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Abstract. We study the application of limited-width MDDs (multi-
valued decision diagrams) as discrete relaxations for combinatorial op-
timization problems. These relaxations are used for the purpose of gen-
erating lower bounds. We introduce a new compilation method for con-
structing such MDDs, as well as algorithms that manipulate the MDDs
to obtain stronger relaxations and hence provide stronger lower bounds.
We apply our methodology to set covering problems, and evaluate the
strength of MDD relaxations to relaxations based on linear programming.
Our experimental results indicate that the MDD relaxation is particu-
larly effective on structured problems, being able to outperform state-of-
the-art integer programming technology by several orders of magnitude.

1 Introduction

Binary Decision Diagrams (BDDs) [1, 19, 6] provide compact graphical repre-
sentations of Boolean functions, and have traditionally been used for circuit
design and formal verification [17, 19]. More recently, however, BDDs and their
generalization Multivalued Decision Diagrams (MDDs) [18] have been used in
Operations Research for a variety of purposes, including cut generation [3], ver-
tex enumeration [5], and post-optimality analysis [12, 13].

In this paper, we examine the use of BDDs and MDDs as relaxations for
combinatorial optimization problems. Relaxation MDDs were introduced in [2]
as a replacement for the domain store relaxation, i.e., the Cartesian product of
the variable domains, that is typically used in Constraint Programming (CP).
MDDs provide a richer data structure that can capture a tighter relaxation of the
feasible set of solutions, as compared with the domain store relaxation. In order
to make this approach scalable, MDD relaxations of limited size are applied. Var-
ious methods for compiling these discrete relaxations are provided in [14]. The
methods described in that paper focus on iterative splitting and edge filtering
algorithms that are used to tighten the relaxations. Similar to classical domain
propagation, such MDD propagation algorithms have been developed for indi-
vidual (global) constraints, including inequality constraints, equality constraints,
alldifferent constraints and among constraints [14, 15].

The focus of the current work is the application of limited-width MDD re-
laxations in the context of optimization problems. We explore two main topics.



Firstly, we investigate a new method for building approximate MDDs. We intro-
duce a top-down compilation method based on approximating the set of com-
pletions of partially assigned solutions. This procedure differs substantially from
the ideas in [2] in that we do not compile the relaxation by splitting vertices,
but by merging vertices when the size of the partially constructed MDD grows
too large.

Secondly, and more specific to optimization, we introduce a method to im-
prove the lower bound provided by an MDD relaxation. It is somewhat parallel
to a cutting plane algorithm in that it “cuts off” infeasible solutions so as to
tighten the bound. Unlike cutting planes, however, it can begin with any valid
lower bound, perhaps obtained by another method, and tighten it. The bound
becomes tighter as more time is invested.

The resulting mechanism is a pure inference algorithm that can be used
analogously to a pure cutting plane algorithm. We envision, however, that MDD
relaxations would be most profitably used as a bounding technique in conjunc-
tion with a branch-and-bound search, much as separation algorithms are used
in integer programming. Nonetheless we find in this paper that, even as a pure
inference algorithm, MDD relaxation can outperform state-of-the-art integer pro-
gramming technology on specially structured instances.

One advantage of an MDD relaxation is that it is always easy to solve (as a
shortest path problem) whether the original problem is linear or nonlinear. This
suggests that MDDs might be most competitive on nonlinear discrete problems.
Nonetheless we deliberately put MDDs at a competitive disadvantage by ap-
plying them to a problem with linear inequality constraints—namely, to the set
covering problem, which is well suited to integer programming methods.

We compare the strength of bounds provided by MDDs with those provided
by the linear programming relaxation and cutting planes. We also compare the
speed with which MDDs (used as a pure inference method) and integer program-
ming solve the problem. We find that MDDs are much superior to conventional
integer programming when the ones in the constraint matrix lie in a relatively
narrow band. That is, the matrix has relatively small bandwidth, meaning that
the maximum distance between any two ones in the same row is limited.

