
Manipulating and Documenting Sofkware Structures

Using
SHriMP Views?

Margaret-Anne D. Storey

School of Computing Science
Simon Fraser University

Burnaby BC
Canada V5A lS6

mstorey@csr.uvic.ca

Abstract

An effective approach to program understanding in-

volves browsing, exploring, and creating views that

document software structures at different levels of ab-

straction. While exploring the myriad of relationships

in a multi-million line legacy system, one can easily

loose context. One approach to alleviate this problem

is to visualize these structures using jsheye techniques.

This paper introduces Simple Hierarchical Multi-

Perspective views (SHriMPs). The SHriMP visualiza-

tion technique has been incorporated into the Rigi re-

verse engineering system. This greatly enhances Rigi’s

capabilities for documenting design patterns and archi-
tectural diagrams that span multiple levels of abstrac-

tion. The applicability and usefulness of SHriMPs is

illustrated with selected program understanding tasks.

Keywords: program understanding, reverse engi-

neering, re-engineering, software visualization, fisheye

views.

1 Introduction

K’lutter and confusion are failures of design, not
attributes of information.”

Edward R. Tufte, Envisioning Information.

‘This work was supported in part by the British

Columbia Advanced Systems Institute, the IBM Software

Solutions Toronto Laboratory Centre for Advanced Stud-

ies, the IRIS Federal Centres of Excellence, the Natural
Sciences and Engineering Research Council of Canada, the

Science Council of British Columbia, the University of Vic-

toria and Simon Fraser University.

Hausi A. Miiller

Department of Computer Science
University of Victoria,

Victoria, BC
Canada V8W 3P6
liausi@csr.uvic.ca

Effectively presenting large amounts of information

in any form is challenging. Althougjh the computer

screen is relatively small, it is easy to fill it with so

much information and detail that it completely over-

whelms the user. It is not the amount of informa-

tion that is relevant, but rather how it is displayed[l4].

Careful consideration must therefore be given on how

to present information so that it can be used effec-

tively. A crucial step in this process, is determining

the purpose of t,he visualization. This problem is par-

ticularly acute in the process of understanding soft-

ware systems using reverse engineering tools.

The visualization and user interface communities

have suggested many approaches for visualizing large
information spaces. Approaches based on the fisheye

lens paradigm seem well suited to the task of visual-

izing software. These techniques allow users to create

views that span. different levels of abstractions. For

example, a high-level architectural diagram might in-

clude detailed information at strategic points to high-

light pertinent .information or to illustrate a bottle-

neck. Architectural styles[6], or design patterns[5] of-

ten include entities at various levels of detail. How-

ever, usually information spaces of this kind are mod-
eled as graphs a.nd displayed using a set of tiled win-
dows. It is easy to loose context because the relation-

ships among windows are typically implicit.

This paper describes techniques for visualizing soft-

ware structures modeled as nested gra:phs, using fish-

eye views. Nested graphs are used for visualizing the

structure and organization of the software. Nodes rep-

resent artifacts in the software, such ;as functions or

data variables. Arcs represent dependencies among

these artifacts, :such as call dependencies. Compos-
ite nodes correslpond to subsystems in the software.

275
1063-6773/95 $04.00 0 1995 IEEE

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

Composite arcs represent a collection of dependencies.

Composite nodes may contain other composite nodes

and arcs as well as atomic nodes and arcs. This nesting

feature of nodes communicates the hierarchical struc-

ture of the software (e.g. subsystem or class hierar-
chies). Nested graphs offer assistance in a reengineer-

ing phase of software maintenance when multiple lev-
els of abstraction need to be visualized concurrently.

The fisheye views emphasize detail of current inter-

est within the context of the overall software struc-

ture. They provide an alternative to scrolling through

graphs that are too large to be displayed in their en-

tirety on the screen. A user browses the graph by selec-

tively enlarging nodes within an area of interest while
simultaneously shrinking the rest of the graph. A soft-

ware engineer can more easily identify structures in the

software by enlarging sets of nodes which may not be

adjacent in the graph. In addition, the source code of
a function or data type may be displayed by zooming

the representative node. This provides a mechanism

for a software maintainer to seamlessly switch between

the implementation and the documentation of a sys-

tem.

