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Abstract: Chiral vicinal diamines, a unique class of optically-active building blocks, play a crucial
role in material design, pharmaceutical, and catalysis. Traditionally, their syntheses are all solvent-
based approaches, which make organic solvent an indispensable part of their production. As part
of our program aiming to develop chemical processes with reduced carbon footprints, we recently
reported a highly practical and environmentally-friendly synthetic route to chiral vicinal diamines by
solvent-free mechanochemical diaza-Cope rearrangement. We herein showed that a new protocol by
co-milling with common laboratory solid additives, such as silica gel, can significantly enhance the
efficiency of the reaction, compared to reactions in the absence of additives. One possible explanation
is the Lewis acidic nature of additives that accelerates a key Schiff base formation step. Reaction
monitoring experiments tracing all the reaction species, including reactants, intermediates, and
product, suggested that the reaction profile is distinctly different from ball-milling reactions without
additives. Collectively, this work demonstrated that additive effect is a powerful tool to manipulate a
reaction pathway in mechanochemical diazo-Cope rearrangement pathway, and this is expected to
find broad interest in organic synthesis using mechanical force as an energy input.

Keywords: ball mill; mechanochemistry; solid-state reactions; chiral vicinal diamine; silica gel

1. Introduction

As an alternative synthetic approach, chemical reactions under the influence of me-
chanical force have experienced a renaissance in the synthetic organic community [1].
Although mechanochemistry was developed more than a century ago, it was not con-
sidered as a mainstream approach in organic synthesis until very recently. This gain of
popularity stems partially from the fact that environmental friendliness in chemical synthe-
sis is receiving more scientific consideration and general public attention [2]. Comparing to
traditional solvent-based synthetic methods, ball-milling reactions require much less or,
in a lot of cases, no organic solvent at all, representing an environmental benign and cost-
effective and practical method [3–7]. Second, and more importantly, it often allows access to
a unique chemical space that shows reactivity distinct from solution-based reactions [8–24].
There are ample examples in literature reporting dramatic rate acceleration of reactions
performed under mechanochemical condition. The origin of rate enhancement could be
due to (1) an increase in reaction concentration in the absence of solvent if the reactants are
liquids; or (2) the in-situ formation of solid-state closed-packing microenvironment during
ball-milling that favors reactions to take place [20,21].

Chiral vicinal diamines are important building blocks to a wide variety of pharmaceuti-
cal drug candidates, natural products, chiral ligands and catalysts in asymmetric synthesis,
and both organic and metal-coordination porous materials [25–51]. Although they are
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widely applied in all aspect of chemical sciences, the existing methods to produce them
are far from both practically and environmentally sustainable [52–62]. For example, most
reported approaches gave racemic and even meso product mixtures (Scheme 1a) [63–66].
As a result, a labor-intensive and multistep chiral separation or resolution is then needed to
obtain optically pure chiral diamines. To overcome their limitations, both Chin [67,68] and
Tang [69] independently developed new approaches revolving around [3,3]-sigmatropic
rearrangement with chiral precursors through a two-step sequence to give chiral vicinal
diamines (Scheme 1b). These stereospecific methods are suitable for a broad scope of aryl
aldehydes, and even ketones to give chiral diamines with quaternary stereogenic centers.
Nevertheless, these powerful methods are all solution-based approaches, where the use of
organic solvents is a pre-requisite of carrying out the transformations.
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Scheme 1. Conventional approaches to chiral diamine syntheses and our solid-state mechanochemical
approach with solid additives reported in this work.

To make chiral diamine synthesis more environmentally friendly, we recently re-
ported a solvent-free method to produce chiral vicinal diamines (Scheme 1c) [70]. Building
upon Chin’s work on resonance-assisted hydrogen bond (RAHB)-driven diaza-Cope rear-
rangement (DCR), we showed that a solvent-free mechanochemical method is much more
effective compared to a conventional solution-based approach. Furthermore, during solid-
state ball-milling, in-situ formation of solid-state packing effectively facilitates DCR [20,21].
Using this solvent-free method, we successfully synthesized a wide range of Schiff-based
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complexes including a sterically crowded benzocrown ether-containing Schiff-based ligand
for allosteric chirality switching with alkanediammonium guests [71].