The bandwidth of a set covering matrix can often be reduced, perhaps sig-
nificantly, by reordering the columns. Thus MDDs can solve a given set covering
problem much more rapidly than integer programming if its variables can be
permuted to result in a relatively narrow bandwidth. Algorithms and heuristics
for minimum bandwidth ordering are discussed in [20, 7–9, 11, 21–23].

The remainder of the paper is organized as follows. In Section 2 we define
MDDs more formally and introduce notation. In Section 3 we describe a new
top-down compilation method for creating relaxation MDDs. In Section 4 we
present our value enumeration scheme to produce lower bounds. In Section 5 we
discuss applying the ideas of the paper to set covering problems. In Section 6
we report on experiments results where we apply the ideas of the paper to set
covering problems. We conclude in Section 7.



2 Preliminaries

In this work a Multivalued Decision Diagram (MDD) is a layered directed acyclic
multi-graph whose nodes are arranged in n + 1 layers, L1, L2, . . . , Ln+1. Layers
L1 and Ln+1 consist of single nodes; the root r and the terminal t, respectively.
All arcs in the MDD are directed from nodes in layer j to nodes in layer j + 1.

In the context of Constraint Satisfaction Problems (CSPs) or Constraint
Optimization Problems (COPs), we use MDDs to represent assignments of values
to variables. A CSP is specified by a set of constraints C = {C1, C2, . . . Cm} on a
set of variables X = {x1, x2, . . . , xn} with respective finite domains D1, . . . ,Dn,
and a COP is specified by a CSP together with an objective function f to be
minimized. By a solution to a CSP (COP) we mean an assignment of values to
variables where the values assigned to the variables appear in their respective
domains. By a feasible solution we mean a solution that satisfies each of the
constraints in C, and the feasible set is the set of all feasible solutions. For a
COP, an optimal solution is a feasible solution x∗ such that for any other feasible
solution x̃, f(x∗) ≤ f(x̃).

We use MDDs to represent a set of solutions to a CSP, or COP, as follows.
We let the layers L1, . . . , Ln correspond to the problem variables x1, . . . , xn,
respectively. Node u ∈ Lj has label var(u) = j, representing its variable index.
Arc (u, v) with var(u) = j is labeled with arc domain du,v, by an element of the
domain of variable xj , i.e., du,v ∈ Dj . All arcs directed out of a node must have
distinct labels.

A path p from node ui to node uk, i < k, along arcs ai, ai+1, . . . , ak−1

corresponds to the assignment of the values daj
to the variables xj , for j =

i, i+1, . . . , k−1. In particular, we see that any path from the root r to the termi-
nal t, p = (a1, . . . , an) , corresponds to the solution xp, where x

p
j = daj

. We note
that as an MDD is a multi-graph, two paths p1, p2, along nodes r = u1, . . . , un, t

may correspond to multiple solutions as there may be multiple arcs from uj to
uj+1 corresponding to different assignments of values to the variable xj .

The set of solutions represented by MDD M is Sol(M) = {xp|p ∈ P} where
P is the set of paths from r to t. The width of layer Lj is given by ωj = |Lj |,
and the width of MDD M is given by ω(M) = maxj∈{1,2,...,n} ωj . The size of M

is denoted by |M |, the number of nodes in M .

For a given CSP P, let X(P) be the set of feasible solutions for P. An exact

MDD M for P is any MDD for which Sol(M) = X(P). A relaxation MDD Mrel

for P is any MDD for which Sol(Mrel) ⊇ X(P). For the purposes of this paper,
relaxation MDDs are of limited width, in that we require that ωj ≤ W , for some
predefined W . This ensures that the relaxation has limited size which is necessary
since even for single constrained problems, the feasible set may correspond to
an MDD of exponential size (for example inequality constrained problems [4]).

Finally, we note that for a large class of objective functions (e.g., for separable
functions), optimizing over the solutions represented by an MDD corresponds
to finding a shortest path in the MDD [2]. For example, given a linear objective
function min cx, we associate with each arc (u, v) in the MDD a cost c(u, v),
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Fig. 1. Exact MDD for Example 1.

where c(u, v) = cvar(u) · du,v. Then it is clear that a shortest path from r to t

corresponds to the lowest cost solution represented by the MDD.

