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Polarization induced Z2 and Chern 
topological phases in a periodically 
driving field
Shu-Ting Pi & Sergey Savrasov

Z2 and Chern topological phases such as newly discovered quantum spin Hall and original quantum 

Hall states hardly both co–exist in a single material due to their contradictory requirement on the 

time–reversal symmetry (TRS). We show that although the TRS is broken in systems with a periodically 

driving field, an effective TRS can still be defined provided the ac–field is linearly polarized or certain 
other conditions are satisfied. The controllable TRS provides us a route to manipulate contradictory 
phases by tuning the polarization. To demonstrate the idea, we consider a tight-binding model that 
is relevant to several monolayered materials as a benchmark system. Our calculation shows not only 

topological Z2 to Chern phase transition occurs but rich Chern phases are also observed. In addition, 
we also discussed the realization of our proposal in real materials, such as spin-orbit coupled graphene 
and crystal Bismuth. This opens the possibility of manipulating various topological phases in a single 

material and can be a promising approach to engineer new electronic states of matter.

�e discovery of topological insulators (TIs) in condensed matter systems has not only revealed novel physics 
of the quantum world but also uni�ed many physical phenomena, which were thought to be irreverent, into the 
same framework1. �eir peculiar edge states make TIs a hot topic for both fundamental interests and industrial 
applications. Several materials such as HgTe/CdTe quantum well, BixSb1−x alloys, Bi2Se3 and Bi2Te3, etc., have 
been proven to be TIs by experiments2–6. Despite these successes, how to design a topologically non–trivial mate-
rial, remains a challenging issue. In most cases, the discovery of new TIs still relies on serendipity rather than 
predetermination.

Instead of searching for materials with intrinsically non–trivial topology, there are several recent studies 
focusing on manipulation of topological phases using controllable physical processes, e.g. electric �elds, strains, 
etc7–9. �ose studies not only o�er new tools to generate various topological phases but also open new ways to 
making real electronic devices.

One of the promising methods to engineer a topological property of a system is to use periodically driving 
�elds10–14. �e proposal is based on the Floquet theory which states that the Hamiltonian of a system with a time–
dependent periodic potential can be mapped into an e�ective static Hamiltonian, called the Floquet Hamiltonian. 
If the (quasi) band structure of a Floquet Hamiltonian exhibits a topological behavior, we can expect there exists a 
similar feature in the original Hamiltonian in a dynamical fashion. An advantage of using this method to engineer 
the band topology is that the ac–�eld provides a set of tunable parameters such that a variety of band structures 
unaccessible in the original material can be generated in a dynamical way. Many proposals based on the topol-
ogy of Floquet Hamiltonians have appeared recently, some of which are: Floquet TIs in graphene15–17, Floquet 
TIs in semiconductor quantum wells18, Floquet Majorana fermions in topological superconductors19, merging 
Floquet Dirac points20, Floquet fractional Chern insulators21, Floquet Weyl semimetal22, etc. A few experiments 
that support the idea of Floquet TIs have also been carried out23,24. �ose works not only lighten up the road to 
manipulate topological phases but also bring us a vast landscape of new physical phenomena that are hardly 
found in static systems.

While many topological phases have been studied within the Floquet framework, the discussion of Z2 phases 
remains scarce because time–reversal symmetry (TRS), a necessary condition for the existence of the Z2 phase, 
is always broken due to the time dependence of the external perturbation. However, the Floquet Hamiltonian 
is merely an e�ective mapping of the original Hamiltonian, so the loss of TRS in original Hamiltonian does not 
necessarily result in the loss of TRS in Floquet Hamiltonian. Establishing an operator that links Floquet states in 
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the Brillouin zone by a similar way as conventional TR operator does, an e�ective TRS can be de�ned11,18. If so, 
two seemingly contradictory phases, TRS protected Z2 phase, such as recently discovered quantum spin Hall state, 
and TRS broken Chern phase, such as much celebrated original quantum Hall state, can both be manipulated in 
a single material by tuning the ac–�eld, which is the main message of the present work.

Here, we �rst show how we truncate the Floquet Hamiltoian to �nite dimension in a realistic calculation. 
Second, we show that the TRS conditions can be easily satis�ed if the �eld is linearly polarized or certain low 
excitation conditions are reached. �ird, we use a prototypical 2D material with strong spin–orbit coupling as a 
benchmark in our calculation, in order to demonstrate the idea of manipulating Z2 and Chern topological phases 
in the same system. More speci�cally, we consider a generic p–orbital honeycomb lattice model to illustrate our 
�ndings. Our results show the evidence for rich topological phase transitions among normal phase, Z2 phase and 
Chern phases by properly tailoring the external �eld. In addition, we also found polarization plays as a crucial 
role in engineering Chern phases. Complex Chern phase diagrams can be solely controlled by the polarization.

