
Manipulating LTL formulas using Spot 1.0

Alexandre Duret-Lutz

LRDE, EPITA, Kremlin-Bicêtre, France
adl@lrde.epita.fr

Abstract. We present a collection of command-line tools designed to generate,
filter, convert, simplify, lists of Linear-time Temporal Logic formulas. These
tools were introduced in the release 1.0 of Spot, and we believe they should be
of interest to anybody who has to manipulate LTL formulas. We focus on two
tools in particular: ltlfilt, to filter and transform formulas, and ltlcross to
cross-check LTL-to-Büchi-Automata translators.

1 Introduction

Spot is a C++ library of model-checking algorithms that has been around for nearly
10 years [5]. It contains algorithms to perform the usual task in the automata-theoretic
approach to LTL model checking [13]. So far, and because it is a library, Spot did not
provide any convenient access to its features from the command-line. The adventurous
user would use some of the programs built for the test-suite of Spot, but these programs
were never designed to offer a user-friendly interface.

This situation has changed with the recent release of Spot 1.0: it now installs a
collection of command-line tools that give access to many of Spot’s features, and allows
to combine them with pipes, in the purest Unix tradition. The current tool set (which we
describe in this paper) is focused on the handling of linear-time temporal-logic formulae
and on its conversion to Büchi automata. The library also includes many algorithms that
work on automata, but which are not yet available from the command-line.

We invite the reader to download Spot from http://spot.lip6.fr/ and install it,
in order to play with the example commands provided in this paper. In addition to the
man pages that are installed along with Spot, a more detailed description of the tools can
be read at http://spot.lip6.fr/userdoc/tools.html.

2 Linear-time Temporal Logic(s)

Spot supports the usual LTL operators: X (next), F (eventually), G (globally), U (until), R
(release), W (weak until), and M (strong release). These can be combined with Boolean
operators, Boolean constants, and identifiers that represent atomic propositions.

Although there are many tools using LTL, there is no standard syntax for the represen-
tation of LTL formulas. For instance the formula G(request → F(grant)) could be writ-
ten as [](request => <>(grant)) by Spin [7], [](request --> <>(grant)) by
Goal [12], G(request=1 -> F(grant=1) by Wring [10], G i "request" F "grant"

http://spot.lip6.fr/
http://spot.lip6.fr/userdoc/tools.html

by ltl2dstar [8], or even G i p0 F p1 by tools like LBT1 or Scheck [9] that do not accept
arbitrary identifiers as propositions. Spot’s tools will write G(request -> F(grant))
by default, but they can read all the above syntaxes, and can write into most of them (the
only missing output is Goal, because Goal can already read Spin’s syntax).

In addition to LTL operators, we support operators from the linear fragment of the
Property Specifications Language (PSL) [1]. These operators connect Semi-Extended
Regular Expressions with LTL. A SERE is built using the usual three regular operators,
‘;’ (concatenation), ∪ (union), and ? (Kleene star), but extended with additional operators
such as ∩ (intersection), ‘:’ (fusion), and many other operators that are just syntactic
sugar over these.2 The main two PSL operators are:

– {e}� f : any finite prefix matching the SERE e must trigger the verification of f
(any formula using PSL or LTL operators) from the last letter of the prefix, and

– {e}� f : f must be verified from the last letter of some prefix matching e.
Again more syntactic sugar exists on top of these. For instance {e}! is syntactic sugar for
{e}� >: some finite prefix must match the SERE e.

As an example, the PSL formula {(>;>)?}� p states that p should hold every two
states, and has no equivalent LTL formula.

3 Tools

Spot installs six command-line tools: randltl is a random LTL/PSL formula generator;
ltlfilt is a multi-function LTL/PSL formula filter, able to convert formulas between
formats, filter formulas matching certain criteria, and perform some simple syntactic
transformations; genltl is a formula generator for various scalable families of LTL
formulas; ltl2tgba is a translator from LTL/PSL formulas to different kinds of Büchi
automata [4]; ltl2tgta is a translator from LTL/PSL formulas to different kinds of
testing automata [2]; and ltlcross is a test-bench for LTL/PSL translators. By lack of
space, we only illustrate three of these commands over a few command-line examples.

3.1 ltlfilt and randltl

% ltlfilt --safety --relabel=abc --uniq --spin formulas.ltl

Reads formulas from file formulas.ltl (one formula per line), retains only those that
represent safety properties, renames the atomic propositions occurring in each formula
using the letters ‘a’, ‘b’, ‘c’,... suppresses duplicate formulas, and outputs formulas
using Spin’s syntax. The safety check is automaton-based [3], so “pathological formulas”
that represent safety properties without looking so syntactically are also captured.
% randltl -n -1 --tree-size=10..15 a b | ltlfilt --simplify --safety |

ltlfilt --invert-match --syntactic-safety --uniq | head -n 10

The randltl command generates an unbounded (-n -1) stream of LTL formulas with
a tree size between 10 and 15, and using atomic propositions ‘a’ and ‘b’. These formulas

1 http://www.tcs.hut.fi/Software/maria/tools/lbt/
2 A complete description of all the supported operators and their semantics can be found in
doc/tl/tl.pdf inside the Spot distribution.

http://www.tcs.hut.fi/Software/maria/tools/lbt/

are then simplified (using Spot’s LTL rewriting rules) and filtered to preserve only safety
formulas; the result is then filtered again to remove all “syntactic safety” formulas, as
well as duplicate formulas. The result of these three commands is therefore a stream of
pathological safety formulas, from which we only display the first 10 using the standard
head command from Unix.

