controls of mobility. Thus, the results of Sec-

tion 3.1 can be rewritten by replacing, respectively, ξξξ a ,uuua , and

Ja(qqqa) by ξξξ , ηηη, and J̄ (qqqa, ϑ, βββs). In this way, we are looking

for the realizable EE velocities such that the corresponding

control of mobilityηηη verifies ||ηηη||2 � 1. If we consider eq. (11)

and that we set

B1(qqqa, ϑ, βββ s) =
[

J̄ (qqqa, ϑ, βββ s) 0
]

,

then

ξ̇ξξ = B1(qqqa, ϑ, βββ s)uuu.

REMARKS.

• It is easy to show that the condition ||uuu||2 � 1 would

lead to the same ellipsoid of manipulability in opera-

tional space as the condition ||ηηη||2 � 1. In fact, the

control of steerability has no effect on instantaneous

velocity of the EE or, in other words, the SVDs of

J̄ (qqqa, ϑ, βββs) and of B1(qqqa, ϑ, βββs) lead to the same

singular values and to the same main axis. Indeed, let

A = U�V T be the SVD of matrix A, then the SVD of

matrix A′ = [A 0] is

A′ = U [� 0]

[

V T

0

]

.

It is generally not possible to separate analytically the

effects of the platform and of the robotic arm on ma-

nipulability. So they will be visualized through several

numeric simulations.

• It is generally desirable to normalize (Yoshikawa 1990)

the ellipsoids of manipulability to take into account

the nature of the joints (rotations/translations). For in-

stance, we can use the maximum generalized velocities

to normalize the manipulability ellipsoids (Yamamoto

and Yun 1999). It may also be important to take into

account the differences between the subsystems, from

a dynamic point of view. To do so, we can modify
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Fig. 5. Manipulability analysis for the robotic arm.

the manipulability definition, for instance by weight-

ing J̄ (qqqa, ϑ, βββs) with the kinetic energy matrix (Lip-

kin and Duffy 1988). This assumes that this matrix is

known, or estimated.

We use the maximum generalized velocities to normal-

ize the manipulability ellipsoids in our simulations, but

for the sake of simplicity we do not mention it in the

text.

• Errors in the estimation of the robot localization are

among the key problems in mobile robotics. Concern-

ing the analysis of manipulability of the mobile manip-

ulator, the uncertainty on the mobile platform localiza-

tion also has an influence. Indeed, the computation of

J̄ (qqqa, ϑ, βββ s) requires the knowledge of the orientation

of the platform in the reference frame. In the case of

an important drift on the estimation of this value, the

manipulability measure is necessarily affected.

EXAMPLES. We consider the case of the mobile manipulator

in Figure 1, modeled in Section 2.3. We choose a = 0.8 m,

b = 0. The next two simulations are done with the configu-

rations of the robotic arm used in Section 3.1. Manipulability

measures for the mobile manipulator are derived from the

previous observations and denoted by w and w5.

First, the steering wheel plane is parallel to the longitudinal

axis of the platform, i.e., β3 = π

2
(see Figure 2). Figure 6

shows the evolutions of the manipulability ellipsoids and of

the measure of manipulability w5, as functions of the robotic

arm stretching (see also Extension 2).

The effects of associating a mobile platform and a robotic

arm are significant concerning the manipulability. A compar-

ison of Figures 5 and 6 clearly brings to light the contribution

of the mobile platform to the manipulability of the whole sys-

tem. Particularly, we notice that the ellipsoid of manipulability

no longer vanishes when qa1
, qa2

and ϑ are zero. In this con-

figuration, w5 �= 1, compared to wa5
= 1 for the robotic arm.

So, the mobile manipulator configuration is no longer singu-

lar. Nevertheless, the configuration corresponding to qa1
= π

2

and qa2
= − π

2
is still singular.

As first noticed by Yamamoto and Yun (1999), manipu-

lability also shows the constraints acting on the system. As

the platform is nonholonomic, its influence on manipulability

is not the same in all the directions of the operational space.

This appears in Figure 7; in this simulation, we modify the

mobile manipulator configuration by rotating the vertical axis

of the steering wheel of the platform (see also Extension 3).

It is placed so that its plane becomes perpendicular to the

longitudinal axis of the platform, i.e., β3 = 0 (see Figure 2).

