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The simulation of spontaneous (RIXS) and stimulated x-ray Raman scattering (SXRS) signals in isotropic

samples requires rotational averaging of a fourth-rank tensor product of two polarizabilities. Attosecond

stimulated x-ray Raman spectroscopy excites multiple valence transitions covered by the pulse bandwidths.

These excitations depend on the orientation of the molecule with respect to the pulse polarizations in the

laboratory frame, making the response a high-rank tensor operator. Many contributions to the response coming

from different tensor components complicate the analysis and interpretation of these measurements. By using

the magic angle between the excitation and detection fields these signals may be expressed as correlation

functions of the scalar isotropic polarizabilities, which greatly simplifies their interpretation. We show that a

similar simplification of three-pulse two-dimensional stimulated x-ray Raman scattering (2D-SXRS), which

depends on a rotationally averaged sixth-rank tensor, is possible by a super magic angle (SMA) combination

of two measurements with specific pulse polarization configurations. Calculated SMA 2D-SXRS signals for

trans-N-methylacetamide (NMA) at the nitrogen K edge reveal different features compared with the all-parallel

polarization configuration.
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I. INTRODUCTION

New x-ray laser sources will soon enable nonlinear time-
domain spectroscopy in the x-ray regime [1–4]. Paramet-
ric down conversion [5] and pump-probe spectra [6] have
already been reported. Traditionally, nonlinear techniques
have employed a large number of experimental controls for
measuring the material response, including the wave vectors,
pulse polarizations, phases, frequencies, time delays, and even
the quantum characteristics of the applied fields [7–10]. The
increase in the number of controllable parameters and the
richness of their interplay may come at the expense of a
simple interpretation of the underlying dynamics; designing
an experiment which reveals interesting characteristics of the
system is not obvious. We focus in this article on the effect of
the applied pulse polarizations to two-dimensional stimulated
x-ray Raman spectroscopy (2D-SXRS) [11], an extension of
one-dimensional SXRS (1D-SXRS) where the sample is sub-
jected to three broadband pulses and the signal is the integrated
transmitted intensity of the third pulse relative to the signal
without the other two pulses. Vibrational stimulated Raman
spectroscopy makes use of the Franck-Condon approximation,
in which the transition dipole coupling the system to the field is
only weakly dependent on the nuclear coordinates. The applied
perturbation which launches and measures the nuclear wave
packet is a scalar operator in this approximation.

The perturbation in attosecond stimulated x-ray Raman
spectroscopy, in which a pulse bandwidth can excite multiple
valence transitions, is a tensor operator. The many contribu-
tions to the response from different tensor components may
obscure the dynamics of the valence electronic wave packet.
To resolve this problem, we propose a super magic angle
(SMA) pulse polarization configuration where the signal is

*smukamel@uci.edu

given exclusively in terms of the scalar isotropic part of the
polarizability tensor. This technique is a higher-order analog of
the magic angle between pump and probe pulse polarizations
in 1D stimulated Raman experiments.

Impulsive stimulated Raman spectroscopies measure the

change in absorbance of a probe pulse after excitation with one

(1D-SRS) or a pair of pulses (2D-SRS). Intensity requirements

for observing stimulated x-ray Raman signals were given in

Refs. [11,12]. Time-domain x-ray resonance Raman spec-

troscopy (see Fig. 1) uses a fast, high-frequency, core-excited

state as an intermediate in a Raman process to prepare

and probe a wave packet of slow, low-frequency, valence

excited states [9,13]. The 1D-SXRS technique resonant with

core-transitions was proposed and simulated for tight-binding

models of linear organic chains and small molecules [14–16]

and represents an extension of IR and optical-pump–x-

ray-probe techniques [6,17,18]. Experimental techniques to

develop pulses that can perform these experiments are being

pursued [19]. 1D-SRS signals with impulsive pulses can be

written as correlation functions of the dynamic polarizability

αj averaged over the envelope of pulse j that can be shaped to

selectively excite resonances within its bandwidth. The polar-

izability α is a second rank tensor with Cartesian components

αxx,αxy, . . . , etc. The specific linear combinations of their

products which form the signal are controlled by the pulse

polarizations [20].
This tensor operator can also be represented in a polar

basis [21]. For all-parallel polarized pulses every possible
pairwise contraction of these tensor elements contributes to the
signal [22]. The spectral bandwidth of x-ray pulses may cover
intermediate states with different orientations of transition
dipole moments. Stimulated resonance Raman experiments
with optical pulses usually select one intermediate electronic
state. In this case all the material transition dipoles are parallel,
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FIG. 1. (Left) Pulse sequence for 1D (two pulse) and 2D (three pulse) SXRS experiments. (Right) The x-ray stimulated Raman process.

and the signal is independent of the polarization. Stimulated
x-ray techniques contain a large number of core-excited states
with distinguishable transition dipoles in the bandwidth of each
pulse. We thus expect strong polarization effects of the signal.
The magic polarization angle between pulse polarizations
in the two-pulse 1D spectroscopy disentangles the various
tensor components, and the response is simply given by
a correlation function of the scalar isotropic polarizability
ᾱ = (αxx + αyy + αzz)/3. The signal can be viewed in terms of
the evolution of a wave packet created by this scalar operator.
Here we show that a similar simplification of the signal can be
achieved in three-pulse 2D-SRS by a supermagic angle (SMA)
combination of two separate experiments with different pulse
polarization configurations.

Polarization-dependent off-resonant Raman spectroscopy
with optical pulses has been applied to study intermolecular
vibrations in liquids. Coherent control and pulse polarization
techniques have been used to resolve higher-order processes
relative to lower-order processes, or cascades, in off-resonant
stimulated Raman experiments [23–25]. Various polarization
and phase-matching directions that amplify the higher-order
terms compared to the cascades were identified. Heterodyne
detection was applied towards the same goal [26] using the
“Dutch Cross” polarization combination [27]. Polarization-
dependent four-wave mixing techniques may be used to study
molecular chirality in vibrational and electronic transitions
[28] The polarization dependence of the fifth-order Raman
signal in strongly coupled vibrational systems was addressed
in a series of earlier papers [29,30].

The 2D-SXRS signal was recently calculated [11]. We
address the decomposition of the tensor response function into
isotropic and anisotropic parts in an ensemble of randomly
oriented molecules, and show that the sum of two signals taken
with noncollinear pulses can be used to extract the isotropic
part of the 2D-SXRS signal. We further compare the SMA and
all-parallel signals for the 1D-SXRS and 2D-SXRS stimulated
x-ray Raman spectra of the nitrogen K edge of trans-NMA.
The Raman process is illustrated in Fig. 1. Interaction with the
first pulse excites a core electron into an unoccupied orbital,
preparing a wave packet of valence electronic states, and the
second induces a stimulated emission of an occupied orbital
into the core, leaving a particle-hole excitation. In 1D-SXRS
the projection of these single particle-hole excitations onto
the valence excited states |g′〉 results in a superposition which
evolves during the time delay t1, until it is probed by a second
pulse. The dimensionality of the technique is given by the

number of experimentally controlled delay periods between
pulses.