Example 1. As an illustration, consider the CSP consisting of binary variables
x1, x2, . . . , x6, and constraints

C1 : x1 + x2 + x3 ≥ 1,

C2 : x1 + x4 + x5 ≥ 1,

C3 : x2 + x4 + x6 ≥ 1.

An exact MDD representation of the feasible set is given in Fig. 1, where arc
(u, v) being solid/dashed corresponds to the arc setting var(u) to 1/0.

3 Top-Down MDD Compilation

As discussed above, there are several methods that can be used to construct
both exact and approximate MDDs. In this section we propose a new top-down
method for creating approximate MDDs.

3.1 Exact Top-Down Compilation

We first discuss an exact top-down compilation method, which is based on the
notion of node equivalence.

Given a path p from r to u, let F (p) be the set of feasible completions of
the corresponding partial assignment. That is, if (x1, . . . , xk) = (d1, · · · , dk) = d

is the partial assignment represented by p, then F (p) = {y ∈ Dk+1 × · · · ×
Dn|(d, y) is feasible }. We say that two paths p, p′ from r to the same layer are
equivalent if F (p) = F (p′).

Analogously, we define F (u) to be the set of completions at node u, so that
F (u) =

⋃

p∈P F (p), where P is the set of paths from r to u. We note that in an
exact MDD all paths terminating at a node u are equivalent.



A node equivalence test determines when two nodes u, u′ on the same layer
have the same set of feasible completions. In other words, this test determines
when F (u) = F (u′). Testing whether two nodes have the same set of feasible
completions requires maintaining a state Iu at each node [15]. The state of node
u should contain all facts about the paths ending at u to run an equivalence test.
In addition, it is useful to know when a partial assignment cannot be completed
to a feasible solution for a CSP. In such a case, we let the state of such a path,
or more generally a node, be 0̂, to signal that there are no completions of this
path/node.

Now, using a properly defined node equivalence test, one can create an exact
MDD using Algorithm 1. Given that layers L1, . . . , Lj have been created, we
examine the nodes in Lj one by one. When examining node u, for each domain
value d ∈ Dj we calculate the new state Inew that results from adding xj = d

to the partial paths ending at u. If no other nodes on layer Lj+1 have the same
state (i.e. the same set of feasible completions) we add a new node v to Lj+1

and the arc (u, v) with arc domain d, and set Iv = Inew. If however there is some
node w ∈ Lj+1 with Iw = Inew we know that all paths starting at r, ending at u

and having xj = d will have the same set of feasible completions as w. Therefore,
we simply add the arc (u,w) with arc domain d.

Algorithm 1 Top-Down MDD Compilation

1: L1 = {r}
2: for j = 1 to n do

3: Lj+1 = ∅
4: for all u ∈ Lj do

5: for all d ∈ D(xj) do

6: calculate Inew, the state for all paths starting at r, ending at u, and including
xj = d

7: if Inew 6= 0̂ then

8: if there exists w ∈ Lj+1 with Iw = Inew then

9: add arc (u, w) with du,w = d

10: else

11: add node v to Lj+1

12: add arc (u, v) with du,v = d

13: set Iv = Inew

14: end if

15: end if

16: end for

17: end for

18: end for

We will be modifying Algorithm 1 later to create approximate MDDs. First,
however, we discuss specific exact MDDs for the feasible set satisfying a single

equality constraint. Such MDDs will be applied in our value enumeration method
for tightening lower bounds, presented in Section 4.



Lemma 1. Let P be a CSP on n binary variables with the single constraint
∑n

j=1 cjxj = c, for a given integer c, and integer coefficients cj ≥ 0. An exact

MDD for P has maximum width c + 1.

