
 Open access Proceedings Article DOI:10.1109/ICRA.2013.6630966

Manipulation-based active search for occluded objects — Source link

Lawson L. S. Wong, Leslie Pack Kaelbling, Tomás Lozano-Pérez

Institutions: Massachusetts Institute of Technology

Published on: 06 May 2013 - International Conference on Robotics and Automation

Topics: Object-oriented design, Container (abstract data type), Visual search, Object (computer science) and Mobile robot

Related papers:

 Object search by manipulation

 Sensor planning for object search

 Utilizing object-object and object-scene context when planning to find things

 Planning on searching occluded target object with a mobile robot manipulator

 Visual search for an object in a 3D environment using a mobile robot

Share this paper:

View more about this paper here: https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-
4tpggrcolk

https://typeset.io/
https://www.doi.org/10.1109/ICRA.2013.6630966
https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk
https://typeset.io/authors/lawson-l-s-wong-27cjjf4584
https://typeset.io/authors/leslie-pack-kaelbling-75f6ys85af
https://typeset.io/authors/tomas-lozano-perez-24y5dbkf07
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/conferences/international-conference-on-robotics-and-automation-27g6ts5l
https://typeset.io/topics/object-oriented-design-2npxfnb9
https://typeset.io/topics/container-abstract-data-type-2acnvwel
https://typeset.io/topics/visual-search-1oyelw47
https://typeset.io/topics/object-computer-science-16wjd3bx
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/papers/object-search-by-manipulation-bo6gej6vig
https://typeset.io/papers/sensor-planning-for-object-search-2anla3gzrb
https://typeset.io/papers/utilizing-object-object-and-object-scene-context-when-4tp4rxso3e
https://typeset.io/papers/planning-on-searching-occluded-target-object-with-a-mobile-1lx3bftrbc
https://typeset.io/papers/visual-search-for-an-object-in-a-3d-environment-using-a-4wtnyi6gsx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk
https://twitter.com/intent/tweet?text=Manipulation-based%20active%20search%20for%20occluded%20objects&url=https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk
https://typeset.io/papers/manipulation-based-active-search-for-occluded-objects-4tpggrcolk

Manipulation-based Active Search for Occluded Objects

Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez

Abstract— Object search is an integral part of daily life, and
in the quest for competent mobile manipulation robots it is an
unavoidable problem. Previous approaches focus on cases where
objects are in unknown rooms but lying out in the open, which
transforms object search into active visual search. However, in
real life, objects may be in the back of cupboards occluded by
other objects, instead of conveniently on a table by themselves.
Extending search to occluded objects requires a more precise
model and tighter integration with manipulation. We present a
novel generative model for representing container contents by
using object co-occurrence information and spatial constraints.
Given a target object, a planner uses the model to guide an
agent to explore containers where the target is likely, potentially
needing to move occluding objects to enable further perception.
We demonstrate the model on simulated domains and a detailed
simulation involving a PR2 robot.

I. INTRODUCTION

Consider searching for a large mixing bowl in the kitchen

when preparing a meal. There are three cupboard shelves that

have been partially viewed, two containing stacks of plates,

the third some dish detergent. Other objects appear to be in

the back, but they are occluded by the plates and detergent,

and we need to remove some objects in front to continue

searching the shelves. Which object should we move?

Even though the bowl has not been observed yet, it is

intuitive to us to keep looking on a shelf with plates because

they have a closer function to bowls. Suppose we further

observe that of the two shelves with plates, one shelf is small,

the other large. Assuming that a bowl, if present, is equally

likely to be anywhere in the cupboard, and that both regions

incur the same exploration cost, then the large region is more

desirable to look at since more objects can be expected to be

found there. Moreover, given that mixing bowls are usually

large, we may even determine that the bowl cannot fit on the

small shelf and eliminate it from consideration.

The above example illustrates two aspects of object search

that we wish to capture in our model. First, certain categories

of objects, such as plates and bowls, tend to co-occur with

each other. Sources of such prior information have been

actively explored in previous work (e.g., [1], [2], [3], [4]).

However, since our focus is not on the acquisition of the

prior, but is instead on the orthogonal task of Bayesian

This work was supported in part by the NSF under Grant No. 1117325.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. We also gratefully acknowledge
support from ONR MURI grant N00014-09-1-1051, from AFOSR grant
FA2386-10-1-4135 and from the Singapore Ministry of Education under a
grant to the Singapore-MIT International Design Center.

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139
{lsw,lpk,tlp}@csail.mit.edu

posterior inference given both prior and observations, we

will simply rely on empirically-observed co-occurrences as

a prior indicator of similarity. This can be enriched with

previously developed priors if necessary. Second, in the latter

half of the example, we use geometric information to choose

between unobserved spaces. Here we understood that objects

have physical extent, and knew that containers have limited

capacity into which all objects must fit. In particular, the

target query object for which we are searching must fit in the

remaining unseen container space. Our model reasons about

both object type co-occurrences and spatial constraints.