In general, conventional strategies to improve a mechanochemical reaction involve
adjusting the milling frequency, time, and even milling temperature [72]. Other less subtle
approaches such as changing the milling jars and balls into different materials (such as
ZrO2, stainless steel, Teflon) and sizes also prove to be very effective. Recently, liquid-
assisted grinding (LAG) has gained popularity in the synthetic community [72–74]. In
LAG, a small amount of liquid is added to the reaction mixture during the ball-milling
process to mainly promote better substrate mixing. Interestingly, LAG can even inhibit
aggregation of molecular catalysts, as demonstrated by Ito in mechanochemically-driven
Pd-catalyzed cross coupling reaction with a small amount of cyclohexene [75]. On the
other hand, examination of solid additive is less explored. Herein, we show that a new
protocol by co-milling with common laboratory solid additives, such as silica gel, can
significantly enhance the efficiency of the reaction, compared to reactions in the absence
of additives (Scheme 1d). From a fundamental perspective, kinetic study suggested that
the reaction pathway is distinct from both solvent-free reaction (without solid additives)
and solution-based reaction, highlighting the importance of substrate–additive interaction
to manipulate reaction pathways in mechanochemical DCR pathways. From a practical
perspective, this work demonstrated that simple additives could find a pronounced effect
in rate enhancement, and this is expected to find broad interest in organic synthesis using
mechanical force as an energy input.

2. Results and Discussion
2.1. Solid Additive Effect in DCR Reaction between 1 and 2a
2.1.1. Screening of Different Common Laboratory Solid Additives for DCR Reaction

Addition of common laboratory solid auxiliary was shown in the past as a viable
strategy to enhance reactivity in mechanochemical reactions. For example, Friščić and
co-workers observed a drastic improvement in mechanochemical cross-metathesis reaction
with sodium and potassium salts [76]. We commenced our study by examining different
common laboratory solids as co-milling agents in a mechanochemical DCR reaction be-
tween (1R, 2R)-1,2-bis(hydroxyphenyl)ethylenediamine (chiral mother diamine) (1) and
4-(dimethylamino)benzaldehyde (2a) with a mixer mill machine. In a typical ball-milling
reaction setup, 1 (0.041 mmol) and a slight excess of 2a (0.087 mmol, 2.1 equiv.) were loaded
into a 2 mL PP (PP = polypropylene) centrifuge tube equipped with ZrO2 milling balls
(3 mm × 5). After ball-milling, a milled sample was dissolved in DMSO-d6 and the NMR
sample was injected into an NMR spectrometer as quickly as possible (within 2 min). After
that, data acquisition began immediately to acquire the 1H NMR spectrum. Although we
have shown that solution based DCR is much slower than the corresponding ball-milling
reaction, our protocol minimizes further potential solution reaction of the solid sample
after prolong period in solution. At 40 Hz for 30 min, in the absence of any solid additive,
the reaction gave a DCR product 3a in 18% yield, detected by 1H NMR spectroscopy using
an internal standard (Table 1, entry 1). Addition of NaCl (20 mg) does not facilitate the
formation of 3a with <5% yield (Table 1, entry 2). Although it was known that Schiff-base
formation, a key first step in DCR, could be catalyzed by both base and acid catalysts, after
screening a wide range of solid basic reagents, including various alkali metal carbonates,
acetates, etc., none of them improve the yield of 3a (Table 1, entry 3–11), nor did organic
acids. For instance, the addition of either TsOH or B(OH)3 as a co-milling agent completely
shut down the reaction (Table 1, entry 12–13). No sign of any DCR product 3a was detected.
To our surprise, AlCl3 (Table 1, entry 14), reported to catalyze Schiff base formation [77],
failed to promote DCR. When a mixture of 1 and 2a was ball-milled in the presence of silica
gel, we were pleased to find that 3a was formed in a satisfactory 62% yield after 30 min
(Table 1, entry 19). Remarkably, replacing silica gel with sand, a crystalline and nonporous
form of SiO2, proved to be ineffective for DCR (Table 1, entry 20). Finally, as iron could be
present as a trace impurity in silica gel, we also evaluated the effectiveness with iron salt as
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a co-milling reagent. However, only 9% yield was achieved with Fe2O3 (Table 1, entry 21),
totally eliminating the possibility of trace impurity catalyzing DCR.