Floquet Theorem
We consider a tight–binding Hamiltonian with an external time perodical ac–�eld
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where τ is time, Rj the lattice vectors and (α, β) the internal degrees of freedom (e.g. orbitals, spins, etc.). �e 
ac–�eld is coupled to the problem by introducing a minimal coupling τ →

αβ αβ τ ⋅t t e( )j j
iA d( ) j where dj is the posi-

tion vector of state β and A(τ) is the vector potential of the �eld. Since the Hamiltonian has both lattice and time 
translational symmetries, we can use Floquet technique to perform a dual Fourier transformation and de�ne an 
e�ective static Hamiltonian20:
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where ω =  2π/T is the frequency of the ac–�eld and (n, m) are the Floquet indexes.
�e Floquet Hamiltonian HF forms an eigenvalue problem ω | 〉 = | 〉

γ γ γ
H u uk k k k( , ) ( ) ( ) ( )F n n n  where γ is the 

band index, n is the Floquet index ranging − ∞  to + ∞  and γn is the so called quasienergy. The relations  
γn =  γ0 +  nω and | 〉 = | 〉

γ γ
u un 0  are held as a result of the analogous properties of the Brillouin zone in the fre-

quency domain. �ey also show the physics of absorbing/emitting n photons, so the Floquet bands are shi�ed by 
± nω. �e solution of the original Hamiltonian is obtained by linearly combining static Floquet band states 

 ψ τ τ| 〉 = | 〉 = ∑ | 〉γ
τ
γ

τ ωτ
γ

− −
=−∞
+∞γ γe u e e u( ) ( )i i
n

in
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γ
u ( )  is the Floquet state which is periodic both in 

space and time. Note that τ no longer appears in HF and | 〉
γ

u n , so the Floquet theorem simpli�es the original time–
dependent problem by mapping it to a static one. �erefore we can treat HF as the usual lattice Hamiltonian and 
explore its topology using the techniques developed for static systems. If HF has non–trival edge states, we can 
expect a dynamical analogy on ψ τ| 〉γ( ) 18.

Because the Floquet index n ranges from − ∞  to + ∞ , the Floquet Hamiltonian is not manageable unless 
we make some approximations10. Two approximations are frequently adopted: (a) weak intensity limit and  
(b) high–frequency limit.

For the approximation (a), let us consider an ac–�eld sinusoidal in time. In this case, Jq(A · dj) is essentially the 
q–th Bessel function of the �rst kind. In the limit of the weak intensity, →A 0, its asymptotic behavior is as fol-
lows: J0 →  1, Jq≠0 →  0. �e larger the q the faster Jq≠0 drops to zero. Hence we can truncate HF to a �nite dimension 
by including just a few lowest order photon processes, provided the �eld intensity is weak enough. For example, 
if we keep q =  0, 1, HF is reduced to the following form
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where Hf
1 denotes a reduced Floquet Hamiltonian describing an emission/absorbtion of a single photon and 1 is 

the operator that projects HF to Hf
1. A diagrammatic explanation of such �rst order process is shown in Fig. 1(a,b). 

In the upper le� inset, the undriven band structure is modi�ed by the 0–th order e�ect J0. Once J1 term comes in, 
the bands will have three copies with energy shi�s 0, ± ω. When those bands reach resonant energies, i.e. the band 
crossings, J1 will open gaps ~tJ1 making them anti–crossing. �is is the main idea of the truncation.

As for the approximation (b), let us assume the frequency of the external �eld is so much larger than the band-
width, ω  W , that the Floquet bands do not cross anymore. In this limit, the gap openings due to Jq>0 become 
less important, which implies that it is also the condition to consider just the lowest order photon processes.
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Time-Reversal Symmetry
In an undriven system, the TRS is de�ned by  τ τ= −

−H H( ) ( )1  where   is the conventional TR operator 
 = πσ−e Ki /2y . Although systems with time–dependent ac–�elds do not hold this property, it is still possible to 
de�ne an e�ective TRS for the Floquet Hamiltonian11,18. To give speci�c conditions holding the e�ective TRS, we 
conclude with two theorems here (see Supplemental Materials):

�eorem I: If there exists a parameter τ0 such that  τ τ τ= +
−H H( ) ( )1

0 , one can always de�ne an e�ective 
TR operator = τQ eiH F 0  that satis�es the relation   = −

−H Hk k( ) ( )F F
1 .