Proof. We apply Algorithm 1. Given a node u, let p be any path from r to u, and
let a1, . . . , ak be the arcs along this path, which set variables x1, . . . , xk to the
arc domain values da1

, . . . , dak
. We define Iu =

∑k

j=1 cj · daj
. Using this label as

the state of node u we see that two nodes u and v have the same set of feasible
completions if and only if Iu = Iv. In addition, if Iw ≥ c + 1 for some node w,
it is clear that all paths from r to w have no feasible completions. Therefore we
can have at most c + 1 nodes on any layer. ⊓⊔

We note that Lemma 1 is very similar to the classical pseudo-polynomial char-
acterization of knapsack constraints.

3.2 Approximate Top-Down Compilation

In general, an exact MDD representation of all feasible solutions to a CSP may
be of exponential size, and therefore generating exact MDDs for combinatorial
optimization problems is not practical. In light of this we use relaxation MDDs to
approximate the set of feasible solutions. In this section we outline one possible
method for generating approximate MDDs, by modifying Algorithm 1.

In order to create a relaxation MDD we merge nodes during the top-down
compilation method presented in Algorithm 1 when the width of layer j exceeds
a certain preset maximum allotted width W . To accomplish this, we select two
nodes and modify their states in a relaxed fashion, ensuring that all feasible
solutions will remain in the MDD when it is completed. More formally, if we
select nodes u1 and u2 to merge, we need to modify their states Iu1

, Iu2
in such

a way as to make them equivalent with respect to the equivalence test used to
merge nodes during the top-down compilation. We define a certain relaxation

operation ⊕ on the state of nodes as follows.1 If for nodes u1 and u2 we change
their associated states to I(u1)⊕I(u2), any feasible completion of the paths from
the root to u1 and u2 will remain when the terminal is reached. This is outlined
in Algorithm 2, which is to be inserted between lines 17 and 18 in Algorithm 1.
In Section 5 we describe such an operation in detail, for set covering problems.

The quality of the relaxation MDD generated using the modification of Al-
gorithm 1 hinges largely on the method used for selecting two nodes to combine.
We propose several heuristics for this choice in the following table:

Name Node selection method

H1 select u1, u2 uniformly at random among all pairs in Sj+1

H2 select u1, u2 such that f(u1), f(u2) ≥ f(v),∀v ∈ Sj+1, v 6= u1, u2

H3 select u1, u2 such that Iu1
and Iu2

are closest among all pairs in Sj+1

1 Here we follow the notation ⊕ that was used in [15] for their analogous operation
for aggregating node information.



Algorithm 2 Top-Down Relaxation Compilation

1: while |Sj+1| > W do

2: select nodes u1, u2 ∈ Sj+1

3: create node u

4: for every arc directed at u1 or u2 redirect arc to u with the same arc domain
5: I(u) = I(u1)⊕ I(u2)
6: Sj+1 ← Sj+1\{u1, u2} ∪ {u}
7: end while

The rationale behind each of the methods are the following. Method H1 calls
for randomly choosing which nodes to combine. Randomness often helps in com-
binatorial optimization and applying it in this context may work as well. H2

combines nodes that have the greatest shortest path lengths. For this we let
f(u) be the shortest path length from the root to u in the partially constructed
MDD. Choosing such a pair of nodes allows for approximating the set of feasible
solutions in parts of the MDD where the optimal solution is unlikely to lie, and
retaining the exact paths in sections of the MDD where the optimal solution is
likely to lie. H3 combines nodes that have similar states. For particular types
of states and equivalence tests, we must determine the notion of closest. This
method is sensible because these nodes will most likely have similar sets of com-
pletions, allowing the relaxation to better capture the set of feasible solutions.

4 Value Enumeration

We next discuss the application of MDD relaxations for obtaining lower bounds
on the objective function, in the context of COPs. We propose to obtain and
strengthen these bounds by means of successive value enumeration. Value enu-
meration is a method that can be used to increase any lower bound on a COP
via a relaxation MDD.

Suppose we have generated a relaxation MDD Mrel. We then generate an
MDD representing every solution in Mrel with objective function value equal to
the best lower bound. There are several ways to accomplish this, but in general
this MDD can have exponential size. However, for some important cases the
MDD representing every solution equal to a particular value has polynomial
size.