We first describe the one-dimensional Raman process,
which will set the stage for extending the same formalism to
2D-SXRS. We note an interesting fact about the polarization
dependence of the 1D signal. It is usually assumed that the
time-dependent 1D stimulated Raman signal is the Fourier
transform of the frequency domain spontaneous Raman
(RIXS) [31–33]. Both may be expressed as time- or frequency-
dependent products of the molecular polarizabilities. For
pulses whose bandwidth spans several electronic transitions
these polarizabilities are tensor operators. For spontaneous
Raman (Fig. 2), the polarization of the applied (êL, green) and
detected (êS , red) light can be varied independently. In the
stimulated Raman process (Fig. 3), the relative polarizations
of the first (ê1, red) and the second (ê2, green) pulse are under
experimental control. This difference allows the isotropic part
of the 1D response, which is irretrievably mingled with other
contributions in the frequency domain, to be recovered in the
time-dependent “magic angle” signal, in which the polarizabil-
ities contributing to the response can be represented as scalars
instead of dyadic tensors. The same approach is then extended
to the polarization-dependent 2D-SXRS signal. We show that
even though it is not possible to have a single 2D-SXRS pulse
polarization configuration where the signal depends solely
on the isotropic polarizability, the average of two, separately
measured 2D-SXRS signals with different pulse polarizations
can achieve that goal. Simulations of the all-parallel and SMA
2D-SXRS signals for trans-NMA are presented.

FIG. 2. (Color online) Loop diagram for RIXS.
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FIG. 3. (Color online) 1D-SXRS diagrams.

II. ROTATIONALLY AVERAGED 1D RAMAN SIGNALS

A. Polarization variation of RIXS

Tensor expressions for nonlinear optical signals were
derived in [20] and applied to calculate photon echo signals for
vibrational and electronic excitonic systems [28]. The theory
of polarization-dependent RIXS in homonuclear core-excited
systems was described in [34], and the anisotropic contribu-
tions to the RIXS response were studied in [35]. We summarize
these results below for comparison with the 1D-SXRS signal.
The frequency domain RIXS signal is represented as a single
diagram in the Keldysh-loop formalism [36], shown in Fig. 2.
We define the molecular transition polarizability in the rotating
wave approximation as

α̃
ν2ν1

g′g (ωL) =
∑

e

μ
ν2

g′eμ
ν1
eg

ωL − ǫe + iγe

. (1)

The superscripts ν1,ν2, . . . are Cartesian tensor indices in the
molecular frame, and f1,f2, . . . are indices in the laboratory
(field) frame. Subscripts g,g′,e, . . . denote matrix elements
of the quantum operators α and μ between ground (|g〉),
valence excited (|g′,g′′〉), and core excited (|e,e′〉) states. We
use atomic units for all eigenstate energies, lifetimes, pulse
frequencies, and widths. The RIXS signal, shown in Fig. 2, is
described by the Kramers-Heisenberg expression,

SRIXS(ωL,ωS) =
∑

g′

∑

ν1ν2ν3ν3

α̃
ν2ν1

g′g (ωL)α̃
ν3ν4∗
gg′ (ωL)

× δγg′ (ωL − ωS − ǫg′). (2)

A Lorentzian with a linewidth given by the valence excited
state lifetimes γg′ ,

δγ (ω − ǫg′) = 1

π

2πγ

(ω − ǫg′)2 + γ 2
, (3)

is used in the simulations. The rotationally averaged RIXS sig-
nal in an isotropic ensemble contains three contributions [34]:

SRIXS(ωL,ωS) = 1
30

(3 cos2 θ − 1)SA(ωL,ωS)

+ 1
30

(3 cos2 θ − 1)SB(ωL,ωS)

+ 1
30

(4 − 2 cos2 θ )SC(ωL,ωS). (4)

θ is the angle between the applied field polarization êL and
the polarization of the scattered mode êS . These contributions
depend on different contractions of the polarizability. The
isotropic part of the signal is

SA(ωL,ωS) =
∑

g′

∑

ν1ν2

α̃
ν1ν1

g′g (ωL)α̃
ν2ν2∗
gg′ (ωL)δγg′ (ωL − ωS − ǫg′)

=
∑

g′
ᾱ1;g′g(ωL)ᾱ∗

1;gg′(ωL)δγg′ (ωL − ωS − ǫg′),

(5)

where the isotropic scalar polarizability for the electronic
states r,s

ᾱrs = 1
3
Tr[αrs] = (1/3)

(

αxx
rs + αyy

rs + αzz
rs

)

, (6)

is defined as the trace over the diagonal parts of the tensor α.
The anisotropic parts are

SB(ωL,ωS) =
∑

g′

∑

ν1ν2

α̃
ν2ν1

g′g (ωL)α̃
ν2ν1∗
gg′ (ωL)δγg′ (ωL−ωS−ǫg′),

(7)

and

SC(ωL,ωS) =
∑

g′

∑

ν1ν2

α̃
ν2ν1

g′g (ωL)α̃
ν1ν2∗
gg′ (ωL)δγg′ (ωL−ωS−ǫg′).

(8)

The RIXS experiment with a magic angle (MA) between the
incident and scattered polarizations, where 3 cos2 θ − 1 = 0
(θMA = 54.7◦), can isolate the SC(ωL,ωS) part of the
anisotropic polarizability. The isotropic polarizability
SA(ωL,ωS) is irretrievably mixed with the anisotropic part
SB(ωL,ωS). It is thus not possible to extract the purely
isotropic signal SA(ωL,ωS) from RIXS measurements. Below
we show that, thanks to a different form of polarization
control, the time-domain 1D-SXRS technique can do that.

B. Polarization-dependent 1D-SXRS

The electric field in a 1D-SXRS experiment consists of two
pulses:

E(t) = E2(t − t1)e−iω2(t−t1) + E1(t)e−iω1t + c.c., (9)

separated by a delay t1. We assume Gaussian envelopes,

Ej (t) = 1

σj

√
2π

exp[t2/2σ 2
j ] êj ; j = 1,2, (10)

with temporal full width at half maximum 2
√

2 ln 2σj , central
frequencies ωj , and unit polarization vectors êj . The two
diagrams shown in Fig. 3 yield two contributions to the signal,

S1D(t2,t1) = Re[〈α2(t1)α1(0)〉 − 〈α†
1(0)α2(t1)〉]. (11)

1D-SXRS depends on the two effective polarizability
operators α1 and α2 which account for broadband excitation
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with each pulse,

α
ν2ν1

j ;g′g′′ =
∑

e

μ
ν2

g′eμ
ν1

eg′′

2π

∫ ∞

−∞

ε∗
j (ω)εj (ω − ωg′′g′)

ω − ωeg′′ + ωj + iγe

dω. (12)

This definition of the polarizability differs from the RIXS
polarizability in Eq. (1) as the same mode of the field (j )
interacts twice with the system during the Raman process. In
RIXS, a photon is absorbed from one mode of the field and
scattered into another. These effective polarizability operators
are second-order tensor objects and operators in the space
of valence electronic excitations {g,g′, . . . } [13]. The time-
dependent polarizability operators are (see Fig. 3)

α
ν2ν1

j (t) =
∑

rs

α
ν2ν1

j ;rs exp(iωrs t − Ŵrs t)|r〉〈s|. (13)

Ŵrs is a dephasing of the |r〉〈s| coherence between valence
excitations. The adjoint of this tensor operator is

(α
†
j )ν1ν2

sr (−t) = α
ν2ν1∗
j ;rs exp(−iωrs t − Ŵrs t). (14)

The brackets in Eq. (11) 〈. . . 〉 ≡ Tr[. . . ρo] represent the
trace over the equilibrium density matrix of valence electronic
states. When the x-ray pulses are tuned off-resonant from any
core excitations, α = α†, and the signal in Eq. (11) can be writ-
ten as a response function, S1D

off−res(t1) = Re〈[α2(t1),α1(0)]〉.
Starting from the time-domain 1D-SXRS signal given in