Theorem II: Assuming a system has TRS when it is undriven, i.e. =A 0, then τ ωτ φ= +AA( ) [ sin( ),x x  

ωτ φ ωτ φ+ +A Asin( ), sin( )]y y z z  with φi −  φj =  mπ (i, j ∈  x, y, z; m ∈  integers) will automatically make H(τ) 
satisfy τ τ τ= +

−H H( ) ( )1
0  . Furthermore if the time frame is properly chosen, one can always let all 

φ π′ = ∈s n n integer( )i i i  such that τ0 =  0 and IT=Q .
�ese theorems tell us if the phase di�erences among each �eld component are multiples of π, the Floquet 

Hamiltonian will have e�ective TRS22 and the TR operator can be treated as a conventional one acting in the 
Hilbert space of the basis of the Floquet Hamiltonian α| 〉n k{ ( ) }. In the following, we will call the condition 
φi −  φj =  mπ as linear polarization in all cases.

�e linear polarization condition is not the only option to have e�ective TRS. Since we are handling the v–th 
order reduced Floquet Hamiltonian νH f  rather than the original HF in a realistic calculation, it is possible that 

νH f  
has more time–reversal points than HF. To show this, let us consider the linear polarization case where all polari-
zation angles φi =  0. In this regard, the integral function Jv is essentially the v-th Bessel function of �rst kind which 
is a real number for arbitrary v. If the Floquet TR condition is held, the Floquet TR operator can be treated as 
conventional TR operator acting in the Floquet Hilbert space as stated in �eorem II and the matrix elements  

of v-th order Floquet Hamiltonian must satisfy the TRS condition =
ν ν−H Hf f

1  , i.e. − δ δ+σ σ− ′−( 1)[ ] 

Figure 1. (a) Floquet bands within �rst order emission/absorption photon processes as replicas of the original 
band structure modi�ed by J0 (see le� upper inset). (b) formation of the Floquet band structure by merging 
states into single Brillouin zone (le�) and accounting for the e�ect of gap opening due to J1 (right). (c) �e 
imaginary part of J1(A · Rj) as a function of polarization φ (in unit of π) when A =  [1, 7.467]/a (with ħ =  e =  1). 
Le� lower inset gives the de�nition of each Ri of graphene honeycomb lattice, where a is the length of R3.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:22993 | DOI: 10.1038/srep22993

α σ α σ α σ ασ′ − ′ − | = ′ ′ |ν

φ

ν

φ= =
⁎H H( , ) ( , )f f0 0

i i
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label a Floquet state. Recall that the hopping integrals in the Floquet Hamiltonian are generated by modifying 

τ→ ⋅αβ αβ νt t J A d( ( ) )j j
j . Such a modi�cation only applies to the orbital part and is irrelevant to the spin degree of 
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Apparently, if one can properly tailor A such that η
α

α′ are all real numbers, the above TR condition will still hold 
even if φi ≠  0. It can be considered as an “accidental TRS” which occurs due to a numerical coincidence. It does 
not exist for arbitrary order in general. However, if we only focus on a few lowest orders, it is possible to �nd A 
that makes Jq≤v real for other polarization angles.

To give an example, we have plotted in Fig. 1(c) the imaginary part of J1 (J0 is always real) with respect to three 
non–equivalent position vectors of a honeycomb lattice as a function of polarization φ =  φx −  φy by fixing 
[Ax, Ay] =  [1, 7.467]/a. One can immediately notice that there are two additional TRS points (all lines reach 0) 
other than φ =  mπ, i.e. φ =  π/2 and φ =  3π/2. �ese additional TRS are not robust and will be broken for high 
orders or various amplitudes, so one should con�rm that the energy splitting on Kramers degeneracy ΔE due to 
higher order terms is much smaller than the characteristic energy εc that we are interested in ε∆ ∼

ν+ E tJ( )c1  
to explore this feature further.

Floquet Topological Phases
�e best candidates to realize topological phase transitions using periodical ac-�eld would be 2D materials with 
spin–orbit coupling (SOC), e.g. transition–metal–dichalcogenides, spin-orbit coupled graphene systems, silicene, 
germanane, etc. �ese materials have been proven (or have high expectancy) to exhibit monolayer structures with 
band gaps around dozens to hundreds meV. Some of them are also considered as possible materials to realize 
Floquet topological phases15–17,25–27 due to their planar geometry making the in–plane ac–�eld easily realized by 
a laser in experimental setup.