Table 1. Solid additive effect on mechanochemical DCR reaction between mother diamine (R,R)-1
and 2a.
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2.1.2. Screening of Silica Gel Loading for DCR Reaction

After identifying silica gel as an effective catalyst for DCR, we next studied the effect
of silica gel loading, from 10 to 100 mg (Table S1). With 10 mg of silica gel as co-milling
agent in our typical ball-milling condition using 1 (0.082 mmol) and 2a (0.174 mmol), a
respectable 48% yield of 3a could be detected by 1H NMR spectroscopy (Table S1, entry 2).
Increasing the silica gel amount to 20 mg improves the yield of 3a to 59% (Table S1, entry 3).
Further increase in silica gel loading leads to a steady increase in yield of 3a to 75% with
50–100 mg of silica gel (Table S1, entry 5–6). For NMR scale reaction, DMSO-d6 was added
to the milled sample directly. However, the workup (filtration) becomes difficult with
too much silica gel additive, as loss of product would underestimate the reaction yield.
Therefore, reaction with 20 mg of silica gel represents a balance of catalytic performance
and easy workup. Therefore, for ease of 1H NMR sample preparation, we decided to
conduct further studies with the use 20 mg of silica gel.

2.1.3. Comparison of Different Reaction Methods for DCR Reaction

We next attempted to monitor the reaction time courses and study the kinetic profiles
of solvent-free ball-milling reactions with and without silica gel additive and compare them
to conventional solution reaction in DMSO-d6 we reported recently [70]. By measuring
the conversion to 3a from 1 and 2a for the three strategies, we would have a more general



Molecules 2022, 27, 2570 5 of 16

perspective into the rate enhancement induced by silica gel. Conventional additive-free
ball-milling gave 3a in 18% after 30 min and 29% after 60 min (Scheme 2, red trace). The
conversion to 3a reached 66% after milling for 4 h. Meanwhile, the corresponding reaction
in the presence of silica gel (20 mg) gave 3a in 37% after just 5 min (Scheme 2, blue trace).
Notably, there was a slight decrease in rate after 10 min of milling, and we contributed that
to uneven mixing in a small milling vessel. Even that, the conversion eventually reached
68% yield after 60 min. Meanwhile, solution synthesis in DMSO-d6 gave 3a in only 4% after
almost 4h at rt (Scheme 2, green trace).
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2.1.4. Investigation of the Role of Silica Gel in DCR Reaction

Moreover, the influence of silica gel particle sizes was further assessed. However, the
results of DCR reaction with different meshes of silica gel were all comparable. That is,
mechanochemical reaction using silica gel with various meshes gave rearranged product 3a
in 50–62% yield at 40 Hz for 30 min (Table 2, entry 1–4), showing the generality of silica gel
as a unique catalyst for DCR reaction.
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Table 2. Silica gel size effect and thermal activation effect on mechanochemical DCR reaction between
mother diamine (R,R)-1 and 2a.
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Entry Size of Silica Gel Particle NMR Yield (%) a

1 60–100 mesh 52
2 100–200 mesh 55
3 200–300 mesh 50
4 300–400 mesh 62

5 b 300–400 mesh (314 ◦C) 20
6 b 300–400 mesh (528 ◦C) 16

a NMR (1H) spectrum is taken immediately after ball-milling reaction at the reported time. Yield is determined
by comparing the 1H NMR integration of 3a to that of an internal standard (dibromomethane) with known
concentration. b Silica gel sample was thermally treated under dynamic vacuum at the designated temperature
for 5 h, prior to ball-milling reaction.