The Rigi reverse engineering system is designed to

analyze and summarize the structure of large soft-

ware systems. It is intended to document the struc-
ture of multi-million line legacy software systems[l5].

While exploring the myriad of relationships in a multi-

million line legacy system, one can easily loose con-

text. One approach to alleviate this problem is to vi-

sualize these structures using fisheye techniques. The

SHriMP (Simple Hierarchical Multi-Perspective) vi-

sualization technique presented in this paper has been
incorporated into the Rigi reverse engineering system.

This greatly enhances Rigi’s capabilities for identify-
ing and documenting design patterns and architectural
diagrams that span multiple levels of abstraction.

Section 2 provides background on Rigi and reverse

engineering. Section 3 describes several deficiencies

encountered when visualizing and navigating large

software structures in Rigi. Section 4 describes the

SHriMP tool for visualizing large information spaces.

Section 5 illustrates the applicability and usefulness

of SHriMPs when reverse engineering legacy software
systems. Section 6 discusses the benefits of this ap-
proach. Section 7 draws some conclusions.

2 Rigi

Rigi is a system for analyzing, visualizing, docu-

menting, and recording the structure of evolving soft-

ware systems. Software structure refers to a collection

of artifacts that software engineers use to form mental

models when designing or understanding software sys-

tems. Artifacts include software components such as

subsystems, procedures, and interfaces; dependencies

among components such as client-supplier, composi-

tion, inheritance, or control and data-flow relations;
and attributes such as component type, interface size,

and interconnection strength.

In the Rigi reverse engineering system, artifacts are

stored in an underlying repository and manipulated

using a graph editor that supports editing, manipula-

tion, annotation, hypertext, and exploration capabili-

ties. Software hierarchies are visualized with overlap-

ping windows and overview windows. A user travels

through the hierarchy by opening a window to show

the next layer in the hierarchy. An overview window

provides context to the individual windows.

Reverse engineering a system involves information
extraction and information abstraction. One objec-

tive of a reverse engineer is to obtain a mental model

of the structure of a subject software system and to

communicate this model effectively. This process can

be automated to a certain extent but the perceptual

abilities and domain knowledge of the reverse engineer
play a central role.

Rigi is end-user programmable through the RCL
(Rigi Command Language) which is based on the

Tcl/Tk scripting language[lO]. The reverse engineer-
ing methodology can be easily adapted and tailored to

diverse program understanding scenarios and selected

target domains by writing RCL scripts. Moreover,

Rigi can easily be integrated with other tools which in-

corporate the Tcl/Tk language. As a result, extending

the user interface with new visualization techniques

such as SHriMP, is feasible.

3 Deficiencies with current approach

Visualization tasks can be divided into two cate-.

gories corresponding to the reverse engineering and

reengineering phases of software maintenance. Tasks

performed by the reverse engineer when composing a
representation of a mental model of the software dif-
fer significantly from those of a maintainer or project
manager browsing such a representation.

The reverse engineering phase is one of discovery
where a reverse engineer uses visualization techniques
to facilitate the identification of candidate subsystems
and to assist in the visualization of structures and pat-
terns in the graph. For larger graphs consisting of

thousands of nodes and arcs, the ability to inspect

smaller groups of nodes and arcs in more detail is

276

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

needed. A scrollable window can be used, but only

one portion of the graph is visible at any one time.
Ideally, the reverse engineer should be able to focus on
parts of the system without losing sight of the whole.

Other users, in contrast to the reverse engineer,

may merely wish to browse and customize the soft-

ware hierarchy created by the reverse engineer. For

large software systems, it is preferable to obtain an

understanding of the overall architecture of the soft-

ware before proceeding in a top-down fashion to the

lower-level details of the software[l5]. When trying to

understand smaller substructures, it is desirable to re-

tain sight of the overall architecture and to see where
the module under investigation is with respect to the

rest of the software. In Rigi, hierarchies are visualized
with overlapping windows and overview windows. The

problem with this approach is that the user is forced

to mentally integrate two views.