II. RELATED WORK

Significant progress has been made in the context of

recognizing and manipulating known objects, but this is

traditionally limited to cases where the agent knows the

initial positions of the objects. Ye and Tsotsos [5] first

relaxed this assumption by formulating object search as an

active vision problem, where an efficient trajectory of camera

views that localizes the target object is sought. Following this

line of work, Sjöö et al. [6] and Aydemir et al. [2] recently

considered a similar problem and used spatial relations

between objects to more efficiently pinpoint good views

of the target object. This was extended to include object-

location co-occurrence information ([7], [8]), reflecting, for

example, that cereal is typically found in the kitchen.

The idea of using object contextual information has been

repeatedly identified as an important facet of object search.

Prior to any work in active object search, Wixson and Bal-

lard [9] recognized that searching indirectly for ‘intermedi-

ate’ objects can ultimately make visual search more efficient,

as some objects related to the target may be easier or more

reliable to detect. More recently, Kollar and Roy [1] showed

that object-object and object-location co-occurrence statistics

can be used to predict target object locations and decrease

expected plan length. Schuster et al. [4] also explored object-

object similarity from a semantic perspective, showing that

a similarity measure in ontology space is informative in

predicting likely storage locations of objects.

Applied to object search, Kollar and Roy [1] used co-

occurrence statistics gathered from the Web to train a Markov

random field model indicating how likely objects are at given

locations. Extensions to this approach involving information

retrieval ([10]) and hierarchical spatial models ([11]) have

also been explored. Kunze et al. [12] applied the semantic

similarity measure mentioned above for object search by

using a Web-trained ontology. Finally, Joho et al. [3] illus-

trated one way of combining both types of information by

extracting features to train a reactive search heuristics.

All previous work addresses only situations in which target

objects are lying out in the open. Success in these scenarios

relies mostly on identifying rooms that likely contain the

object (by place classification), and placing the camera at

appropriate viewpoints to identify objects. In other words,

the object search problem is reduced to active visual search,

perhaps explaining the popularity of this approach in previ-

ous work. In real life, however, such convenient scenarios do

not always occur. Objects are often stored in cupboards and

drawers, possibly in the back, behind layers of other objects.

Occluding objects in the front typically need to be moved

away to enable further perception and eventual discovery of

such occluded objects. To our knowledge, no previous work

has attempted to directly tackle this problem.

In this work, our goal is to focus on occluded objects

inside containers such as cupboards with known dimensions.

These objects are occluded in such a way that no possible

viewcone (from the outside) can directly perceive the object.

The occluding objects must therefore be moved away first, so

manipulation is inherently necessary. Since manipulation is

still a relatively expensive and error-prone action on mobile

robots, we want to minimize the number of such actions.

In particular, we want to model container contents more

precisely, taking all object observations and container spatial

constraints into account, so that a planner can make manipu-

lation decisions using more accurate estimates. As mentioned

earlier, to accomplish this we must perform careful Bayesian

posterior inference to reason about potential object types

within the remaining unobserved space of containers, given

the objects and space already observed in each container.

Following the motivating example given in the beginning,

our container contents model will have two major com-

ponents. First, to model object-object type similarity, we

introduce the notion of a container’s composition, a latent

distribution over object types, with a prior based on co-

occurrence statistics to enforce the known type similarities.

Second, we enforce container spatial constraints by specify-

ing a generative model for putting objects into containers,

and then using it to sample contents of unobserved con-

tainer regions. This generative process results in samples of

container contents and configurations, which can be used to

answer our fundamental query of object search: how likely

is the target object to be found in a certain container?

III. A GENERATIVE MODEL OF CONTAINER CONTENTS

We now formalize the problem and list some assumptions.

The domain is partitioned into a finite set of disjoint con-

tainers {cl}, each with known location and geometry. The

domain is also partitioned into observed and unobserved

regions, such that each container may be unseen, fully

explored, or partially seen. The known regions are persistent

(we cannot ‘unsee’ a part), and are assumed to be static

apart from explicit manipulation by the single agent in the

environment. The contents of containers are independent

from each other. We treat each container as a homogeneous

region of space that we think consists of roughly similar

content, so containers serve as a fundamental entity in the

object search problem. On the object level, each object in the

domain belongs to one member of a finite universe of types

{ti}. An object must also always be in exactly one container;

it cannot belong to multiple containers. It is not essential

for the general approach, but for simplicity, we assume that

objects are recognizable, so that given a sufficiently clear

view, an object’s type can be resolved without error.