Based on silica gel-catalyzed examples reported in prior literature, its catalytic effect
stems from the silanol groups dispersed on the surface of silica gel behaving as Brønsted
acid catalysts [78–81]. Therefore, we anticipated that thermal treatment of silica would
lead to condensation of neighboring silanol groups on surface to give siloxane linkages
between 200 to 750 ◦C [82,83]. The reduced concentration in silanol groups of activated
silica material is expected to show reduced catalytic activity in DCR reaction. In order
to test this hypothesis, the silica gel sample (300–400 mesh) used in entry 4 in Table 2
was subjected to thermal treatment at either 314 ◦C or 528 ◦C under vacuum for 5 h to
give activated silica gel samples, SG314 and SG528, respectively. FT-IR spectra of SG(314)
and SG(528) revealed an almost flat band in the OH stretching region (~2800–3500 cm−1)
(Figure S6). These activated samples were then applied to mechanochemical DCR reactions
with 1 and 2a. 1H NMR spectra acquired immediately after ball-milling for 30 min at 40 Hz
using SG314 and SG528 gave 3a in 20% and 16%, respectively, supporting the collapse of
silanol groups at high temperature (Table 2, entry 5–6), and reduction of the number of
catalytic active sites for DCR reactions.

In addition, we examined DCR reaction employing structurally-analogous materials
such as silicon dioxide (Table 1, entry 20), alumina (Table 1, entry 18), and other metal
oxides, such as CeO2, La2O3, and ZrO2 (Table 1, entry 15–17). However, these materials
exhibit modest catalytic activity, further emphasizing the synergetic effect of hydroxyl
groups in silica material. Upon high frequency collision between aldehyde substrates 2 and
mother diamine 1 with the silanol active site under ball-milling condition, this leads to a
greatly enhanced reaction rate observed for DCR reaction.

2.2. Scope Comparison for Ball-Milling-Induced DCR Reactions with and without Silica
Gel Additive

To highlight the effect of silica gel in catalyzing DCR reaction, we also examined
aldehyde substrates that have low conversion under our previously reported solvent-free
mechanochemical condition, and the results are shown in Scheme 3. For example, electron-
withdrawing substrates 2b and 2c would give rearrangement products 3b and 3c in 34% and
20% yield, respectively, facilitated by mechanical ball-milling at 40 Hz for 30 min without
solid additive. Under the new protocol with 20 mg of silica gel, the conversion to 3b and 3c
can be boosted up to 70% and 95% yield, respectively. Likewise, p-phenylbenzaldehyde
(2d) and o-iodobenzaldehyde (2e), sluggish substrates that require long ball-milling time
and larger milling vessel and milling balls, give DCR products in moderate 41% and 71%



Molecules 2022, 27, 2570 7 of 16

yield, respectively, with a silica gel co-milling agent. Likewise, formation of o-phenyl and
bithiophenyl products 3f and 3g can be improved to 34% and 83% yield, respectively, after
just 30 min of ball-milling at 40 Hz with 1 and silica gel, while the reaction without silica
gel would barely give any DCR products (<5% yield) under the same milling condition.
Finally, other substrates (2h–2i) that were not reported in the past using DCR reactions with
mother diamine 1 can also be transformed into the corresponding diimine species 3h–3i in
good yield, including one with sterically encumbered bis(3-bromonapthalenyl) substituent
3i. Furthermore, the enantioselectivity of the resulting product (S,S)-3 was confirmed by
HPLC with chiral stationary to be >95% ee.
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Scheme 3. Comparison of ball-milling reaction scope with and without silica gel additive in DCR
reaction. Red and green color highlights represent mechanochemical reactions (0.04 mmol scale)
conducting with and without silica gel additive, respectively. Yields are determined by comparing the
1H NMR integration of 3a to that of an internal standard (dibromomethane) with known concentration.
The purple color highlights represent mechanochemical reactions (0.2 mmol scale) conducting with
silica gel additive and the yields represent isolated yield.