For larger systems, the hierarchy may be very deep

and many windows may be opened to expose the de-

sired information. The user has to manage these win-

dows by tediously resizing them to keep pertinent in-

formation visible, and closing them when they are no

longer useful. Windows consume screen space and it
is too easy for the user to become disoriented as they

open further windows. Users of hypertext systems en-

counter similar problems[l3].

During the reverse engineering and reengineering

phases, the source code often needs to be inspected in

detail. Currently, source code relating to a particu-

lar atomic node is displayed in a text editor window.
Better visual links between the source code and docu-

mentation describing the architecture of the software

may assist in program understanding.

Rigi is a sophisticated visualization tool for navi-

gating and manipulating software structure. However,

more sophisticated methods are required for visualiz-
ing software structures in large legacy systems. For

the purposes of program understanding, users must

be able to see micro and macro views of the program:
they must be able to see the architecture of the pro-

gram as well as smaller parts of the program in de-
tail, right down to the code level. While looking at

smaller portions, the big picture should also be main-

tained. With these requirements in mind, the next two

sections discuss an alternative display method which

directly addresses these issues.

4 SHriMP Views

SHriMP, a tool for visualizing large graphs, uses the

nested graph formalism and a fisheye view algorithm

for manipulating large graphs. A basic incentive for

writing this tool is to provide a mechanism for visualiz-
ing detail of a large information space and at the same

time to providle contextual cues concerning its con-

text. When visualizing any large information space, it

is necessary to be able to create different views of the

information where each one provides a different per-

spective. SHriMP goes one step further by providing

a mechanism to create views that can show multiple

perspectives concurrently.

SHriMP is implemented in the Tcl/Tk language

and is currently a library that can easily be integrated
into systems that have the Tcl/Tk language available
in it. The following subsections provide some back-

ground on the nested graph formalism and the fisheye
view paradigm ,used by it.

4.1 Nested Graphs

Nested graphs were first introduced by David Hare1

in 1988[7]. Nested graphs, in additio:n to nodes and

arcs, contain composite nodes which are used for de-

noting set inclusion. The containment or nesting fea-
ture of composite nodes implicitly communicates the

parent-child relahtionships in a hierarchy. In SHriMP a

non-leaf node is open when its children are visible and

closed when its (children are hidden from view.

Due to limited screen space, nodes and composite

nodes need to be resized as information needs change.

The following describes an automatic st,rategy to zoom

(enlarge or shrink) nodes which will ass:ist in managing
the screen space available.

4.2 Fisheye Views

Visualizing large information spaces is a focus for

current research. Commonly large knowledge bases

are represented using graphs. However, manipulating

large graphs on a, small screen can be very problematic.
Because of this, various methods have been proposed

for displaying an.d manipulating large graphs.
One approach partitions the graph i:nto pieces, and

then displays one piece at a time in a separate win-
dow. This was ,the original approach takenby Rigi,

see figure 2. However, context is lost as detail is in-

creased. Anothe.r approach makes the entire drawing

of the graph smalller, thus preserving context, but the
smaller details b’ecome difficult to see as the scale is

reduced. A combination view can be given by provid-
ing context in one window and detail in another but

this requires that the user mentally integrate the two;
not always an easy task.

Techniques ha,ve been developed to view and nav-
igate detailed in.formation while providing the user

277

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

with important contextual cues[l]. Fisheye views, an

approach proposed by Furnas in 1986[4], provides con-

text and detail in one view. This display method is

based on the fisheye lens metaphor where objects in
the center of the view are magnified and objects fur-

ther from the center are reduced in size. In Furnas’
formulation, each point in the structure is assigned
a priority that is calculated using a degree of inter-

est (DOI) function. Objects with a priority below a

certain threshold are filtered from the view.