For example, suppose we have a COP with objective function equal to the
sum of the variables, i.e., f(x) =

∑n

j=1 xj , where we assume that the variable
domains are integral. Given a lower bound zLB , the reduced MDD for the set of
solutions with objective value equal to zLB , MzLB

, has width ω(MzLB
) = zLB+1,

by Lemma 1. The same holds for other linear objective functions as well.
In any case, suppose we have the desired MDD MzLB

, where Sol(MzLB
) is

the set of all solutions with objective value equal to zLB . Now, consider the set
of solutions S = Sol(MzLB

) ∩ Sol(Mrel). As this is the intersection between the
solutions represented by the relaxation and every solution equal to the lower



bound zLB , showing that there is no feasible solution in S allows us to increase
the lower bound.

Constructing an MDD M representing the set of solutions S = Sol(MzLB
) ∩

Sol(Mrel) can be done in time O(|MzLB
|·|Mrel|) and has maximum width ω(M̃) ≤

ω(MzLB
) · ω(Mrel) [6]. As the width of MzLB

has polynomial size for certain
objective functions and the width of Mrel is bounded by some preset W , the
width of the resulting MDD will not grow too large in these cases.

The value enumeration scheme proceeds by enumerating all of the solutions
in M . If we find a feasible solution, we have found a witness for our lower bounds.
Otherwise, we can increase the lower bound by 1. Of course, this method is only
practical if we can enumerate these paths efficiently.

Observe that we do not need to start the value enumeration scheme with the
value of the shortest path in the original MDD. In fact, we can start with any
lower bound. For example, we can use LP to find a strong lower bound and then
apply this procedure to any relaxation MDD.

As described above, in order to increase the bound, we are required to certify
that none of the paths in M correspond to feasible solutions. Of course this can
be done by a naive enumeration of all of the paths in M. However, we use MDD-
based CP, as described in [2], in unison with a branching procedure to certify
this. In particular we apply MDD filtering algorithms to reduce the size of the
MDD MzLB

, based on the constraints that constitute the COP. In Section 5.3
we will describe a new MDD filtering algorithm that we apply to set covering
problems.

5 Application to Set Covering

In this section we describe how to apply the ideas of the paper to set covering
problems. We describe a node equivalence test and the state that is necessary to
carry out the test. We also describe the operation ⊕ that can be used to change
the states of the nodes so that we can generate relaxation MDDs.

5.1 Equivalence Test

The well-studied set covering problem is a COP with n binary variables and m

constraints, each on a subset Ci of the variables, which require that
∑

j∈Ci
xj ≥

1, i ∈ {1, . . . ,m}. The objective is to minimize the sum of the variables (or a
weighted sum).

The first step in applying our top-down compilation method is defining an
equivalence test between partial assignments of values to variables. For set cov-
ering problems we do this by equating a set covering instance with its equivalent
logic formula. Each constraint Ci can be viewed as a clause ∨j∈Ci

xj and the set
covering problem is equivalent to satisfying F =

∧

i ∨j∈Ci
xj .

Using this interpretation of set covering problems, one can develop a complete
equivalence test by removing clauses that are implied by other clauses. Clause
C absorbs clause D if all of the literals of C are contained in D. In such a
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Fig. 2. (a) Exact MDD before combining nodes with the same state, (b) Exact MDD
after combining nodes with the same state, (c) MDD after merging node 9’ and 10’
into 9”, making a partially constructed relaxation.

case, satisfying clause C implies that clause D will be satisfied. As an example,
consider the two clauses C = (x1 ∨ x2) and D = (x1 ∨ x2 ∨ x3). It is clear that
if some literal in C is set to true then clause D will be satisfied.

Therefore, to develop the equivalence test, for any partial assignment x we
delete any clause Ci for which there exists a variable in the clause that is already
set to 1, and then delete all absorbed clauses, resulting in the logical formula
F (x). We let Ix be the set of clauses which remain in F (x). Doing so ensures that
two partial assignments x1 and x2, will have the same set of feasible completions
if and only if Ix1 = Ix2 . Note that since each literal is positive in all clauses of a
set covering instance, this test can be performed in polynomial time [16].