2.3. Mechanistic Studies of Silica Gel Catalyzed Mechanochemical DCR Reaction
2.3.1. Tracking the Reaction Profile in DCR Reaction with Silica Gel Additive by
1H NMR Spectroscopy

The observed rate enhancement with silica gel is worthy of further investigation.
When the kinetics profile was examined more closely, namely, tracking the concentration
change for each observable species in mechanochemical reaction between 1 and 2a, we
could potentially differentiate the mechanistic variation between reaction methods shown
in Scheme 2 (ball-milling with and without silica gel). At each time point in Scheme 4, we
determined the concentration (or %) of mother diamine 1, formation of five-membered
imidazolidine intermediate (4), diimine before DCR (5), and imine product 3a after DCR,
with an internal standard added to the NMR sample. As periodic reaction tracking requires
stopping the ball-mill reaction and subjecting the milled sample to solution NMR analysis,
each time point was acquired from an independent experiment. In the reaction time
course shown in Scheme 4, the concentration of mother diamine 1 reduced rapidly to
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below 50%, together with a simultaneous spike of 3a formation in the first 5 min of ball-
milling. The major mechanistic difference for DCR reaction with silica gel is the consistently
low concentration of 4 during the course of reaction. On the contrary, DCR reaction
in the absence of silica gel would build up significant concentration of imidazolidine
intermediate 4 [70]. This phenomenon suggests that silica gel catalyzes the conversion from
4 to 5. As 4 was previously proposed as the longest-lived intermediate in mechanochemical
DCR (without silica gel), disfavoring the formation of 4 from 6 by silica gel would drastically
increase the rate of the overall reaction [70].
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2.3.2. Mechanistic Proposal of Mechanochemical DCR Catalyzed by Silica Gel Additive

In the absence of silica gel, a well-ordered crystalline phase was previously detected by
powder X-ray diffraction (PXRD) during reaction [70]. We proposed that this progressive
structural ordering phenomenon (in-situ crystallization) [20,21] would drive DCR reaction
even when milling was stopped short of full conversion. When a silica gel-containing
reaction between 1 and 2a was ball-milled for 5 min at 40 Hz, 1H NMR spectrum revealed
the formation of 3a in 24% yield. This sample was next subjected to room temperature
aging (free-standing with no milling), and the yield of 3a reached 63% after 7 d. A broad
peak between 15◦ and 28◦ in all milled silica gel-containing samples (before and after
aging) in PXRD spectra was observed and was assigned to disordered phase, amorphous
silica (Figure S7) [84,85]. This result clearly shows that the origins of DCR reaction rate
enhancement with or without silica gel are distinctly different, and we attributed the
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driving force in the presence of silica gel to substrate activation by a silanol group on silica
gel under a solvent-free condition.

By establishing the importance of silanol groups on silica gel shown above and the
information gathered in the time course tracing experiments, we tentatively proposed a
mechanism to describe the silica gel-induced DCR, outlined in Scheme 5. Upon hydrogen
bonding interaction with silanol groups, aldehyde substrate 2 is activated for nucleophilic
attack by mother amine 1 to form mono-Schiff base intermediate 6, which converts rapidly
to five-membered imidazolidine 4 in the absence of silica gel. With silica gel, this process
is disfavored. Instead, 6 engages a second Schiff base formation with activated 2 to give
diimine intermediate 5. A similar type of hydrogen bonding interaction between silanol and
hydroxyl group on 5 would further stabilize and rigidify the six-membered ring transition
state required for DCR to give final product 3. Activation of substrate and intermediates
by surface silanol groups is expected to reduce the energy barriers of all the steps in the
reaction mechanism, and thus results in the observed rate acceleration. This also explains
why intermediate 6 was scarcely detected during reaction tracing in the presence of silica
gel (Scheme 5), a sharp contrast to reaction without silica gel.
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2.4. The Effect of Liquid Additives in DCR Reaction by Liquid-Assisted Grinding (LAG)

Finally, the influence of liquid in DCR reaction was explored as a direct comparison to
solid additives. Liquid-assisted grinding (LAG) is gaining much recognition as an alterna-
tive mechanochemical strategy applied in organic synthesis, production of pharmaceutical,
and functional materials [86–89]. In LAG, trace amount of liquids is added to the milling
mixture to facilitate better mixing efficiency. For example, Ito and others reported numer-
ous examples in mechanochemical cross-coupling reactions with dramatic reaction rate
acceleration by the LAG method [75,90–93]. Browne [23] and Mack [94] independently
showed that LAG could even switch the selectivity outcome of chemical reactions to bias
the formation of thermodynamically unfavorable kinetic products.