In order to deemphasize information of lower inter-
est, several variations on this theme have been devel-

oped that use size, position and colour in addition to

filtering. For example, SemNet uses three-dimensional

point perspective that display close objects larger than
objects further away[3]. Treemaps are used to display

hierarchies by representing each object as a rectangle,

where children are drawn inside their parents. The size

of each rectangle is determined by the weight assigned

to it by the user, with the constraint that the weight

is greater than or equal to the sum of the weights of

its children.

Graphical Fisheye Views, a technique developed by

Sarkar and Brown, magnify points of greater interest

and correspondingly demagnify vertices of lower in-

terest by distorting the space surrounding the focal
point[ll]. The continuous zoom algorithm, suitable

for interactively displaying hierarchically-organized,

two-dimensional networks[2], allows users to view and

navigate nested graphs by expanding and shrinking

nodes. A survey of these approaches and others such
as Perspective Wall and Cone Trees are described in

PI.

4.3 SHriMP Fisheye View Algorithm

The fisheye algorithm used by SHriMP has several
nice features as follows. The zooming technique is

highly interactive, even for very large graphs. When

one node is enlarged, the other nodes smoothly de-

crease in size to make room for the selected node, sim-

ilarly to the continuous zoom algorithm[2]. The zoom-
out operation is the inverse operation of the zoom-in

operation. Therefore different areas of the graph may
be inspected without permanently altering the layout

of the graph. A user may zoom multiple focal points

and focal areas in the graph.
Many fisheye algorithms, such as Brown and

Sarkar’s, are based on distorting the area surrounding

the focal point(s). For visualizations of many informa-

tion spaces, there is no notion of geometric distance.

Nodes that are close to the focal point, are no more
important than nodes far away. The SHriMP fisheye

% a

Figure 1: (a) The flat graph representative of the
source code for the ray tracer program. (b) The ray

tracer graph, after applying the spring layout algo-

rithm. Note the very busy area in the center of the

graph. (c) The area in the ray tracer graph is enlarged

to show more detail. A single node appears to be the
cause of the majority of this complexity.

278

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

Figure 2: Th.e top window in this screendump shows the overview of the main subsystem in a Ray Tracer program.

The arcs in the overview window are level arcs, representing the parent-child relationships betwleen nodes. The
MAIN subsystem when opened, displays a window with its two children nodes, Render and SL. Th.e SL subsystem

node has also been opened, and its children are displayed in the bottom left window. Final1.y the Geometry

subsystem node is opened in the bottom right window. Nodes highlighted in the overview window are those

nodes which are visible in the bottom windows.

algorithm uniformly resizes nodes when more or less

screen space is requested.

The SHriMP algorithm is flexible in its distortion
technique. For a grid or tree layout, nodes that are

parallel remain parallel in the distorted view. How-

ever, in other layouts, where nodes adjacencies are im-

portant, the proximity of nodes is maintained. This

algorithm is fully described in [12].

The next section presents two examples where

SHriMP has been integrated in the Rigi system and

how it is used to visualize and software navigate struc-

tures.

5 Documenting Software Structures
using SEEriMP Views

This section ipresents two examples where SHriMP

is used to visualize software graphs created by Rigi.

Since Rigi is end.-user programmable, it is easy to inte-

grate the visualization techniques available in SHriMP

with those in Rigi. The usefulness of this approach is

demonstrated with a variety of programming tasks ap-

plied to two systems.

279

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

5.1 The Ray Tracer

(b)

Figure 3: (a) The Geometry subsystem is shown in de-

tail and in context with the rest of the hierarchy. The

information displayed here is roughly the same as the
information portrayed in Figure 2. (b) Several subsys-

tems have been opened to show more detail. In addi-

tion, the composite arc between the Shaders and Ge-
ometry subsystems has been opened to show the lower

level arcs that it represents.