Eq. (11), the full tensor form of the signal [11] is

S
(1D)
SXRS(ν1ν2ν3ν4; t1) =

∑

g′
Re

[(

α
ν4ν3

2;gg′
)(

α
ν2ν1

1;g′g

)

e−iǫg′ t1−γg′ t1

−
(

α
ν1ν2∗
1;gg′

)(

α
ν3ν4

2;g′g

)

e+iǫg′ t1−γg′ t1
]

. (15)

The rotationally averaged signal is given by contracting the
tensor components in Eq. (15)

S
(1D)
SXRS(τ,θ )=

∑

ν1...ν4f1...f4

S
(1D)
SXRS(ν1ν2ν3ν4; τ )Iν1...ν4;f1...f4

e
f1

1 e
f2

1 e
f3

2 e
f4

2 ,

(16)

where e
fj

i is a tensor component fj of the ith pulse, and the
isotropic tensor is a geometric factor [20],

Iν1...ν4;f1...f4
= VT

LMVR

= 1
30

⎛

⎝

δν1ν2
δν3ν4

δν1ν3
δν2ν4

δν1ν4
δν2ν3

⎞

⎠

T ⎛

⎝

4 −1 −1
−1 4 −1
−1 −1 4

⎞

⎠

×

⎛

⎝

δf1f2
δf3f4

δf1f3
δf2f4

δf1f4
δf2f3

⎞

⎠ . (17)

After contraction over the field tensor components, the signal

S
(1D)
SXRS(τ,θ ) in Eq. (16) depends on θ , the angle between the

pulse polarizations. The indices νi (fi) represent tensor com-
ponents of the transition dipole (pulse polarization) vectors.
Each δν1ν2

arises from a tensor contraction over the indices
ν1 and ν2. For the field polarization vectors each Kronecker
delta in Eq. (17) represents a dot product after performing the
contractions in Eq. (16):

∑

f1f2

e
f1

1 δf1f2
e
f2

2 = (ê1 · ê2) = cos θ, (18)

which is dependent on the angle between the polarizations of
the applied pulses θ . Contractions of the second-rank tensors
αν1ν2 can be written as traces (in polarization space) over matrix
products of these operators. After contraction, the signal in
Eq. (16) is finally given by

S1D
pol (θ ) = 1

30
Re

⎛

⎜

⎝

SI (t1)

SII (t1)

SIII (t1)

⎞

⎟

⎠

⎛

⎝

4 −1 −1
−1 4 −1
−1 −1 4

⎞

⎠

⎛

⎝

1

cos2 θ

cos2 θ

⎞

⎠ .

(19)

Equation (19) is a weighted sum of three terms,

S
(1D)
SXRS(t1) = 1

30
(4 − cos2 θ )SI(t1) + 1

30
(3 cos2 θ − 1)

× [SII (t1) + SIII (t1)], (20)

mixed by a parametric dependence on θ :

SI (t1) =
∑

g′

∑

ν1ν2

Re
[(

α
ν2ν2

2;gg′
)(

α
ν1ν1

1;g′g

)

e−iǫg′ t1−γg′ t1

−
(

α
ν1ν1∗
1;gg′

)(

α
ν2ν2

2;g′g

)

e+iǫg′ t1−γg′ t1
]

, (21)

SII (t1) =
∑

g′

∑

ν1ν2

Re
[(

α
ν2ν1

2;gg′
)(

α
ν2ν1

1;g′g

)

e−iǫg′ t1−γg′ t1

−
(

α
ν1ν2∗
1;gg′

)(

α
ν1ν2

2;g′g

)

e+iǫg′ t1−γg′ t1
]

, (22)

and

SIII (t1) =
∑

g′

∑

ν1ν2

Re
[(

α
ν1ν2

2;gg′
)(

α
ν2ν1

1;g′g

)

e−iǫg′ t1−γg′ t1

−
(

α
ν1ν2∗
1;gg′

)(

α
ν2ν1

2;g′g

)

e+iǫg′ t1−γg′ t1
]

. (23)

The Fourier transform of these signals is given in Appendix D,
and consists of a linear combination of Lorentzian peaks
whose strength and relative mix of absorptive or dispersive
lineshapes are controlled by the modulus and argument of the
polarizabilities αg′g . The components SI ,SII , and SIII differ
only by their tensor contractions; each contains two terms
represented by the diagrams in Fig. 3.

Selecting a particular pulse polarization configuration fixes
the linear combination of tensor components of each α in
Eq. (11) that contribute to the measured signal. By setting the
angle between the pump and probe pulses to the magic angle
(MA) we get

S̄1D
MA(t1) = Re[〈ᾱ2(t1)ᾱ1(0)〉 − 〈ᾱ†

1(0)ᾱ2(t1)〉]. (24)

The signal is now given by a correlation function of the scalar
isotropic polarizability, rather than the second rank tensor
operators in Eq. (11); this greatly simplifies the description
and analysis of the response.

It follows from Eq. (24) that 1D-SXRS, unlike RIXS,
can experimentally discriminate between the isotropic and
anisotropic polarizabilities. This stems from the different
polarization controls in the two experiments, as is clear by
comparing the loop diagram for the RIXS process (Fig. 2) and
the 1D-SXRS technique (Fig. 3). The selection in RIXS of the
angle between the applied and measured scattered modes of
the field leads to a different polarization dependence then in
the 1D-SXRS, where only the polarization between pulses can
be controlled.
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C. Simulations

We now present simulations of the one- and two-
dimensional stimulated and spontaneous x-ray Raman signals
at the nitrogen K edge for the model system trans-N-methyl
acetamide (trans-NMA). Details of the electronic structure
calculations were given in earlier works [11,16]. The 1D sig-
nals presented here all use identical Gaussian pulses, defined
in Eqs. (9) and (10). We set σj = 77 as (frequency FWHM
in intensity ≃14.2 eV) for all pulses, and set ωj = 401.7 eV
resonant at the nitrogen K edge. For valence-excited states
we use a lifetime broadening of γg′ = 0.05 eV to visualize
peak positions, and for core-excited states we take γe = 0.085
eV for the nitrogen and γe = 0.10 eV for the oxygen K-edge
inverse lifetime as was used in prior studies [11,16].

For a fixed molecular orientation relative to the field the
polarizabilities contributing to RIXS and 1D-SXRS can be
expanded as a sum of transition dipole dot products:

∑

e,e′
( �μge′ · e4)(μe′g′ · e3)(μg′e · e2)(μeg · e1)

= δν4f4
δν3f3

δν2f2
δν1f1

. (25)

For an isotropic distribution of molecules, δν4f4
δν3f3

δν2f2
δν1f1

depends on the Euler rotation angles between the molecular
and laboratory frames and Eq. (25) becomes

∫

dl̂
∑

ν1...ν4

∑

f1...f4

lν1f1
lν2f2

lν3f3
lν4f4

. (26)

An analytic form of the integral in Eq. (26) was presented
in Ref. [20]. The result is a weighted sum of field vector
and transition dipole dot products and the angles between the
transition dipoles only (see Appendix E for details). For a
given set of field polarizations, we get

δm4f4
δm3f3

δm2f2
δm1f1

= c1δm1m2
δm3m4

+ c2δm1m3
δm2m4

+ c3δm1m4
δm2m3

. (27)

c1, c2, and c3 are responsible for SA, SB in RIXS and SC ,
and SI , SII , and SIII for 1D-SXRS. The terms c1 and
c2 depend on products of dot products between absorption
and emission dipoles, while the c3 term depends only on

their squared magnitudes. By the Schwarz inequality, (�a · �b)

(�a · �b) � |�a|2|�b|2, the c3 term in Eq. (27) will always be larger
than the c1 and c2 terms.