Ethanol and DMSO were previously reported by Chin as preferred solvent media for
DCR reactions [67]. By employing EtOH (dielectric constant (ε) = 24.5) by LAG at 40 Hz for
30 min, we showed that the reactions were sluggish (<5% yield in all cases) regardless of the
amount of EtOH applied (from 0.5–2.0 µL/mg) (Table 3, entry 1–4), although the reactants
(1 and 2a) are partially soluble under reaction conditions. Switching to DMSO (ε = 46.7)
(0.5 µL/mg) improves the formation of 3a to 25% yield (Table 3, entry 5) with enhanced
solubility of reactants. Interestingly, when DCR reaction of 1 and 2a was conducted in
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a slightly polar solvent in DCM (ε = 8.9), the yield of 3a reached 54% yield (Table 3,
entry 6). This implies that solubility of reaction components is not the dominant factor
to effective transformation. Surprisingly, LAG with non-polar solvent in petroleum ether,
where reactants are completely insoluble, proved to be ineffective to promote DCR reaction
(<5% yield) (Table 3, entry 7). Considering the environmental impact of organic solvent,
especially halogenated solvents, DCR reaction with solid additive could be a superior
choice compared to employing liquids.

Table 3. Solvent effect in mechanochemical liquid-assisted grinding-induced DCR reaction between
mother diamine (R,R)-1 and 2a.
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3. Materials and Methods
3.1. General Information

All commercial reagents and solvents were used as received unless otherwise indicated.
(1R,2R)-1,2-Bis(2-hydroxyphenyl)ethylenediamine and (1S,2S)-1,2-Bis(2-hydroxyphenyl)
ethylenediamine was purchased from Sigma Aldrich. Other reagents and solvents were
purchased from Sinopharm Chemical Reagent, Bidepharm, and J&K Chemical. Deuterated
solvents were acquired from Adamas, and Eurisotop. Chromatographic purification of
products was accomplished by flash chromatography using silica gel. Thin-layer chromatog-
raphy (TLC) was performed on ShanXi NuoTai silica gel SHF254 TLC plates. NMR spectra
were obtained from Bruker Avance NEO 400 and Bruker Avance III HD 500. 1H NMR
spectra were recorded at 500 MHz or 400 MHz, and 13C{1H} NMR spectra were recorded
at 125 MHz or 100MHz. 1H NMR chemical shifts were determined relative to the signal
of the residual protonated solvent. 11B NMR NMR spectrum was recorded at 128 MHz.
Data for 1H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet,
d = doublet, t = triplet, m = multiplet). 13C{1H} NMR chemical shifts of NMR spectra were
reported as chemical shifts in ppm and multiplicity where appropriate. High Resolution
Mass spectra were obtained from Thermo Fisher Q-Exactive high-resolution MS, operated
in ESI mode. Enantiomeric excesses were determined on an Agilent 1260 Chiral HPLC
using IC, and IA columns. FT-IR data were recorded on a Thermo Scientific Nicolet iS5
FTIR spectrometer.

Diaza-Cope products 3b–3d were previously reported and characterized [95,96]. The
analytical data in Scheme 3 matches those of the literature.

3.2. General Procedure for Mechanochemical Diaza-Cope Rearrangement (0.04 mmol Scale)

(1R,2R)-1,2-Bis(2-hydroxyphenyl)ethylenediamine 1, arylaldehyde 2 (2.1 equiv.), and
silica gel (20 mg) were placed in a polypropylene ball-milling vessel (2 mL) loaded with
five grinding ball (ZrO2, diameter: 3 mm). After the vessel was closed in open air, the
vessel was placed in the ball mill machine. After 30 min of ball-milling at 40 Hz, DMSO-d6
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was added to the vessel and filtered out the silica gel. The filtrate was injected into an NMR
tube with a known amount of internal standard (dibromomethane), and the NMR sample
was measured by NMR spectroscopy to determine the conversion to DCR product 3.