The locations of the EE are still the same as in the previous

examples. We then visualize the evolution of the ellipsoids of

manipulability and of the measurew5, as functions of the arm

extent.

The steering wheel orientation creates a constraint on the

system, which cannot roll without slipping along the lon-

gitudinal axis of the platform. So, when the robotic arm is

completely stretched, the EE can only move in the direction

perpendicular to this axis; it corresponds to a measure of ma-

nipulabilityw5 = 1 and also to J̄ (qqqa, ϑ, βββs) rank deficiency.
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Fig. 6. Manipulability analysis for the mobile manipulator, when β3 = π

2
; contribution of the platform to the mobile

manipulator manipulability.
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Fig. 7. Manipulability analysis for the mobile manipulator, when β3 = 0; effects of the nonholonomic constraints on

manipulability.
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Thus, the mobility of the mobile manipulator is limited and

this one cannot move in any direction of the operational space.

This configuration can be called singular kinematic configu-

ration (Fourquet and Renaud 1996). We also notice that the

configuration corresponding to qa1
= π

2
and qa2

= − π

2
is no

longer singular.

4. Applications to Mobile Manipulator Control

Up to now, the applications of manipulability of the whole

system are very few. To our knowledge, they present the ex-

tension of manipulability for a particular mobile manipulator,

for which the platform has two independent driven wheels.

The applications evoked deal with the design of the mobile

manipulator. Gardner and Velinsky (2000) introduce numeric

comparisons that allow them to choose the position of the

arm base on the platform (i.e., the values of the parameters a

and b), given a robot structure (a three-joint anthropomorphic

robotic arm mounted on a wheeled mobile platform) and a

particular task (straight-line path on a highway). Yamamoto

and Yun (1999) normalize the manipulability to evaluate the

effects of maximum linear velocity of the platform on manip-

ulability of the system. This can be useful to size the platform

motoring.

In this paper, we propose to use the mobile manipulator ma-

nipulability to solve the operational motion planning problem.

The use of manipulability in the generation of mobile manip-

ulators motions was first addressed by Yamamoto and Yun

(1994). These authors used the robotic arm manipulability to

define preferred configurations of the robotic arm. We first

developed the use of mobile manipulators manipulability in

motion generation in Bayle, Fourquet, and Renaud (2001c).

4.1. Operational Motion Planning Problem

We consider the operational motion planning problem. From

now on, we suppose that the mobile manipulators have no

steering wheel, i.e., Ns = 0 (see the remark at the end of the

paragraph). The maneuvrability control of the mobile manip-

ulator thus reduces to its mobility control, i.e., uuu = ηηη and

δM = δm. Also we suppose that the problem, mobile manipu-

lator and task, is redundant, i.e., δm > m.

For a given operational motion ξξξ ∗(t), the problem is to find

the mobility control ηηη(t) such that ξξξ ∗(t) = J̄ (t)ηηη(t) which

asymptotically stabilizes the operational error eee(t) = ξξξ ∗(t)−
ξξξ(t). The matrix J̄ (t) is m × δm. We suppose that the rank

of this matrix is m (this is the case in practice). Then, the

previous linear system is consistent4 and all the exact solutions

are given by

ηηη(t) = J̄+(t)ξ̇ξξ
∗
(t)+

(

Iδm − J̄+(t)J̄ (t)
)

ggg(t),

4. The system ξξξ∗(t) = J̄ (t)ηηη(t) is consistent if rank [J̄ (t) | ξξξ∗(t)] =
rankJ̄ (t).

in which J̄+(t) is the pseudo-inverse of J̄ (t) (Golub and Van

Loan 1996) andggg(t) any δm-dimensional vector. This solution

minimizes the Euclidean norm ||ηηη − ggg||. Moreover, in order

to asymptotically stabilize the error eee(t), we can choose

ηηη(t) = J̄+(t)
[

ξ̇ξξ
∗
(t)+W (ξξξ ∗(t)− ξξξ(t))

]

+
(

Iδm − J̄+(t)J̄ (t)
)

ggg(t), (14)

in which W is an m−order definite positive matrix. The pre-

vious control (14) leads to the asymptotic stability of the tran-

sient error eee(t), as it verifies

ėee(t)+Weee(t) = 0,

with J̄ +(t) being a right-inverse of J̄ (t).