Here we consider a nearest neighbor tight–binding Hamiltonian on a honeycomb lattice with a p–orbital (total 
six states) per each site as a generic minimal model describing the 2D material at the center of interest. Because 
the occupation of Floquet bands remains a controversial issue28, we can only study the topology of a particular 
band gap. For simplicity, let us focus on a gap that located in the middle of the Floquet bands. In order to make 
our model close to actual band structures, hopping integrals are generated by a Slater–Koster method29 with 
Vppσ =  t, Vppπ =  − 0.8t and onsite energy =E 0p

x y z, ,
. SOC is treated as a local potential by evaluating the matrix 

elements λ〈 | ⋅ 〉p pL S
i j

 with λ =  0.5t for each site. In order to calculate the topological invariants, we implement 

the n–�eld method introduced Fukui et al.30,31. �is method has been proven to provide evaluations of both Z2 
and Chern topological invariants in discretized Brillouin zones accurately and e�ciently. We emphasize extra 
time that when computing Z2 invariants for the Floquet Hamiltonian, the TR operator should be replaced by the 
e�ective TR operator = τQ eiH F 0  as described in this work.

In Fig. 2, we show a cartoon of the honeycomb lattice and the band structures with and without SOC. �e 
Dirac points at K-points being gapped when SOC is turned on is a general feature of most honeycomb lattice 
systems especially graphene. We further con�rmed the SOC induced gap is topologically trival under these 
parameters so it behaves as a normal insulator. To study Floquet effects, we consider the reduced Floquet 
Hamiltonian to �rst order, Hf

1, and use a rather large frequency ω =  6t (larger than the band width). �e ampli-
tudes of Ax and Ay are chosen to be 0.3n/a, n =  1 ~ 13 (a is the lattice constant) with linearly polarized �eld 
φx =  φy =  0. �e Floquet bands are also assumed to be half–�lled as in the undriven case. Figure 3(a) shows the Z2 
phase diagram. Apparently there exists a large (shown in blue) area of Z2 phase in the parameter space. To check 
the corresponding edge states, we have plotted the Floquet band structures of phase point 1 as a zigzag ribbon 
under the same ac–�eld. Clear edge states appear at k =  ± π demonstrates the ability of tuning a normal insulator 
into a Z2 insulator using an ac-�eld.

Next, let us consider an elliptically (circularly if Ax =  Ay) polarized ac–�eld with φx =  0, φy =  0.1π ~ 0.5π. �e 
phase diagram of the Chern numbers is shown in Fig. 3(b–f). Because it is a multiband problem (12 bands for the 
undriven and 36 bands for the reduced Floquet Hamiltonian), the Chern number can be much larger than ± 132. 
One can immediately �nd that the Chern phases are highly sensitive to the polarization angle of the ac-�eld. Not 
only the areas of non-trivial Chern phase are greatly enlarged but the values of Chern numbers are also increased 

Figure 2. Honeycomb lattice irradiated by electric ac-�eld A(τ). Le� inset: band structure without SOC. Right 
inset: band structure with SOC λ =  0.5t, t being a unit of energy. Note that all the bands are doubly degenerate.
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when Δφ approaches π/2. �is is a general feature even if we change the parameters of the band structure. It sug-
gests the more Kramer degeneracy is broken, the better is for the formation of Chern phases. In Fig. 3(i,j), we also 
show the edge states corresponding to the parameters of the phase point 2 and 3. �e existence of 2 ×  2 and 6 ×  2 
edge states intersect EF is consistent with the Chern number C =  − 2 and C =  − 6 cases with two edges.

Finally, we estimate some physical quantities relevant to realization of such exotic electronic phases in real 
systems. Since the realization of topological phase transition between Z2 and Chern phases requires materials 
that are properly designed, we propose two rather simple applications to manipulate topological phases using the 
idea of controllable TRS. �e �rst application is spin-orbit coupled graphene. It is well–known that the SOC in 
graphene is extremely small to be detected in experiments. �erefore the realization of quantum spin Hall e�ect 
in graphene remains a challenging issue. Recently many studies focus on the substrate or adatoms assisted SOC 
in graphene and have made the spin–orbit coupled graphene system possible33–35. If so, one could expect to tune 
the quantum spin Hall state in SOC graphene to quantum Hall state by using lasers with circular or elliptical 
polarization.