3.3. General Procedure for Mechanochemical Diaza-Cope Rearrangement (0.2 mmol Scale)

When the reactions are scaled up 5X from 0.04 mmol to 0.2 mmol, the amount of silica
gel was also increased from 20 mg to 100 mg, which would be too much to pack in a 2 mL
or 5 mL PP milling vessel. For PP tubes with volume ≥ 10 mL manufactured for the mixer
mill machine used in this study, their shapes are long and narrow, which are not suitable
for well-mixing. With the equipment limitation, we decided to do the reactions in a 15 mL
stainless-steel (SS) vessel with stainless steel milling ball instead. However, as the control
experiment in Table 1, entry 19 indicated, SS vessel is less suitable for DCR reaction in the
presence of silica gel. This hampered the highest possible yield that we can achieve. A
sample protocol for 0.2 mmol scale DCR reaction is listed below:

(1R,2R)-1,2-Bis(2-hydroxyphenyl)ethylenediamine 1, arylaldehyde 2 (2.1 equiv.), and
silica gel (100 mg) were placed in a stainless-steel ball-milling vessel (15 mL) loaded with
one grinding ball (stainless steel, diameter: 12 mm). After the vessel was closed in open air,
the vessel was placed in the ball mill machine. After 4 h of ball-milling at 40 Hz, with a peri-
odic 5 min pause for every 1 h of milling, the solid residual was dissolved in DCM (10 mL),
followed by purification by column chromatography (hexane/ethyl acetate = 10/1) to give
product 3.

3.4. Characterization Data for Products

2,2’-[[(1S,2S)-1,2-di(2-iodophenyl)-1,2-ethanediyl]bis[(E)-nitrilomethylidyne]]bisphenol
(3e). Prepared according to general procedure from 1 (50 mg, 0.20 mmol) and 2-iodobenzalde
hyde (2e) (98 mg, 0.42 mmol) to give the title compound as a yellow solid (82 mg, 61%).
1H NMR (CDCl3, 400 MHz, 25 ◦C) δ 13.06 (s, 2H), 8.44 (s, 2H), 7.69 (ddd, J = 15.6, 7.9, 1.5 Hz,
4H), 7.33–7.26 (m, 4H), 7.19 (dd, J = 7.7, 1.7 Hz, 2H), 6.94–6.91 (m, 2H), 6.90–6.85 (m, 2H),
6.82 (td, J = 7.4, 1.1 Hz, 2H), 5.44 (s, 2H). 13C{1H} NMR (CDCl3, 101 MHz, 25 ◦C) δ 166.73,
160.90, 140.61, 139.68, 132.82, 132.05, 130.68, 129.64, 128.67, 118.89, 118.53, 116.93, 100.52,
80.33. HRMS (ESI) calculated for C28H22I2N2O2, [M+H]+: 672.9843, Found: 672.9843.

2,2’-[[(1S,2S)-1,2-di((2-phenyl)phenyl)-1,2-ethanediyl]bis[(E)-nitrilomethylidyne]]bisphenol
(3f). Prepared according to general procedure from 1 (50 mg, 0.20 mmol) and [1,1’-biphenyl]-
2-carbaldehyde (2f) (78 mg, 0.42 mmol) to give the title compound as a yellow solid (78 mg,
68%). 1H NMR (CDCl3, 400 MHz, 25 ◦C) δ 13.05 (s, 2H), 8.00 (s, 2H), 7.23 (dt, J = 7.1, 4.0 Hz,
4H), 7.11–6.94 (m, 12H), 6.88–6.84 (m, 2H), 6.79–6.68 (m, 6H), 6.62 (td, J = 7.5, 1.1 Hz, 2H),
4.87 (s, 2H). 13C{1H} NMR (CDCl3, 101 MHz, 25 ◦C) δ 165.64, 160.82, 142.08, 140.68, 135.95,
132.49, 131.73, 129.93, 129.66, 128.67, 128.14, 128.03, 127.83, 127.29, 127.18, 127.00, 118.75,
118.56, 116.98, 116.77. HRMS (ESI) calculated for C40H32N2O2, [M+H]+: 573.2537, Found:
573.2544.