Using eq. (12), we recall that q̇qq(t) = S(t)ηηη(t); then,

eq. (14) is written as

q̇qq(t) = S(t)J̄+(t)
[

ξ̇ξξ
∗
(t)+W (ξξξ ∗(t)− ξξξ(t))

]

+ S(t)
(

Iδm − J̄+(t)J̄ (t)
)

ggg(t). (15)

In eq. (15) the first term is due to the input and the second

is called the internal motion. We can use the problem re-

dundancy to propose a coordination strategy for the internal

motion. For instance, it is interesting to avoid great variations

of the generalized coordinates qi . This can be done by a gra-

dient descent method in which the potential function has its

minimum value corresponding to the user requirements. Let

P be a scalar function depending on the mobile manipulator

configuration qqq(t). We can write

Ṗ(t) = ∇T
P(qqq(t))q̇qq(t),

where ∇P(qqq(t)) is the gradient of the function P(qqq(t)). If we

consider only the internal motion, then

Ṗ(t) = ∇T
P(qqq(t))S(t)

(

Iδm − J̄+(t)J̄ (t)
)

ggg(t).

In order to decrease P, that is Ṗ(t) ≤ 0, we propose the choice

ggg(t) = −K
(

∇T
P(qqq(t))S(t)

(

Iδm − J̄+(t)J̄ (t)
))T

,

where K is a positive scalar. Indeed, with this choice

Ṗ(t) = −K
[

∇T
P(qqq(t))S(t)

(

Iδm − J̄+(t)J̄ (t)
)]

[

∇T
P(qqq(t))S(t)

(

Iδm − J̄+(t)J̄ (t)
)]T

,

and then Ṗ(t) ≤ 0. Finally, the mobility control is

ηηη(t) = J̄+(t)
[

ξ̇ξξ
∗
(t)+W (ξξξ ∗(t)− ξξξ(t))

]

−KS(t)
(

Iδm − J̄+(t)J̄ (t)
) [

S(t)
(

Iδm − J̄+(t)J̄ (t)
)]T

.
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This approach can be applied with various choices for P.

Hereafter, we explain how it can be applied by taking P as a

manipulability measure.

REMARK. The control of a mobile manipulator with steer-

ing wheels is a difficult problem. When the system has one or

several steering wheels, a first solution to generate the control

of maneuvrability of the mobile manipulator could be to use

the control scheme given in this paper to compute the control

of mobility and then to compute the control of steerability

independently. Indeed, as the operational velocity is indepen-

dent from the control of steerability (see eq. (11)), it can be

synthesized independently. A non-generic strategy has been

applied successfully in Bayle (2001) for a mobile manipulator

with a car-like platform. Nonetheless, solving the problem of

control with a higher generality is still the object of our current

research.

4.2. Using Mobile Manipulator Manipulability Measure

Two elements must be taken into account to use manipulability

as a function to be optimized.

• The analytical expression of the manipulability is com-

plex even for a simple mobile manipulator. It may not

be helpful to design the P function. Rather, it would

be more interesting to consider functions of manipu-

lability with minimum corresponding to optimal con-

figurations, such as (−w) or w5, and to compute their

numerical gradient.

• Through our previous results (Section 3.2), the mobile

manipulator manipulability measure has been defined

in a way similar to that of the arm. Yet, depending on the

application we may have to consider the whole system

manipulability or only the robotic arm manipulability

(for instance, when the mobile manipulator is not used

in a coordinated fashion strategy). If the user wants to

keep the platform motionless to manipulate with the

arm alone, it would be convenient to reach the oper-

ating site in a good configuration for the arm, from a

manipulation point of view. Also, both manipulability

definitions can be useful for the same task. They can be

taken into account by modifying the coordination strat-

egy through the choice of a new function P. This is a

convex combination of two functions based on the arm

manipulability, Pa , and the mobile manipulator manip-

ulability, Pp+a .

In the following, we report on the results obtained for two

different tasks. For both of these, only the planar position of

the EE is imposed. From case to case, we choose:

• the w5 manipulability measure, whose value decreases

with isotropy of EE admissible velocities;

• Yoshikawa’s manipulability measure with opposite

sign (−w) whose value decreases when the system

moves away from singular configurations.

4.2.1. Use of the Mobile Manipulator Manipulability

Measure w5

Figure 8 illustrates the tracking of an operational motion, the

associated path of which is elliptic (see also Extension 4).