Let us take graphene with adatoms as an example33. It is predicted to have SOC induced Z2 topological gap Eg 
around 5 ~ 20 meV. To simulate this problem, we use tight–binding parameters for the sp states of graphene 
obtained by �tting to its band structure36,37 and tune the SOC to a value that in our model �ts the topologically 
non-trival gap of 5 meV. We consider an infrared �eld, ω = THz E2 /g . Polarization angles are chosen to be 
π/2 to maximize the Chern phases. To ensure the weak intensity approximation, we limit Ax, Ay <  1(ħ/A) so that 
J2 e�ects are about two orders of magnitude smaller that J1 and can be neglected. �e electric �eld and the corre-
sponding laser intensity are obtained by E0 =  Aω/e and = = . ×

−I cE E W cm1 33 10 ( / )0
1

2 0 0
2 3

0
2 2  respectively. 

Under these conditions, we found the original Z2 phases can indeed turn into various Chern phases. It corre-
sponds to the electric �elds E0 <  1.31 ×  105 V/cm or the intensities I0 <  2.3 ×  107 W/cm2. �is will require a rather 
high power about several kW in experiments. Although this power is experimentally accessible, most materials 
can burn out under such a strong �eld. �erefore searching for a material that can display both phases under 
lower intensities could be an interesting topic for future research.

Another interesting application of our proposal is to generate 3D Z2 materials. Previous studies on engineering 
TIs using ac–�elds have focused on 2D materials due to its planar structure. �is makes a homogeneity of the 
laser �eld easy to achieve in experimental setup. However, if a 3D material with a size much smaller than the 
wavelength of the ac–�eld is made, it is still appropriate the consider the laser �eld homogeneous within the 

Figure 3. Floquet topological phase diagram. (a) Z2 phase diagram (blue for Z2 =  1, white for Z2 =  0) with  
linearly polarized ac–�eld [φx, φy] =  [0, 0]. (b–f) Chern phase diagram (Chern numbers for each color are shown 
in the legend. White area indicates Chern number equal to zero) with polarization φx =  0 and φy =  0.1π ~ 0.5π 
respectively. Ax and Ay are chosen to be 0.3n/a, n =  0 ~ 13 (a is lattice constant, ħ =  e =  1). (g–i) Floquet band 
structures of the edge states calculated in a zigzag ribbon geometry with 32 sites in the transverse direction. 
Edge states in (h) are doubly degenerate. All energies are in unit of t.
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material. Obviously, this requires the �eld to have a macroscopic wavelength, e.g. a microwave. One of the candi-
dates there could be crystal Bismuth. Bi is a topological trivial semi–metal but very close to its non–trival phase if 
its hopping parameters Vppπ or Vppσ are slightly perturbed31. It highlights the possibility of making Bi a TI by 
modulating the hopping parameters using the ac–�eld. To show this, we use a sp tight–binding model to describe 
the problem38. Since it has a direct gap at L-point with E 0g , it is easy to enlarge the gap in its Floquet band 
structure by introducing an ac–�eld with a very low frequency. Apparently, it �ts the microwave requirement 
automatically. To check whether this small gap could be topologically non–trival, we consider a linearly polarized 
ac–�eld with all φi =  0, i =  x, y, z and ω =  241 GHz =  1 meV (λ ~ 1 mm) along [0, 1, 0] direction of the Bi crystal. 
�e amplitude [Ax, Ay, Az] is set to [1, 0, 1] ×  10−2 ħ/A. �e band structures are shown in Fig. 4. One can immedi-
ately notice that a gap around 10 meV in the Floquet band structure is opened at the L point. We evaluate the Z2 
invariants and obtain a non–trival (1; 111) strong TI phase. �e input ac–�eld E0 ~ 241.8 V/cm or the intensity 
I0 ~ 77 W/cm2 requires a laser with a rather low power ~0.5 W accessible in experiment. �erefore, we suggest Bi 
could be a good choice to generate 3D Z2 TI using the Floquet e�ect.

Conclusion
In summary, we have developed a framework to study TRS in Floquet Hamiltonian and used a generic tight–
binding model of the honeycomb lattice relevant to several recently discovered monolyaered materials in order to 
demonstrate the possiblity of transitions between Z2 and Chern phases by tuning the polarization of the ac–�eld. 
Although, our discussion is based on the dynamical analogies, the physics is still very fascinating not only due 
to the emergence of the Z2 phase in a formally time–reversal breaking potential but also due to the possibility of 
manipulating contradictory topological phases in a single material. In addition, we also estimate the conditions of 
generating ac–�eld induced Chern phases and Z2 phases in real materials including spin-orbit coupled graphene 
and crystalline Bi. Although it is di�cult to generate Z2 to Chern transition in a real system, we conclude that Bi 
could be a promising material to generate 3D Floquet TI. Both phenomena are hard to �nd in static systems but 
could lead us to a new physics that is unreachable in conventional solid–state matters.
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