The Ray Tracer is a graphics program consisting

of approximately thirty modules. This program was
written in C following structured programming tech-
niques. Figure l(a) shows a SHriMP view of the flat
graph of the artifacts and dependencies extracted by

the Rigi C parser. A spring layout algorithm has been

applied to the graph in part (b). This algorithm places

highly connected nodes closer together. There is a

complex area in the center of the graph that has been

magnified using the SHRIMP fisheye view algorithm

in Figure l(c).
The magnification of this area exposes that a sin-

gle node is the cause of much of this complexity. This
node represents a print error routine that is called by

many functions. Since an error routine does not pro-

vide very much information when trying to understand

the structure of the system, the reverse engineer may

choose to hide this node to reduce the complexity of

this region.
In the following figures, the flat graph shown in Fig-

ure 1 has been reverse engineered using the techniques

described in [S]. Figure 2 shows the hierarchy imposed

on this flat graph. This figure was created using the
multiple window approach in Rigi and its purpose is
to show detail in the Geometry subsystem and the con-

text of this subsystem with respect to its hierarchy.

The top window is an overview of the hierarchy

rooted at the main subsystem. A separate window is

opened to represent each level in the hierarchy. Here,

the user has opened the main node, which displays a

window labeled main containing the subsystems Ren-

der and SL. The SL window contains SL’s children:

Noise, Geometry and Shaders. Finally, the Geometry

subsystem has been opened to display the functions

and data types of this subsystem, and the dependen-

cies between them. These windows have been manu-

ally resized and positioned.

Figure 3(a) presents a SHriMP view of the same

subsystem presented in the previous figure. Fig-
ure 3(b) follows from Figure 3(a) where some of the
subsystems have been opened to show more detail. In

addition, a composite WC, which is similar in func-

tionality to a composite node, has been expanded to
display the lower level dependencies between the Ge-
ometry and Shaders subsystems.

In Figure 4, the SLphong and SLreflect functions in
the Geometry subsystem have been magnified so that

their source code can be displayed. The code for these
functions is stored in separate C files.

280

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

Figure 4: Browsing source code using SHriMP Views

5.2 SQL/DS

The Structured Query Language/Data System is a
large, relational database-management system written
in PL/AS, a proprietary IBM systems-programming
language. SQL/DS consists of about 1,300 compi-

lation units, roughly split into three large systems

and several smaller ones. Due to its size and com-

plexity, no individual alone can understand the en-

tire program[l5]. Rigi has been applied to this system

to ease software maintenance by providing up-to-date,

high-level perspectives of the system structure.

The SHriMP views were designed for the visualiza-
tion of large graphs and are therefore ideal when ma-
nipulating and documenting large system structures.
Figure 5(a) shows the flat graph of a subsystem in the

SQL/DS program using SHriMP. This graph contains

691 nodes and 2917 arcs. A spring layout algorithm

has been applied to this graph, and several groups of
nodes on the fringe of the graph are easily identifiable

as possible candidates for subsystems.

Figure 5(b) Ishows the result of using SHriMP to

select and zoom nodes in the forward dependency tree

of the ARIXl20 module. This set of nodes is a good
subsystem candidate since each of them only call the
ARIXIZO module and no other module. This struc-

ture has been emphasized by uniformly magnifying

the nodes selected. The nodes are enlarged so that
their labels are visible.

The next section discusses the advantages and dis-
advantages observed while using this abpproach.

6 Discussion

Both the multiple window technique and the single
window fisheye view technique provided by SHriMP

have advantages and disadvantages. Using the exam-

ples presented in the last section, the two techniques

are compared.

281

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

Figure 5: (a) The spring layout algorithm has been

applied to the SQL/DS software system. This algo-
rithm creates clusters of nodes on the fringe of the

graph, which are candidates for subsystems. (b) One
of the clusters of nodes is enlarged, so that it can be

examined in more detail. By enlarging these nodes,
the node labels are now visible.

6.1 Detail In Context

For large software systems, understanding the

structural aspects of a system’s architecture is ini-

tially more important than understanding any single

component[l5]. The nested graph formalism is partic-

ularly well suited to showing different levels of abstrac-

tion in a system’s architecture concurrently. The user

incrementally exposes the structure of the software by
magnifying subsystems of current interest.