To create an exact MDD for a set covering instance (using Algorithm 1),
we let the state Iu at node u be equal to Ix for the partial assignment given
by the arc domains on all paths from the root to u. Two nodes u and v will
have the same set of feasible completions if and only if Iu = Iv, and so the node
equivalence test simply compares Iu with Iv.

Example 2. Continuing Example 1, we interpret the constraints C1, C2, and C3

as set covering constraints. In Fig. 2(a) we see the result of applying the top-down
compilation algorithm (following the variable order x1, x2, . . . , x6) and never
combining nodes based on their associated states , for the first three layers of the
MDD. Below the bottom nodes, we depict the states of the partially constructed
paths ending at those nodes. For example, along this path (r, 2, 5, 11), variables
x2 and x3 are set to 1. Therefore, constraints C1 and C3 are satisfied for any
possible completion of this path, and so the state at node 11 is C2. Since node
11 and node 12 have the same state, we can combine these nodes into node 9’,
as shown in Fig. 2(b). Similarly, nodes 7 and 8 are combined into node 7’ and
nodes 9 and 10 are combined into node 8’.

5.2 Relaxation Operation

We next discuss our relaxation operator ⊕ that is applied to merge two nodes in
a layer. For set covering problems, we let ⊕ represent the typical set intersection.



As an illustration, for the instance in Example 2, suppose we decided that we
want to decrease the width of layer 4 by 1. We would select two nodes (in
Fig. 2(b) we select nodes 9’ and 10’) and combine them (making node 9” as seen
in Fig. 2(c)), modifying their states to ensure that all feasible paths remain upon
completing the MDD. Notice that by taking the intersection of the states of the
nodes 9’ and 10’ we now label 9” with C2. Before merging the nodes, all partial
paths ending at node 10’ needed a variable in both constraint C2 and C3 to be
set to 1. After taking the intersection, we are relaxing this condition, and only
require that for all partial paths ending at 9”, all completions of this path will
set some variable in constraint C2 to 1, ignoring that this needs to also happen
for constraint C3.

5.3 Filtering

As discussed above, during the value enumeration procedure, it is desirable to
perform some MDD filtering to decrease the search space. This filtering can be
applied to arc domain values, as described in [2], but also to the states repre-
sented in the nodes themselves, as we will describe here in the context of set
covering problems.

We associate two 0/1 m-dimensional state variables, s(v), z(v), to each node
v in the MDD. The value s(v)i will be 1 if for all paths from the root to v, there
is no variable in constraint Ci which is set to 1. Similarly, z(v)i will be 1 if for
all paths from v to the terminal, there is no variable in Ci which is set to 1.

Finding the values s(v)i, z(v)i is easily accomplished by the following sim-
ple algorithm. Start with s(r)i = 1 for all i. Now, let node v have parents
u1, u2, . . . , uk, and each edge (up, u) fixes variable xj to value vp ∈ {0, 1}. Then,

s(v)i =

k
∏

p=1

s′(up)i,

where

s′(up)i =

{

0 if xj ∈ Ci and vp = 1
s(up)i otherwise

The values z(v)i are calculated in the same fashion, except switching the
direction of all arcs in the MDD and starting with z(t)i = 1, where t is the
terminal of the MDD.

A node v can now be eliminated whenever there is an index i such that
s(v)i = z(v)i = 1. This is because for all paths from r to v there is no variable
in Ci set to 1, and on all paths from v to t, there is no variable in Ci set to 1.

We note here that as in domain store filtering, certain propagators for MDDs
are idempotent, in that reapplying the filtering algorithm with no additional
changes results in no more filtering. The filtering algorithm presented here is not
idempotent, i.e, applying it multiple times could result in additional filtering.
In our computational experiments we address how this impacts the efficiency of
the overall method.