The three isotropic contributions to the RIXS signal
[Eq. (4)] are depicted in the left column of Fig. 4, and the
same quantity for the 1D-SXRS signal [Eq. (20)] in the left
column of Fig. 5. The first contributions (c1),

SA(ω1,ω2) ∼
∑

e,e′
(μge · μeg′ )(μge′ · μe′g′), (28)

and the second (c2),

SB(ω1,ω2) ∼
∑

e,e′
(μge · μe′g′)(μge′ · μeg′ ), (29)

are identical for the RIXS signal but differ in 1D-SXRS. This
difference is due to the broad bandwidth in the time-resolved
technique, where multiple core-excited states are accessed
simultaneously, as opposed to the frequency domain where
only one excited state is accessed at a time. In RIXS, therefore,

FIG. 4. (Color online) (Left) The three isotropic contributions

to the calculated polarized nitrogen K-edge RIXS spectrum of

trans-NMA. (Right top) RIXS spectra with laser [E1(t)] and detection

[E2(t)] fields polarized parallel to each other (both vertically

polarized). (Right bottom) Same as top panel but with E2(t) polarized

at the magic angle relative to E1(t).

in Eqs. (28) and (29) the sum over e′ will only pick out the
value for which e = e′.

In a polarized RIXS experiment the system is excited to
an e state by a narrow band polarized laser, and spontaneous
emission down to the valence-excited state g′ is independently
polarized prior to detection. Therefore the f1 and f4 tensor
components (corresponding to excitation) are parallel to each
other, as are f2 and f3 (corresponding to emission). The angle
between emission and excitation polarizations is θ . Using
Eq. (19), we find that the coefficients in Eq. (27) are given
by

SRIXS(ω1,ω2) ∝ (3 cos2 θ − 1,3 cos2 θ − 1,4 − 2 cos2 θ )

· (SA(ω1,ω2), SB(ω1,ω2), SC(ω1,ω2))T .

(30)

From Eq. (30) we see that it is possible by choosing a particular
value of θ, for which cos2 θ = 1/3 (referred to as the magic
angle), to select the SC(ω1,ω2) component. The left column of
Fig. 4 shows the calculated polarized RIXS signal for the case
where the laser and detection are polarized parallel to each
other (labeled VV for vertical/vertical) and where the detected
light is polarized at the magic angle relative to the laser. As we
see in the left panel of Fig. 4, the SC(ω1,ω2) contribution is
roughly four times larger than the the other two contributions.
In the VV signal, the three terms contribute equally so the
signal is dominated by the largest. By going to the magic angle
it is only possible to remove the SA(ω1,ω2) and SB(ω1,ω2)
contributions, and increase the magnitude of the SC(ω1,ω2)
contribution. The magic angle signal is consequently about
twice the size of the VV signal.
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FIG. 5. (Color online) (Left) The three isotropic contributions to the calculated polarized 1D-SXRS spectrum for trans-NMA with both

pulses tuned to the nitrogen K edge. (Right top) 1D-SXRS spectra with both pulses polarized parallel to each other (both vertically polarized).

(Right bottom) Same as top panel but with the second pulse (probe) polarized at the magic angle relative to the first pulse (pump).

In a 1D-SXRS experiment, a broadband pulse (the pump)
excites the system to a core-excited state then de-excites it to a
valence state. The system then evolves for a time τ before the
arrival of the probe pulse, which induces another Raman-type
transition. After interaction with the probe the system can
either be returned to the ground state (left diagram of Fig. 3),
or left in a valence-excited state (right diagram of Fig. 3).
The signal is defined as the total integrated intensity of the
probe pulse with the pump, minus that without the pump (we
neglect any stimulated emission or excited-state absorption
contributions to this pump probe signal by assuming the delay
time τ is long compared with the core-hole lifetime of 7.8 fs).
The signal is then Fourier transformed. Only those valence-
excited states whose excitation energies are within the pulse
bandwidth will contribute to the signal. However, in the time-
domain technique one cannot select a particular core-excited
state, as all those within the pulse bandwidth will contribute.
In this experiment, the f1 and f2 vectors are parallel to each
other, as are f3 and f4. The angle between polarization vectors
of the pump and probe is θ . Using Eq. (17), we find that the
coefficients in Eq. (27) are given by

S1D(ω1,ω2) ∝ (4 − 2 cos2 θ,3 cos2 θ − 1,3 cos2 θ − 1)

. (SI (ω1,ω2), SII (ω1,ω2), SIII (ω1,ω2))T .

(31)

The right panel of Fig. 5 shows the calculated VV and magic
angle 1D-SXRS signals. The MA thus isolates the SI (ω1,ω2)
contribution.

It is interesting to note that the largest peak in the VV
signal, coming in at 8.14 eV and corresponding to the S2

CIS state, is missing in the magic angle (MA) signal, where
the dominant peak is at 8.95 eV corresponding to the S3

state. That the S2 peak does not contribute to the MA signal,
can be understood by examination of the spatial distribution
of dipoles from this state relative to the dipoles from the
ground state. The SI (ω1,ω2) contribution to any given peak
is proportional to the inner product of μge and μeg′ for all
core-excited states within the pulse bandwidth, while the
SIII (ω1,ω2) contribution depends only on the magnitude of
these dipoles. In the left column of Fig. 6 we show histograms
for the angle φ ≡ cos−1(μge · μeg′/|μge||μeg′ |) between the
upward (from the ground state g to a core excited state e)
and downward (from e to a valence excited state g′) dipoles
for g′ = S3(top),S2(bottom). For the majority of core-excited
states, the transition dipole to the S2 state is perpendicular to
the dipole to the ground state. For the S3 state, the distribution
of angles between dipoles is more broad and peaked more
towards φ = 180◦. This explains why the S3 peak contributes
to SI (ω1,ω2) (and thus to the magic angle signal), but the S2

peak does not.
The S2 peak is the strongest in the SIII (ω1,ω2) component,

and thus the strongest peak in the VV signal, due to the large
magnitude of the transition dipole between the S2 state and
the first core-excited state. In the right column of Fig. 6 we
show calculated absorption spectra from the S3 and S2 states.
This is the XANES spectrum after preparing the system in a
valence-excited state through UV excitation. The amplitude
of this signal, shown as sticks under the calculated signals
(convoluted with Lorentzian lineshape), is proportional to the
squared magnitude of the dipoles to the core-excited states.
Absorption from the S2 state to the first core-excited state is
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FIG. 6. (Color online) (Left column) Distribution of the angle between μge and μeg′ for all e states with g′ equal to S3 (top) or S2. The

transition dipole from the ground state to a given core-excited state is mostly perpendicular to the dipole from the S2 state to that same

core-excited state. For S3 this is not the case. (Right column) Calculated XANES spectra assuming that the system is initially in the S3 state

(top) or the S2 state (bottom).

two to three times larger than absorption from the S3 state to
any of the core-excited state, which is roughly the same as the
ratio of the peak amplitudes in the VV 1D-SXRS spectrum in
the upper right panel of Fig. 5. This agrees with the fact that the
S2 peak in the VV and magic angle RIXS spectra, coming in
at ωL − ωS = 8.14 eV, is the strongest peak overall and only
has amplitude when the excitation beam is set to the nitrogen
core-edge transition at ωL = 401.7 eV.