Figure 3(a) of the Ray Tracer example provides de-

tail of the Geometry subsystem while simultaneously

displaying the structure of the program. The mul-

tiple window approach in Figure 2 depicts the same

information, but the user must mentally synthesize an

architectural model from information in different win-

dows.

Figure 3(b), demonstrates how additional informa-

tion concerning the exact nature of the interface be-
tween the Shaders and Geometry subsystems can easily
be displayed in the SHriMP view. The Shaders sub-
system has been opened to show more detail, and a

composite arc between the two subsystems has also

been opened. The maintainer can integrate this infor-

mation into a more comprehensive conceptual model.

6.2 Visualizing Software Structures

For larger systems, the SHriMP views are partic-

ularly well suited to exposing structures in the soft-
ware. The zooming mechanism provides an alternative
to scrolling by enlarging nodes in a user defined area

of interest and concurrently deemphasizing, but not

hiding, the remainder of the graph. By zooming on

different portions of a large graph, a reverse engineer

can quickly identify highly connected nodes, candidate
subsystems and other important features.

Alternatively, a user can select a group of nodes

which are not necessarily adjacent in the graph, and

then zoom these nodes for further scrutiny. Fig-
ure 5(b) shows the result of selecting and zooming the
nodes in the call forward dependency tree of the AR-
IX120 module. By enlarging related but distributed

sets of nodes, structures in the graph, such as design

patterns, can be emphasized without adversely affect-

ing the general layout of the graph.

By concurrently zooming multiple structures, a

software maintainer can see their relative locations in
the overall structure, examine their similarities and

differences, and visualize any dependencies between
them.

282

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

6.3 Visualizing Source Code

For software maintainers, an understanding of the

architecture is often a prerequisite to understanding

the code of the modules or functions. The fisheye view

in SHriMP provides a mechanism for a maintainer to

read source code while retaining sight of the software
architecture. Figure 4 demonstrates that the source

code can become an integral part of the architecture

documentation, as opposed to being a separate en-

tity which is normally the case. Feedback indicates
that this functionality will increase the maintainer’s

understanding considerably.

6.4 Navigating Software Hierarchies

As with any large information space, the naviga-

tion of large software systems is non-trivial. In the
multiple window approach, a user travels through the

hierarchy by opening windows as they move from one
level of abstraction to the next. It is not unusual for

users to become “lost” as they move deeper in the
hierarchy. The SHriMP view technique provides bet-

ter contextual cues for the visualizer as they navigate
through the hierarchy. All steps in the path traveled

are visible, in the form of the nested nodes. A user

can elect to return to any subsystem in the branch

traveled, and elide the information contained in that

subsystem. By using the nested graph formalism in a
single fisheye view, manual operations to open, close,

resize and reposition windows are performed by the
fisheye view algorithm automatically.

However, the multiple, overlapping window ap-
proach originally provided by Rigi may be the de-
sired approach in certain situations. For example, in
a very large project, a maintainer may only be in-

terested in one small part of the system. Using a

catch-all SHriMP view may retain unnecessary infor-

mation about higher levels of abstraction. The Rigi

overview window feature which displays containment

hierarchies is effective at presenting a tree or dag-like

view of a hierarchy. This may be a more familiar vi-

sualization of a hierarchy than SHriMP views.
Therefore combinations of both display techniques

may be the best approach. For example, a maintainer
can open separate windows until the subsystem of cur-

rent interest is reached, and then use a SHriMP view

from then on.

7 Conclusions

This paper has demonstrated how structures of
large software systems at various levels of abstrac-

tion can be effectively explored and documented using
SHriMP views with the programmability and exten-

sibility features in Rigi. SHriMPs help reverse engi-
neers in the discovery phase by allowing them to see

detailed structures and patterns, but still look at these

structures within the context of the ‘overall architec-
ture. The containment or nesting feature of subsystem
nodes implicitl,y communicates the parent-child rela-
tionships and readily exposes the structure of the hi-
erarchy. For maintainers and managers wishing to un-

derstand the structure of the software, this approach
provides the mechanism to visualize the architecture

of the system and simultaneously browse the imple-
mentation. Architectural styles and patterns spanning

several levels of abstractions can be effectively docu-

mented. In addition, SHriMP views are also ideally
suited for documenting program s1icin.g results.