2,2’-[[(1S,2S)-1,2-di(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,2-ethanedi
yl]bis[(E)-nitrilomethylidyne]]bisphenol (3h). Prepared according to general procedure
from 1 (50 mg, 0.20 mmol) and 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde
(2h) (98 mg, 0.42 mmol) to give the title compound as a yellow solid (30 mg, 22%). 1H NMR
(CDCl3, 400 MHz, 25 ◦C) δ 13.65 (s, 2H), 8.53 (s, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.58 (dd, J = 7.5,
1.5 Hz, 2H), 7.32 (td, J = 7.6, 1.5 Hz, 2H), 7.23 (ddd, J = 8.5, 7.2, 1.7 Hz, 2H), 7.17 (dd, J = 7.6,
1.7 Hz, 2H), 7.07 (td, J = 7.4, 1.1 Hz, 2H), 6.88 (d, J = 8.2 Hz, 2H), 6.79 (td, J = 7.5, 1.1 Hz, 2H),
6.12 (s, 2H), 1.45 (s, 12H), 1.38 (s, 12H). 13C{1H} NMR (CDCl3, 101 MHz, 25 ◦C) δ 165.89,
161.07, 145.97, 136.22, 132.15, 131.69, 131.15, 128.14, 126.49, 119.02, 118.52, 116.71, 83.81,
25.05. HRMS (ESI) calculated for C40H46B2N2O6, [M+H]+: 673.3615, Found: 673.3659.

2,2’-[[(1S,2S)-1,2-di(3-bromonaphthalen-2-yl)-1,2-ethanediyl]bis[(E)-nitrilomethylidyne]]
bisphenol (3i). Prepared according to general procedure from 1 (50 mg, 0.20 mmol) and
3-bromo-2-naphthaldehyde (2i) (99 mg, 0.42 mmol) to give the title compound as a yellow
solid (76 mg, 48%). 1H NMR (CDCl3, 500 MHz, 25 ◦C) δ 13.28 (s, 2H), 8.42 (s, 2H), 8.26
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(d, J = 8.6 Hz, 2H), 7.82 (d, J = 8.6 Hz, 2H), 7.70 (t, J = 8.1 Hz, 4H), 7.52 (t, J = 7.7 Hz, 2H),
7.45 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 7.6 Hz, 2H), 6.97 (d, J = 8.3 Hz,
2H), 6.80 (t, J = 7.5 Hz, 2H), 6.06 (s, 2H). 13C{1H} NMR (CDCl3, 101 MHz, 25 ◦C) δ 167.30,
161.03, 136.03, 133.98, 132.84, 132.13, 132.03, 128.15, 128.05, 128.00, 127.49, 126.85, 123.95,
118.84, 118.58, 117.02, 76.46. HRMS (ESI) calculated for C36H26Br2N2O2, [M+H]+: 679.0413,
Found: 679.0427.

4. Conclusions

In this work, diaza-Cope rearrangement reaction was examined under mechanochem-
ical conditions in the presence of different additives. Among twenty solid additives tested,
including various metal salts, inorganic bases, Lewis’s acids and Bronsted acids, silica gel
gave the best conversion. Mechanistic studies, including kinetic tracing and “activated”
silica gel experiments, suggested that silanol groups on silica gel are quintessential in en-
hancing both Schiff base formation and DCR by disfavoring imidazolidine intermediate 4
accumulation during reaction, which was previously shown as a long-lived intermediate in
mechanochemical DCR without silica gel. Collectively, an incredibly efficient DCR reaction
strategy was developed featuring no requirement of organic solvent for transformation,
broad substrate scope and complete stereospecificity. As such, this environmentally benign
method is expected to gather academic and industrial interest for potential chiral vicinal
diamine synthesis, an important class of building blocks that plays an important role in
material design, pharmaceutical, and catalysis.
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studies; Figure S8–S20: General procedure for mechanochemical diaza-Cope rearrangement including
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Elusive Aryl N-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents. Angew. Chem. Int. Ed. 2015, 54, 8440–8443. [CrossRef]

18. Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-ray Structure of Dumb-Bell-Shaped C120. Nature 1997, 387,
583–586. [CrossRef]

19. Howard, J.L.; Brand, M.C.; Browne, D.L. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew.
Chem. Int. Ed. 2018, 57, 16104–16108. [CrossRef]

20. Seo, T.; Kubota, K.; Ito, H. Selective Mechanochemical Monoarylation of Unbiased Dibromoarenes by in Situ Crystallization. J.
Am. Chem. Soc. 2020, 142, 9884–9889. [CrossRef]
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