III. POLARIZATION-DEPENDENT 2D-SXRS

We now extend the polarization-dependent expressions
developed for 1D-SXRS to 2D-SXRS. As the 1D signal
depends on the dot product of two three-dimensional vectors,
one depending on the angle between the pump and probe pulse
polarizations, the 2D signal depends on a the dot product of
two 15-element vectors, one depending on the three angles
between the applied pulses. These three independently varied
degrees of freedom do not provide enough control to isolate
the isotropic part of the signal in a single experiment. However,
we show that a linear combination of two signals can isolate
this contribution.

A. The super magic angle pulse configuration

The 2D-SXRS signal is analogous to the 1D signal. The
electric field consists of three time-delayed pulses,

E2D(t) = E3(t − t1 − t2)e−iω3(t−t1−t2) + E2(t − t1)e−iω2(t−t1)

+E1(t)e−iω1t + c.c.. (32)

The time delays t1 and t2 are again taken to be longer than the
core-hole lifetime and so any core population created through
interaction with the field is ignored in our calculations. The

signal is displayed as a frequency-frequency (�1,�2) plot
obtained by a Fourier transform of the signal with respect to
the delays t1 and t2. The diagrams contributing to the signals
are shown in Fig. 7. These give

S2D(t1,t2)= Im[Si(t1,t2)+Sii(t1,t2) + Siii(t1,t2) + Siv(t1,t2)],

(33)

where the molecular response function R2D is the sum of four
terms (see Fig. 7):

Si(t1,t2) = −〈α†
2(t2)α3(t2 + t1)α1(0)〉

= −
∑

g′g′′
α

ν3ν4∗
2;gg′′ α

ν6ν5

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)

× e+i(ǫg′′ +iγg′′ )t2 , (34)

Sii(t1,t2) = 〈α†
1(0)α

†
2(t1)α3(t1 + t2)〉

=
∑

g′g′′
α

ν1ν2∗
1;gg′ α

ν3ν4∗
2;g′g′′α

ν6ν5

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2 ,

(35)

Siii(t1,t2) = −〈α†
1(0)α3(t1 + t2)α2(t1)〉

= −
∑

g′g′′
α

ν1ν2∗
1;gg′ α

ν6ν5

3;g′g′′α
ν4ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)

× e−i(ǫg′′ −iγg′′ )t2 , (36)

Siv(t1,t2) = 〈α3(t2 + t1)α2(t1)α1(0)〉
=

∑

g′g′′

α
ν6ν5

3;gg′′α
ν4ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 .

(37)
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FIG. 7. Diagrams contributing to the 2D-SRS signal.

2D-SXRS is sixth order in the matter-field interaction;
rotational averaging is performed using the sixth-order tensor,

S2D
rot (θ12,θ13,θ23; t2,t1) =

∑

ν1...6f1...6

S2D
ν1...ν6

(t2,t1)I
(6)
ν1...ν6,f1...f6

× e
f1

1 e
f2

1 e
f3

2 e
f4

2 e
f5

3 e
f6

3 , (38)

where the analytic form of I
(6)
ν1...ν6,f1...f6

was given in [20], and
is reproduced in Appendix A. Performing the contraction in
Eq. (38) over the tensor components in Eqs. (38) and (34)–(37),
leads to

Srot(θ12,θ13,θ23; t2,t1) = Im ST
LMVR, (39)

where

ST
L =

∑

ν1...ν6

S2D
ν1...ν6

VT
L = (S1L,S2L, . . . ,S15L) (40)

is a vector containing contractions over the different ten-
sor components of Eq. (33). S1L(t1,t2) = S2D

SMA(t1,t2) is the
isotropic response,

S2D
SMA(t1,t2) = Im[−〈ᾱ†

2(t2)ᾱ3(t2 + t1)ᾱ1(0)〉
+ 〈ᾱ†

1(0)ᾱ
†
2(t1)ᾱ3(t1 + t2)〉

− 〈ᾱ†
1(0)ᾱ3(t1 + t2)ᾱ2(t1)〉

+ 〈ᾱ3(t2 + t1)ᾱ2(t1)ᾱ1(0)〉]. (41)

TABLE I. Angles defining the averaged isotropic signal

SSMA(t2,t1) in degrees [e.g., θa
12 = arccos(ê1a · ê2a); see Fig. 8].

θa
12 69.3048◦

θa
13 80.1036◦

θa
23 40.5802◦

θb
12 42.6036◦

θb
13 37.0411◦

θb
23 72.5592◦

The vector VR ≡ VR(θ12,θ13,θ23) in Eq. (39) is dependent on
the field, a choice of polarizations weights the contributions
of the Si(t) in Eq. (40) to S2D

rot (θ12,θ13,θ23; t2,t1). The all-
parallel signal will be proportional to the equally weighted
sum of these vector elements. There are 15 independent
pulse configurations. In Appendix B the full expression for
VR in terms of the angles is given, and we show that no
combination of pulse polarizations can isolate S1L(t1,t2) in
a single measurement, since

MVR(θ12,θ13,θ23) �=

⎛

⎜

⎜

⎝

1
0
...
0

⎞

⎟

⎟

⎠

(42)

for all choices of the angles θ12, θ13, and θ23.
The signal is linearly dependent on the vectors

VR(θ12,θ13,θ23) which are themselves nonlinear functions of
the polarization angles. The sum of two signals taken with
different pulse polarizations can be written by combining the
VR vectors. Solving the equation,

M
[

1
2
VRa

(

θa
12,θ

a
13,θ

a
23

)

+ 1
2
VRb

(

θb
12,θ

b
13,θ

b
23

)]

=

⎛

⎜

⎜

⎝

1
0
...
0

⎞

⎟

⎟

⎠

(43)

numerically, leads to the angles in Table I. Examples of pulse
polarizations with these angles are shown in Fig. 8. One set
of pulse polarizations having these angles are given in Fig. 8,
and shown in Fig. 13. They define the SSMA(t1,t2) technique,
which recovers the isotropic signal,

S2D
SMA(t1,t2) = 1

2
Sa(t1,t2) + 1

2
Sb(t1,t2)

= Im[−〈ᾱ†
2(t2)ᾱ3(t2 + t1)ᾱ1(0)〉

+ 〈ᾱ†
1(0)ᾱ

†
2(t1)ᾱ3(t1 + t2)〉

− 〈ᾱ†
1(0)ᾱ3(t1 + t2)ᾱ2(t1)〉

+ 〈ᾱ3(t2 + t1)ᾱ2(t1)ᾱ1(0)〉]. (44)

Since these polarizations are not coplanar, the SMA technique
requires noncollinear pulses. The 2D-SXRS signal in Eq. (44)
recovers the intuitively appealing picture of an applied scalar
perturbation driving valence electronic dynamics during the t1
and t2 periods.