6 Experimental Results

In this section, we present experimental results on randomly generated set cov-
ering instances. Our results provide evidence that relaxations based on MDDs
perform well when the constraint matrix of a set covering instance has a small
bandwidth. We test this by generating random set covering instances with vary-
ing bandwidths and comparing solution times via pure-IP (using CPLEX), pure-
MDD, and a hybrid MDD-IP method.

In all of the reported results, unless specified otherwise, we apply our MDD-
based algorithm until it finds a feasible solution. That is, we solve these set
covering problems by continuously improving the relaxation through our value
enumeration scheme until we find a feasible (optimum) solution.

6.1 Bandwidth and the Minimum Bandwidth Problem

The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j ,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given by
the constraint matrix, between any two variables that share a constraint. The
smaller the bandwidth, the more structured the problem, in that the variables
participating in common constraints are close to each other in the ordering. The
minimum bandwidth problem seeks to find a variable ordering that minimizes
the bandwidth [20, 7–9, 11, 21–23]. This underlying structure, when present in
A, can be captured by MDDs and results in good computational performance.

6.2 Problem Generation

To test the statement that MDD based relaxations provide strong relaxations for
structured problems, we generate set covering instances with a fixed constraint
matrix density d (the number of ones in the matrix divided by n · m) and vary
the bandwidth bw of the constraint matrix.

We generate random instances with a fixed number of variables n, constraint
matrix density d, and bandwidth bw, where each row i has exactly k = d · n

ones. For constraint i the k ones are chosen uniformly at random from variables
xi+1, xi+2, . . . , xi+bw

As an example, a constraint matrix with n = 9, d = 1
3 and

bw = 4 may look like

A =

















1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1



















As bw grows, the underlying staircase-like structure of the instances dissolves.
Hence, by increasing bw, we are able to test the impact of the structure in the
set covering instances on our MDD-based approach.

Consider the case when bw = k. For such problems, as A is totally unimodular
[10], the LP optimal solution will be integral, and so the corresponding IP will
solve the problem at the root node. Similarly, we show here that the set of feasible
solutions can be exactly represented by an MDD with width bounded by m + 1.
In particular, for any node u created during the top-down compilation method,
Iu must be of the form (0, 0, . . . , 0, 1, 1, . . . , 1). This is because, given any partial
assignment fixing the top j variables, if some variable in constraint Ci is fixed to
1, then for any constraint Ck, with k ≤ i, there must be some variable also fixed
to 1. Hence, ω(M) ≤ m+1. Therefore, such problems are also easily handled by
MDD-based methods. Increasing the bandwidth, however, destroys the totally
unimodular property of A and the bounded width of M . Therefore, increasing
the bandwidth allows us to test how sensitive the LP and the relaxation MDDs
are to changes in the structure of A.

6.3 Evaluating the MDD Parameters

In Section 3.2 we presented three possible heuristics for selecting nodes to merge.
In preliminary computational tests, we found that using the heuristic based
on shortest partial path lengths, H2, seemed to provide the strongest MDD
relaxations, and so we employ this heuristic.

The next parameter that must be fixed is the preset maximum width W

that we allow for the MDD relaxations. Each problem (and even more broadly
for each application of MDD relaxations to CSP/COPs) has a different optimal
width. To test for an appropriate width for this class of problems, we generate
100 instances with n = 100, k = 20 and bw = 35.

In Figure 3(a) we report the average solution time, over the 100 instances, for
different maximum allowed widths W . Near W = 35 we see the fastest solution
times, and hence for the remainder of the experimental testing we fix W at
35. We note here that during our preliminary computational tests, the range of
widths that seemed to perform best was W ∈ [20, 40].

Another parameter of interest is the number of times we allow the filtering
algorithm to run before branching. As discussed in Section 5.3 the filtering algo-
rithm presented above for set covering problems is not idempotent and applying
the filtering once or for several rounds has different impacts on the solution time.
In Figure 3(b) we report solution time versus the number of rounds of filtering
averaged over the 100 instances with W = 35. Applying the filtering algorithm
once yielded the fastest solution times and so we use this for the remainder of
the experiments.