Here, the global manipulability of the mobile manipulator is

considered through the choice of w5 measure.

After a transient phase, the EE follows its imposed motion.

It is worth noting that, during the greater part of the motion,

the manipulability ellipse is very similar to a circle; the w5

manipulability measure with respect to the subset of the con-

sidered operational coordinates—position coordinates in the

plane—is minimized (see also Extension 5).

4.2.2. Combined Use of Arm and Mobile Manipulator

Manipulability Measures

It is interesting to leave the user free to choose the relative

weighting of manipulability measures (robotic arm and mo-

bile manipulator measures). In fact, depending on the task at

hand, we may need to use both types of measure. Let us take

the example of a mobile manipulator that must first realize a

coordinated operational task and then manipulate in a narrow

zone. In this latter zone, moving the platform may be unsuit-

able and it is interesting to manipulate only with the arm. In

this case, it will be interesting to consider the robotic arm

manipulability. The influence of both tasks can be taken into

account by using a function that is written:

P = α(ξξξ ∗)Pp+a + (1 − α(ξξξ ∗))Pa.

It is a convex combination of the arm manipulability measure

Pa and of that of the mobile manipulator Pp+a where the

function α(ξξξ ∗) ∈ [0 1] is a cubic polynomial. This function

allows us to adapt the criterion to the mobile manipulator

configuration or to the EE location. Thus, we do not use a

multi-criteria function, but a transition from a criterion to

another one. Such a choice is illustrated by Figure 9.

The mobile manipulator moves in free space, from a con-

trol mode where its manipulability is taken into account

(zone 1) to another control mode where the arm manipula-

bility is taken into account (zone 3). It can be remarked that

the arm manipulability may be poor whereas the whole system

keeps a good measure of manipulability (see Figure 9, zone 1).

This emphasizes that the choice of the manipulability is task-

dependent. If the task implies to optimize manipulability in a

special direction of the operational space, for instance along

the reference motion of the EE, it can be achieved easily by

maximizing the projection of the ellipsoid of manipulability

in this direction.
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5. Conclusion

In this paper, we have first proposed a systematic modeling of

mobile manipulators built from a robotic arm mounted on a

wheeled mobile platform. To this purpose, we have taken into

account the nonholonomic constraints due to the rolling with-

out slipping of the wheels on the ground. We have restricted

our presentation to the kinematic and instantaneous kinematic

models. Nevertheless, it would be interesting in the future to

extend this work to problems with dynamic modeling. We

plan to address this issue in the same generic way.

Then, we have extended the classical notion of manipu-

lability proposed by Yoshikawa for robotic arms to the case

of mobile manipulators. We have pointed the interest of this

new notion for various requirements: optimal positioning of

the robotic arm on the platform, design of the system itself,

sizing of the platform motoring.

Finally, we have shown the advantages of this new no-

tion for the planning of the EE motions. We have underlined

the benefits for the user of choosing adequately the relative

weightings of the robotic arm and of the whole mobile manip-

ulator measures of manipulability. Various simulations (and

animations; see Extensions) prove the efficiency of our oper-

ational motion planning method, which can also be applied,

without difficulties, in the presence of obstacles.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.

ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Simulation

(mpeg)

Manipulability ellipsoids for a

two-revolute joint planar robotic

arm.

2 Simulation

(mpeg)

Manipulability ellipsoids for a

planar mobile manipulator built

from a car-like platform and a

two-revolute joint planar robotic

arm (front wheel parallel to the

longitudinal axis of the plat-

form); contribution of the mobile

platform to the mobile manipula-

tor manipulability.

3 Simulation

(mpeg)

Manipulability ellipsoids for a

planar mobile manipulator built

from a car-like platform and a

two-revolute joint planar robotic

arm (front wheel orthogonal to

the longitudinal axis of the plat-

form); effects of the nonholo-

nomic constraints on manipula-

bility.

4 Simulation

(mpeg)

Tracking of an operational mo-

tion with elliptic path while min-

imizing the eccentricity of the el-

lipsoids of manipulability.

5 Plot (pdf) Three-dimensional plot of the

path followed by the point with

coordinates [qa1
qa2

]T on the w5

surface (this corresponds to Ex-

tension 4).

6 Simulation

(mpeg)

Tracking of an operational mo-

tion while maximizing a convex

combination of the manipulabil-

ity measures of the robotic arm

and the mobile manipulator.
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