B. Simulations

The modulus of the nitrogen K-edge 2D-SXRS signals
from trans-NMA for two different polarization conditions
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Super Magic Angle pulse polarizations

FIG. 8. (Left) The SMA technique. (Right) The unit vector pulse polarizations (ê{1,2,3}{a,b}) for each contribution.

are shown in Fig. 9. Peaks in this type of signal come in
three different varieties. The diagonal peaks, with ω1 = ω2,
are most prominent in the spectrum. This is because the
second pulse initiates a Rayleigh-type transition where the
coherence created by the first pulse is unchanged by the second,
thus accessing the diagonal matrix elements of the effective
polarizability for that pulse. Off-diagonal peaks come in two

FIG. 9. (Color online) Calculated modulus of the 2D-SXRS

signals from trans-NMA, using three Gaussian pulses with central

frequencies tuned to the nitrogen K edge. (Left) Signal taken with

all three pulses polarized parallel to each other. The dominant peak

is diagonal with �1 = �2 = 8.14 eV, corresponding the second

valence-excited state S2. (Right) The sum of the Sa and Sb signals

defined by Eq. (44). The S2 peak is completely absent from the SMA

signal.

varieties, depending on whether the first and second pulses
interact with the same or different (bra/ket) sides of the system
density matrix. If the first two pulses interact on the same
side, as in diagrams Sii and Siv from Fig. 7, then ω1 and
ω2 both correspond to valence-excitation frequencies. If the
first two pulses interact on different sides, as in diagrams Si

and Siii , then ω2 will correspond to the difference between
system excitation frequencies. To emphasize weak features of
the signal, we plot the real, imaginary or modulus of the signals

using the nonlinear scale arcsinh(ζ ) = ln(ζ +
√

ζ 2 + 1) where
ζ ∈ {ReS,ImS,|S|2}. This scale is linear for small features
and logarithmic for large values. The VVV (all three pulses
polarized parallel to each other) and the disentangled SMA
signal (denoted as Sa + Sb) we show in Fig. 9. Along the
top of the spectra, we show a 1D trace along the diagonal
of the 2D signals. The SMA signal is the 2D equivalent of

FIG. 10. (Color online) Enlarged portion of the calculated SMA

2D signal described in the text (right), as well as the Sa (left) and

Sb (middle) contributions to it. Here we show the real and imaginary

parts rather than the modulus, as in Fig. 9, to highlight the interference

between the two contributions. The signals are plotted using the same

nonlinear scaling as in Fig. 9. The real part of the 2D Fourier transform

signals are plotted using red contours, solid for positive values and

dashed for negative, and the imaginary parts are plotted with blue

contours. The diagonal peak at 8.14 eV is canceled when the Sa and

Sb signals are added together, but the 8.95 eV peak is not.
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the magic angle in 1D-SXRS in that it isolates the isotropic
signal component that depends on the inner product of dipoles
that interact with the same pulse. That is, only the contraction
δν1ν2

δν3ν4
δν5ν6

will contribute to the disentangled signal, much
like only the δν1ν2

δν3ν4
component contributes to the magic

angle 1D signal. All 15 isotropic components, listed as VL in
Eq. (A4), contribute to the VVV signal with equal weight.

The most striking difference between the VVV and SMA
signals is that the largest peak in the VVV signal, with ω1 =
ω2 = 8.14 eV, is absent from the latter. This is analogous to
the difference between the VV and magic angle 1D signals,
and is again due to the fact that the dipoles from the S2 state
to any core-excited state are perpendicular to the dipoles from
that core excited state to the total ground state. In Fig. 10 we
show the real and imaginary parts of the Sa and Sb signals,
highlighting how the interference between the two leads to a
complete cancellation of the S2 peak.

IV. CONCLUSIONS

We have proposed a specific combination of applied pulse
polarizations that allows the 2D Raman signal to be written as
correlation functions of the isotropic polarizability simplifying
the interpretation of these complex signals. The isotropic vec-
tor framework derived in [20] may be used for deriving similar
expressions for higher-order stimulated Raman techniques,
such as seventh-order Raman spectroscopy. Other terms in
the isotropic vector may also prove interesting in examining
chiral properties of the material system and the response, as in
the four-wave mixing spectroscopy of optical and vibrational
systems.

There are many challenges in the theoretical description of
polarization-dependent 2D-SXRS in molecules. The isotropic
component of the signal is only the most convenient to
work with. Other signals with different contractions over the
polarizabilities α (S1,2,...) may reflect interesting electron-hole
dynamics in the valence excited states. Broad principles for
identifying parallels between spectral features and electronic

dynamics are a continuing area of research, and promise
insights in charge and energy transfer in molecules and
clusters.
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APPENDIX A: POLARIZATION-DEPENDENT

COMPONENTS OF THE 2D-SRS SIGNAL

The analytic form of I
(6)
ν1...ν6,f1...f6

[20] is

I rot
ν1...ν6,f1...f6

= VT
LM6VR. (A1)

I rot is the product of a vector containing the material tensor
components,

VL =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δν1ν2
δν3ν4

δν5ν6

δν1ν2
δν3ν5

δν4ν6

δν1ν2
δν3ν6

δν4ν5

δν1ν3
δν2ν4

δν5ν6

δν1ν3
δν2ν5

δν4ν6

δν1ν3
δν2ν6

δν4ν5

δν1ν4
δν2ν3

δν5ν6

δν1ν4
δν2ν5

δν3ν6

δν1ν4
δν2ν6

δν3ν5

δν1ν5
δν2ν3

δν4ν6

δν1ν5
δν2ν4

δν3ν6

δν1ν5
δν2ν6

δν3ν4

δν1ν6
δν2ν3

δν4ν5

δν1ν6
δν2ν4

δν3ν5

δν1ν6
δν2ν5

δν3ν4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A2)

a weighting matrix,

M6 = 1
210

⎛
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⎜

⎜

⎜
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⎜

⎝

16 −5 −5 −5 2 2 −5 2 2 2 2 −5 2 2 −5
−5 16 −5 2 −5 2 2 2 −5 −5 2 2 2 −5 2
−5 −5 16 2 2 −5 2 −5 2 2 −5 2 −5 2 2
−5 2 2 16 −5 −5 −5 2 2 2 −5 2 2 −5 2

2 −5 2 −5 16 −5 2 −5 2 −5 2 2 2 2 −5
2 2 −5 −5 −5 16 2 2 −5 2 2 −5 −5 2 2

−5 2 2 −5 2 2 16 −5 −5 −5 2 2 −5 2 2
2 2 −5 2 −5 2 −5 16 −5 2 −5 2 2 2 −5
2 −5 2 2 2 −5 −5 −5 16 2 2 −5 2 −5 2
2 −5 2 2 −5 2 −5 2 2 16 −5 −5 −5 2 2
2 2 −5 −5 2 2 2 −5 2 −5 16 −5 2 −5 2

−5 2 2 2 2 −5 2 2 −5 −5 −5 16 2 2 −5
2 2 −5 2 2 −5 −5 2 2 −5 2 2 16 −5 −5
2 −5 2 −5 2 2 2 2 −5 2 −5 2 −5 16 −5

−5 2 2 2 −5 2 2 −5 2 2 2 −5 −5 −5 16

⎞

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎠

, (A3)
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and the field polarization tensor components,

VR =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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δf4f5

δf1f3
δf2f4
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δf2f5

δf4f6
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δf2f6
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δf4f6

δf1f5
δf2f4

δf3f6

δf1f5
δf2f6
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⎟
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. (A4)

θij is the angle between polarizations êi and êj . Performing the contraction over VL in Eq. (A1) and Eqs. (38) and (34)–(37),
and relabeling indices such that νi refers to the index associated with the ith delta function for each element of VL, result in the
following expressions for the individual signal components S1L through S15L.