Early observations indicate that users adopt

SHriMP views (quickly and easily exploit the relative
advantages of this software visualiza&ion technique.

Further studies will evaluate its effectiveness and com-
pare it to other techniques.

Acknowledgements

The authors would like to thank Bryan Gilbert and

James McDaniel for their editing suggestions and com-

ments, and Brian Corrie for assisting in the incorpo-

ration of SHriMP views into Rigi.

References

PI

PI

PI

141

M.M. Burnett, M.J. Baker, C. Bohus, P. Carlson,

S.Yang, ansd P. van Zee. Scaling up visual pro-

gramming languages. IEEE Computer, Special

Issue on V;isual Languages, 28(3), March 1995.

J. Dill, L. Bartram, A. Ho, and F. Henigman. A

continuously variable zoom for navigating large

hierarchical networks. In Proceedings of the 1994
IEEE Conference on Syst.ems, Man and Cyber-

netics, 1994L.

K.M. Fairchild, S.E. Poltrock, and G.W. Fur-
nas. Semnet: Three-dimensional graphic rep-

resentations of large knowledge bases. In Ray-
monde Guindon, editor, Cognitive Science and

its Applicabions for Human-Computer Interac-

tion. Lawrence Erlbaum Associates, Publishers,

1988.

G.W. Furnas. Generalized fisheye views. In Pro-
ceedings of ACM CHI’86, (Boston, MA), pages
16-23, April, 1986.

283

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

[5] E. Gamma, R. Helm, R. Johnson, and John Vlis-

sides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Ar-
chitectural mismatch or why it’s hard to build

systems out of existing parts. In Proceedings of

17th Znternational Conferences on Software En-

gineering, (Seattle, Washington, U.S.A.), pages

179-185, April 23-30, 1995.

[7] D. Harel. On visual formalisms. Communications

of the ACM, 31(5), May 1988.

[8] H.A. Miiller, M.A. Orgun, S.R. Tilley, and J.S.

Uhl. A reverse engineering approach to subsys-

tem structure identification. Journal of Software
Maintenance: Research and Practice, 5(4):181-

204, December 1993.

[9] E.G. Noik. A space of presentation emphasis

techniques for visualizing graphs. In Proceedings

of Graphics Interface ‘94, (Banff, Alberta: 18-20

May 1994), pages 225-233, May 1994.

[lo] J. K. Ousterhout. Tel and the Tk Toolkit.

Addison-Wesley, 1994.

[ll] M. Sarkar and M.H. Brown. Graphical fisheye

views. Communications of the ACM, 37(12), De-

cember, 1994.

[12] M.-A.D. Storey and H.A. Miiller. Graph layout

adjustment strategies. In Proceedings of Graph

Drawing 1995, (Passau, Germany, September 20

- 22, 1995). Springer Verlag, 1995. Lecture Notes

in Computer Science. To appear December i995.

[13] S.R. Tilley, M.J. Whitney, H.A. Miiller, and

M.-A.D. Storey. Personalized information struc-

tures. In Proceedings of the 11th Annual Inter-

national Conference on Systems Documentation

(SIGDOG ‘93), (Waterloo, Ontario; October 5-

8, 1993), pages 325-337. ACM (Order Number
6139330), October 1993.

[14] E.R. Tufte. Envisioning Information. Graphics

Press, 1990.

[15] K. Wong, S.R. Tilley, H.A. Miiller, and M.-

A.D. Storey. Structural redocumentation: A

case study. IEEE Software, 12(1):46-54, January

1995.

284

Proceedings of the International Conference on Software Maintenance (ICSM '95)
1063-6773 /95 $10.00 © 1995 IEEE