Chaining commands this way to generate random formulas has proven to be a very
useful way to generate sets of formulas matching a certain criterion. The following
example generates a list of 20 PSL formulas that are not LTL formulas (i.e., they must
use PSL operators) and that are equivalent to a U b.
% randltl --psl -n-1 --tree-size=5..10 a b |ltlfilt --invert-match --ltl|

ltlfilt --uniq --equivalent-to ’a U b’ | head -n 20

Simplification rules are able to transform some PSL formulas into LTL formulas.
For instance the PSL formula {a?; b?; c}! is equivalent to the LTL formula a U(b U c).
Similarly the PSL formulas {a[→ 2]}� b, which states that b should hold every time a
holds for the second time, can be transformed into a R(ā ∨ X(a R(ā ∨ b))).
% ltlfilt --simplify -f ’{a*;b*;c}!’ -f ’{a[->2]}[]->b’

a U (b U c)

a R (!a | X(a R (!a | b)))

Note that PSL is more expressive than LTL, so not all PSL formulas can be converted
into LTL. Currently, we only implements rewriting for some straightforward PSL patterns,
and these rewriting rules will certainly be improved in the future.

Occasional questions such as “Is F(ā ∧ Xa ∧ Xb) stutter-invariant?” can also be
answered by instructing ltlfilt to match only stutter-invariant formulas:
% ltlfilt --stutter-invariant -f ’F(!a & Xa & Xb)’

F(!a & Xa & Xb)

Since the formula was output, it is stuttering invariant. Another option, --remove-x,
can be used to rewrite this formula without the X operator.3 Other day-to-day questions
like “Is formula ϕ equivalent to formula ψ?” can be answered similarly.

3.2 ltlcross

Spot has used LBTT, the LTL-to-Büchi Translator Testbench [11] in its test-suite since
its early days. LBTT feeds randomly generated LTL formulae to the configured LTL-to-
Büchi translators, and then cross-compares the results of all tools, using several checks
to detect possible bugs in implementations, or simply to compare the results from a
statistical standpoint. Unfortunately, LBTT is no longer maintained, we have found it
quite hard to extend to gather new kinds of statistics, and most importantly it is restricted
to LTL. We therefore introduce ltlcross, a reimplementation of LBTT using Spot,
with support for PSL formulas.
ltlcross reads a list of formulas from its standard input (usually some output of

randltl) or from a file, runs these formulas through several (PSL or) LTL-to-Büchi
translators, read the output of these translators (as never claims or in LBTT’s syntax)
and then performs the same tests as LBTT on the resulting automata.

3 Stutter invariance is actually asserted using automata to test the language equivalence of the
input formula and its rewriting without X [6]. Currently this only works for LTL.

The output of ltlcross is a CSV or JSON file that contains more statistics about
the produced automata. These files are easily post-processed to compute summary table
or graphics. A typical invocation would look as follows:
% randltl -n 100 a b c | ltlfilt --remove-wm |

ltlcross --csv=out.csv ’ltl2tgba -s %f >%N’ ’spin -f %s >%N’ ’lbt <%L >%T’

Here 100 random formulas over a, b, and c are produced, the operators W and M are
rewritten away by ltlfilt (because W and M are not supported by spin -f and lbt),
and finally ltlcross uses the resulting formulas with 3 different translators, and gather
statistics in out.csv.

The invocation of each tool is configured with %-sequences showing how the formula
to translate should be passed (e.g., %f, %s, %l are replaced respectively by the formula
is Spot’s, Spin’s, or LBT’s syntax, while %F, %S, %L are replaced by the name of a file
that contains the formula in these syntaxes) and how to read the result (%T for a filename
that will contain output in LBTT’s syntax, and %N for a filename that will contain a
neverclaim). If any error is detected while running these translators, or when comparing
their outputs (we perform the same checks as LBTT), ltlcross will report it.

References

1. Property Specification Language Reference Manual v1.1. Accellera (Jun 2004), http://www.
eda.org/vfv/

2. Ben Salem, A.E., Duret-Lutz, A., Kordon, F.: Model checking using generalized testing
automata. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC), 4, 94–112,
Springer (2012)

3. Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the powerset construction for restricted
classes of ω-automata. In: Proc. of ATVA’07. LNCS, vol. 4762. Springer (Oct 2007)

4. Duret-Lutz, A.: LTL translation improvements in Spot. In: Proc. of VECoS’11. British
Computer Society (Sep 2011), http://ewic.bcs.org/category/15853

5. Duret-Lutz, A., Poitrenaud, D.: SPOT: an Extensible Model Checking Library using
Transition-based Generalized Büchi Automata. In: Proc. of MASCOTS’04. pp. 76–83. IEEE
Computer Society Press (Oct 2004)

6. Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant LTL.
Information Processing Letters, 75(6), 261–263 (2000)

7. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
(2003)

8. Klein, J., Baier, C.: Experiments with deterministicω-automata for formulas of linear temporal
logic. Theoretical Computer Science, 363(2), 182–195 (2006)

9. Latvala, T.: Efficient model checking of safety properties. In: Proc. of Spin’03. LNCS, vol.
2648, pp. 74–88. Springer (2003)

10. Somenzi, F., Bloem, R.: Efficient Büchi automata for LTL formulæ. In: Proc. of CAV’00.
LNCS, vol. 1855, pp. 247–263. Springer (2000)

11. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. Interna-
tional Journal on Software Tools for Technology Transfer, 4(1), 57–70, Springer (2002)

12. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C., Luo, C.J., Chang, J.S.: Tool support
for learning büchi automata and linear temporal logic. Formal Aspects of Computing, 21(3),
259–275, Springer (2009)

13. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Proc. of Banff’94.
LNCS, vol. 1043, pp. 238–266. Springer (1996)

http://www.eda.org/vfv/
http://www.eda.org/vfv/
http://ewic.bcs.org/category/15853

	Manipulating LTL formulas using Spot 1.0