6.4 Evaluating the Impact of the Bandwidth

Next we compare the performance of our MDD-based approach with IP. We
also compare the performance of these two methods with a hybrid MDD/IP
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Fig. 3. (a) Maximum width W vs. solution time, (b) Number of rounds of filtering vs.
solution time.
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Fig. 4. (a) Number of instances solved in 1 minute for different bandwidths, (b) Aver-
age lower bound in 1 minutes for different bandwidths.

approach. For the hybrid method, the MDD algorithm runs for a fixed amount
of time and then passes the lower bound on the objective function to IP as a
initial lower bound on the objective function.

We report results for random instances with n = 250, k = 20 and bandwidth
bw ∈ {22, 24, . . . , 44} (20 instances per configuration). In Figure 4(a) we show,
for increasing bandwidths, the number of instances solved in 60 seconds using
the three proposed methods. For the hybrid method, we let the MDD method
run for 10 seconds, and then pass the bound zLB given by the MDD method
to the IP and let the IP solver run for an additional 50 seconds. In addition, in
Figure 4(b) we show, for increasing bandwidths, the best lower bound provided
by the three methods after one minute.

For the lower bandwidths, we see that both the MDD-based approach and
the hybrid approach outperform IP, with the hybrid method edging out the pure
MDD method. As the bandwidth grows, however, the underlying structure that
the MDD is able to exploit dissolves, but still the hybrid approach performs
best.
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Fig. 5. Performance profile for pure-IP, pure-MDD, and hybrid MDD/IP for instances
width various bandwidth. Time is reported in log-scale.

6.5 Scaling Up

Here we present results on instances with 500 variables, and again with k = 20,
to evaluate how the algorithms scale up. We have generated instances for various
bandwidths bw between 21 and 50 (5 random instances per configuration), and
we report the most interesting results corresponding to the ‘phase transition’,
i.e., bw ∈ {22, 23, 24, 25}. We compare the three solution methods, allowing the
algorithms to run for 12 minutes.

In the four plots given in Figure 5, we depict the performance profile of the
three methods for the different bandwidths. We show for each bandwidth the
number of instances solved by time t. As the bandwidth increases, we see that
the IP is unable to solve many of the instances that the MDD-based method
can, and for bw = 25, neither the pure-IP nor the pure-MDD based methods
can solve the instances, while the hybrid method was able to solve 2 of the 5
instances.

Figure 6(a) displays the lower bound given by the three approaches versus
time, averaged over the 5 instances. We run the algorithms for 5 minutes and
see that the lower bound given by the MDD-based approach dominates the IP
bound, especially at small bandwidths. However, as the bandwidth grows, as
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Fig. 6. (a) Bandwidth versus lower bound (12 minute time limit), (b) Larger band-
widths versus lower bound (5 minute time limit).

shown in Figure 6(b), the structure captured by the relaxation MDDs no longer
exists and the pure-IP method is able to find better bounds. However, even at
the larger bandwidths, the hybrid method provides the best bounds.

7 Conclusion

In conclusion, we have examined how relaxation MDDs can help in providing
lower bounds for combinatorial optimization problems. We discuss methods for
providing lower bounds via relaxation MDDs and provide computational results
on applying these ideas to randomly generated set covering problems. We show
that in general we can quickly improve upon LP bounds, and even outperform
state-of-the-art integer programming technology on problem instances for which
the bandwidth of the constraint matrix is limited. Finally, we have shown how a
hybrid combination of IP and MDD-based relaxation can be even more effective.
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22. Estefańıa Piñana, Isaac Plana, Vicente Campos, and Rafael Mart́ı. GRASP and
path relinking for the matrix bandwidth minimization. European Journal of Op-
erational Research, 153(1):200–210, 2004.

23. J. Saxe. Dynamic programming algorithms for recognizing small-bandwidth graphs
in polynomial time. SIAM J. Algebraic Discrete Meth., 1:363–369, 1980.