S1L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν2∗
2;gg′′ α

ν3ν3

3;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν1∗
1;gg′ α

ν2ν2∗
2;g′g′′α

ν3ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν1∗
1;gg′ α

ν3ν3

3;g′g′′α
ν2ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν3

3;gg′′α
ν2ν2

2;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A5)

S2L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν3∗
2;gg′′ α

ν3ν2

3;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν1∗
1;gg′ α

ν2ν3∗
2;g′g′′α

ν3ν2

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν1∗
1;gg′ α

ν3ν2

3;g′g′′α
ν3ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν2

3;gg′′α
ν3ν2

2;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A6)

S3L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν3∗
2;gg′′ α

ν2ν3

3;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν1∗
1;gg′ α

ν2ν3∗
2;g′g′′α

ν2ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν1∗
1;gg′ α

ν2ν3

3;g′g′′α
ν3ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν2ν3

3;gg′′α
ν3ν2

2;g′′g′α
ν1ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A7)

S4L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν1ν2∗
2;gg′′ α

ν3ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν1ν2∗
2;g′g′′α

ν3ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν3

3;g′g′′α
ν2ν1

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν3

3;gg′′α
ν2ν1

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A8)

S5L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν1ν3∗
2;gg′′ α

ν3ν2

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν1ν3∗
2;g′g′′α

ν3ν2

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν2

3;g′g′′α
ν3ν1

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν2

3;gg′′α
ν3ν1

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A9)

S6L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν1ν3∗
2;gg′′ α

ν2ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν1ν3∗
2;g′g′′α

ν2ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν2ν3

3;g′g′′α
ν3ν1

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν2ν3

3;gg′′α
ν3ν1

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A10)
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S7L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν1∗
2;gg′′ α

ν3ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν2ν1∗
2;g′g′′α

ν3ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν3

3;g′g′′α
ν1ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν3

3;gg′′α
ν1ν2

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A11)

S8L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν1∗
2;gg′′ α

ν3ν2

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν1∗
2;g′g′′α

ν3ν2

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν2

3;g′g′′α
ν1ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν2

3;gg′′α
ν1ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A12)

S9L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν1∗
2;gg′′ α

ν2ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν1∗
2;g′g′′α

ν2ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν2ν3

3;g′g′′α
ν1ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν2ν3

3;gg′′α
ν1ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A13)

S10L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν3∗
2;gg′′ α

ν3ν1

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν2ν3∗
2;g′g′′α

ν3ν1

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν1

3;g′g′′α
ν3ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν1

3;gg′′α
ν3ν2

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A14)

S11L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν2∗
2;gg′′ α

ν3ν1

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν2∗
2;g′g′′α

ν3ν1

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν3ν1

3;g′g′′α
ν2ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν3ν1

3;gg′′α
ν2ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A15)

S12L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν3∗
2;gg′′ α

ν2ν1

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν3∗
2;g′g′′α

ν2ν1

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν2ν1

3;g′g′′α
ν3ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν2ν1

3;gg′′α
ν3ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A16)

S13L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν2ν3∗
2;gg′′ α

ν1ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν2ν3∗
2;g′g′′α

ν1ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν1ν3

3;g′g′′α
ν3ν2

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν1ν3

3;gg′′α
ν3ν2

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A17)

S14L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν2∗
2;gg′′ α

ν1ν3

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν2∗
2;g′g′′α

ν1ν3

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν1ν3

3;g′g′′α
ν2ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν1ν3

3;gg′′α
ν2ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A18)

S15L(t1,t2) =
∑

g′g′′

∑

ν1ν2ν3

−α
ν3ν3∗
2;gg′′ α

ν1ν2

3;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )(t1+t2)e+i(ǫg′′ +iγg′′ )t2 + α

ν1ν2∗
1;gg′ α

ν3ν3∗
2;g′g′′α

ν1ν2

3;g′′ge
+i(ǫg′ +iγg′ )t1e+i(ǫg′′ +iγg′′ )t2

−α
ν1ν2∗
1;gg′ α

ν1ν2

3;g′g′′α
ν3ν3

2;g′′ge
+i(ǫg′ +iγg′ )(t1+t2)e−i(ǫg′′ −iγg′′ )t2 + α

ν1ν2

3;gg′′α
ν3ν3

2;g′′g′α
ν2ν1

1;g′ge
−i(ǫg′ −iγg′ )t1e−i(ǫg′′ −iγg′′ )t2 . (A19)
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APPENDIX B: ISOTROPIC SIGNAL WITH A SINGLE

PULSE CONFIGURATION

We attempt to find a combination of pulse polarizations
{ê1,ê2,ê3} that selects the isotropic part of VL,

M6V
target
R ∝ δν1ν2

δν3ν4
δν5ν6

. [= (VR)1] (B1)

Following the same approach as the 1D-SRS, we define the
target isotropic vector as

(

V
target
L

)

1
= (1/27,0, . . . ,0). (B2)

The equations the field isotropic polarization vector must obey
to isolate this term are

V
target
R = M−1

6 V
target
L

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
1/3
1/3
1/3
1/9
1/9
1/3
1/9
1/9
1/9
1/9
1/3
1/9
1/9
1/3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

?=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

cos2(θ23)

cos2(θ23)

cos2(θ12)
cos(θ12) cos(θ13) cos(θ23)
cos(θ12) cos(θ13) cos(θ23)

cos2(θ12)
cos(θ12) cos(θ13) cos(θ23)
cos(θ12) cos(θ13) cos(θ23)
cos(θ12) cos(θ13) cos(θ23)
cos(θ12) cos(θ13) cos(θ23)

cos2(θ13)
cos(θ12) cos(θ13) cos(θ23)
cos(θ12) cos(θ13) cos(θ23)

cos2(θ13)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(B3)

Equation (B3) reduces to the following set of equations:

1/3 = a2 = b2 = c2; 9 = abc, (B4)

where

a = cos(θ12); b = cos(θ13); c = cos(θ23). (B5)

The left part of Eq. (B4) implies that a,b,c = ±1/
√

3, which is
incompatible with the requirement in the right part that abc =
1/9. There is no single combination of pulse polarizations
which allow the isotropic response to be extracted. The
difference between the 1D-SRS and 2D-SRS cases, is that
in the 2D-SRS case the three experimental degrees of freedom
for the polarization of the applied pulses, {θ12,θ13,θ23} are not
enough to discriminate between the 15 components of the
isotropic vectors contributing to the 2D-SRS response. A set
of angles chosen to minimize the norm of the difference,

∥

∥VR(θ12,θ13,θ23) − V
target
R

∥

∥, (B6)

between any single experiment and the isotropic target vector
is given in Fig. 12. The ratio of the first component of this
optimized vector to its length,

VR

(

θ
opt
12 ,θ

opt
13 ,θ

opt
23

)

1
∣

∣VR

(

θ
opt
12 ,θ

opt
13 ,θ

opt
23

)
∣

∣

= 0.400512, (B7)

gives an estimate of how selective a technique is for the
isotropic part of the signal. The larger the projection of the

VR onto the targeted isotropic V
target
R , proportional to its total

length, the more strongly the technique selects for the isotropic

angle value

θ
opt
12 57.5859◦

θ
opt
13 122.414◦

θ
opt
23 122.414◦

1

0

1
X

1

0

1

Y
1

0

1

Z

FIG. 11. (Left) Optimum single experiment field polarization

angles selective for the isotropic part of the response, and (right)

a set of three pulse polarization unit vectors demonstrating these

angles.

part of the signal. The result in Eq. (B7) is much better than
1/15 (0.067), which is the all-parallel result and the Dutch
cross technique (0.26) which is diagrammed in Fig. 11, and has
been used to select against third-order terms in the fifth-order
Raman response [27]. This is the best that can be done by
a single choice of field polarizations. In the next section the

SMA signal is derived, which improves on {θopt
ij } by taking the

linear combination of two signals.

APPENDIX C: THE SMA TECHNIQUE: ISOTROPIC

RESPONSE RECOVERED BY A COMBINATION OF

TWO PULSE POLARIZATION CONFIGURATIONS

If the vectors VL,R were linear functions of ê1...3 the case
would be hopeless, but they are not. Consider an experiment
with two different pulse configurations Sa(t2,t1) and Sb(t2,t1).
The average signal,

SSMA(t2,t1) = 1
2
Sa(t2,t1) + 1

2
Sb(t2,t1), (C1)

is linearly dependent on an effective isotropic field vector,

VSMA
R = 1

2
Va

R + 1
2
Vb

R, (C2)

which is the average of the vectors for each individual
experiment. The vectors Va

R and Vb
R are nonlinear functions of

the angles {θa,b
12 ,θ

a,b
13 ,θ

a,b
23 }. The norm,

∥

∥VSMA
R − V

target
R

∥

∥, (C3)

FIG. 12. (Color online) The Dutch cross polarization geometry.
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�1
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1
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�1

0

1

Y

�1

0

1

Z

FIG. 13. (Color online) Pulse polarizations contributing to the

Sa(t2,t1) (red, dashed) and Sb(t2,t1) (blue, dotted) signals (The vectors

ê{1,2,3}{a,b} from Fig. 8). The solid purple vector is the same in both

configurations (ê1a = ê1b).

defined in Eq. (B6) is minimized numerically leading to the
angles in Table I, and the pulse polarizations given in Fig. 8
and shown in Fig. 13.

Using this combination of pulse polarizations, the polariz-
abilities for Eqs. (34)–(37) can be replaced by the isotropic
polarizability, and the total signal can be written:

S2D
SMA(t2,t1) = 1

2
Sa(t2,t1) + 1

2
Sb(t2,t1) = ReS1(t1,t2) (C4)

[see Eq. (A5)].

APPENDIX D: FOURIER TRANSFORMED 1D-SXRS

The analytic form of the 1D-SXRS signal is given by
writing Eqs. (21)–(23) as sums over terms like

f (t) = Re

⎡

⎣

∑

g′
z
g′

Ae−iǫg′ τ−γg′ τ + z
g′

B e+iǫg′ τ−γg′ τ

⎤

⎦ . (D1)

Using the identity

Re(z) = 1
2
(z∗ + z), (D2)

the analytic fourier transform of Eq. (D1) is

∫ ∞

−∞
f (t)eiωtdt = i

2

∑

g′

(

z
g′

A + z
g′∗
B

)

ω − ǫg′ + iγg′
+

(

z
g′

B + z
g′∗
A

)

ω + ǫg′ + iγg′
.

(D3)

For SI,II,III (ω), these terms are

z
g′

A = α1;g′gα1;g′g, (D4)

z
g′

B = α∗
1;gg′α2;g′g, (D5)

with tensor contractions of the operators α that depend on
the individual technique. Using this expansion, the Fourier-
transformed 1D-SXRS signal is

S
(1D)
SXRS(ω) = 1

30
(4 − cos2 θ )SI(ω)

+ 1
30

(3 cos2 θ − 1)[SII (ω) + SIII (ω)], (D6)

where

SI (ω) = −i

2

∑

g′;ν1ν2

[

α
ν1ν1

1;g′gα
ν2ν2

2;gg′ + α
ν1ν1

1;gg′α
ν2ν2∗
2;g′g

ω − ǫg′ + iγg′

+
α

ν1ν1∗
1;gg′ α

ν2ν2

2;g′g + α
ν1ν1∗
1;g′g α

ν2ν2∗
2;gg′

ω + ǫg′ + iγg′

]

, (D7)

SII (ω) = −i

2

∑

g′;ν1ν2

[

α
ν2ν1

1;g′gα
ν2ν1

2;gg′ + α
ν1ν2

1;gg′α
ν1ν2∗
2;g′g

ω − ǫg′ + iγg′

+
α

ν1ν2∗
1;gg′ α

ν1ν2

2;g′g + α
ν2ν1∗
1;g′g α

ν2ν1∗
2;gg′

ω + ǫg′ + iγg′

]

, (D8)

SIII (ω) = −i

2

∑

g′;ν1ν2

[

α
ν2ν1

1;g′gα
ν1ν2

2;gg′ + α
ν1ν2

1;gg′α
ν2ν1∗
2;g′g

ω − ǫg′ + iγg′

+
α

ν1ν2∗
1;gg′ α

ν2ν1

2;g′g + α
ν2ν1∗
1;g′g α

ν1ν2∗
2;gg′

ω + ǫg′ + iγg′

]

. (D9)

APPENDIX E: ROTATIONAL AVERAGING OF 1D-SXRS

For the 1D-SXRS technique, these interactions with the
field can be paired into a dynamic polarizability built from
the tensor components of the transition dipoles μre and μes

excited during the Raman interaction with each pulse,

α
ν2ν1

j ;rs ≡
∑

e

μν2
reμ

ν1
es�

e,j
rs , (E1)

where ν1,2 are polarizations of each dipole, and

�e,j
rs =

∫ ∞

−∞
dτ2

∫ τ2

−∞
dτ1E

∗
j (τ2)Ej (τ1) exp(i(ωj − ωer )τ2

− i(ωj − ωes)τ1) (E2)

is a weighting factor controlled by the central frequencies
and widths of the j th pulse. The 1D-SXRS response can be
factored into material (νj ) and field (fj ) tensor products of
the transition dipoles and fields, by writing it as correlation
functions of this polarizability [see Eq. (11)]:

S1D(ω1,ω2) = Re[〈α2(t1)α1(0)〉 − 〈α†
1(0)α2(t1)〉], (E3)

which are dyadic tensors with nine matrix elements,

αj ;rs =

⎛

⎜

⎝

αxx
j ;rs α

xy

j ;rs αxz
j ;rs

α
yx

j ;rs α
yy

j ;rs α
yz

j ;rs

αzx
j ;rs α

zy

j ;rs αzz
j ;rs

⎞

⎟

⎠
. (E4)

Expanding the material response in eigenstates, two diagrams
contribute (see Fig. 3). The signal,

S1D(t) = R1D
ν1...ν4

(t)I
(4)
ν1...ν4,f1...f4

(1f1ê)(1f2ê)(2f3ê)(2f4ê),

(E5)

can be written as the contraction of a material response
function R1D tensor with the product of the tensor components
of each of the pulse field polarizations (êi). In Eq. (E5) and
the rest of the document, summation over repeated tensors is
assumed.
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Each pulse interacts twice with the molecule. Using
Eqs. (13) and (14), the molecular response function tensors are

R1D
i (t1) = i

h̄
〈α2(t1)α1(0)〉, (E6)

and

R1D
ii (t) = i

h̄
〈α†

1(−t1)α2(0)〉, (E7)

corresponding to the diagrams shown in Fig. 3 [9].
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