A query object type is given to the agent as input for the

search problem. The agent can move around in the domain

and collect information by moving objects and observing

(converting unknown regions to known regions), yielding

observations of objects and their types. Since objects are

often occluded, the agent may need to remove objects in

order to allow further observation. Updating the object type

distributions based on observed objects and known regions

changes the agent’s belief about where the query object

type is likely to be. The updated belief can be used by a

planner to determine the agent’s next actions in searching

for the query object. One essential piece of information for

planning is the probability that an object type is in the unseen

region of a particular container. Since containers are modeled

independently, we focus on a single container c for the

remainder of this section. Suppose we have already observed

a set of objects {oj} with corresponding object types {toj}.

If we are interested in finding an object of the query type

q, then we would like to compute P(q in c | {toj}), the

probability that there is at least one object of type q in

container c given the observed object types.

To compute this probability, we make use of the notion

of the composition of a container. This is the normalized

vector of object type counts in a container. Hence if there

are T different object types, the composition θ belongs to

the (T − 1)-dimensional simplex ∆(T−1). The composition

and total object count of a container are together a sufficient

statistic of its contents, since we can use them to reconstruct

the container’s empirical object type counts, and we will only

reason about container contents using the types of objects

they contain. Although this appears to be a trivial algebraic

manipulation, the resulting entities simplify the problem

because we can now construct a generative model of the

container’s contents and geometry. In particular, we view the

composition as a discrete distribution over object types, and

the container’s object types (both observed and unobserved)

as independent random samples from this distribution. The

contents then induce certain geometric characteristics (e.g.,

occupied volume), which are subject to observed spatial

constraints (e.g., remaining volume).

This generative view is summarized in Fig. 1. The shaded

nodes correspond to observed object types (multiple objects

are represented by a single plate) and the unobserved space in

the container. The remaining unobserved space is represented

by an octree that is updated after every perception action. The

observed object types {toj} provide information about the

latent θ, in turn influencing the distribution on unobserved

object types {ti}. The nodes left of θ represent the prior

on compositions, which enforces the object type similarity

structure. The prior will be discussed in section III-A. The

θη

µ

Σ

toj

ti gi

Constraint:

Unobserved

objects fit in

remaining

space
Unobs.

space

Objects (observed)

Objects (unobserved)Containers

Fig. 1. Graphical representation of our probabilistic model over container
contents. Object types t are drawn independently from the composition
θ. The prior on θ enforces object type similarities (see section III-A).
During object search, parts of a container have been observed, with object
types {toj } found. Unobserved objects with types {ti} may exist in the
unobserved space; if so, they must all fit within. This spatial constraint is
represented as a factor (see section III-B). See text in section III for details.

downstream factor (solid black square) represents a hard

spatial constraint, which is an identity function over whether

the object types’ geometries satisfy the constraint. That

is, it returns 1 if the unobserved object types {ti} fit in

the unobserved container space (given the arrangement of

observed objects), and 0 otherwise. The spatial constraint

will be discussed in section III-B.

The generative model yields a distribution over the mul-

tisets of unobserved object types {ti} in a container’s un-

observed region. Unobserved types that are similar to the

observed ones are more likely, and the number of objects

present is limited by the size and shape of the unobserved

space. We seek the probability that our target query type q

is one of these ti, i.e., that it may be found in the container.

A. Modeling co-occurrences with logistic-normal priors

We represent co-occurrence structure in our model by

imposing a prior on the composition θ, in the form of a

distribution on the simplex. After observing types {toj}
in a container, we perform Bayesian inference to obtain

the posterior P(θ | {toj}) that is used to reason about the

unobserved object types {ti}. The use of an appropriate prior

ensures that the posterior will respect object type similarities.

An immediate candidate distribution on the simplex is

the Dirichlet distribution, which essentially tracks pseudo-

counts of observed types. However, the Dirichlet distribution

can only keep track of individual type counts and not co-

occurrences. The covariances between type proportions in θ

are also fixed by the pseudo-counts in the prior. The rigidity

of this distribution is unsurprising, since it only has a linear

number of degrees of freedom, whereas to model general

co-occurrence counts, a quadratic number is necessary.

A natural representation of co-occurrences is given by the

multivariate normal distribution, where the covariance matrix

explicitly encodes such correlations. However, directly gen-

erating θ from a normal distribution will violate the simplex

positivity and normalization constraints. Instead, we apply a

logistic transformation σ(·) on some η generated from the

normal distribution. This transforms η ∈ R
T to θ ∈ R

T
+

and normalizes θ.1 The resulting distribution induced on θ

is known as the logistic-normal distribution ([13], [14]).

1In practice, due to the normalization constraint on θ, θ has one fewer
degree of freedom, so it is common to model η such that the first (T − 1)-
element sub-vector is generated from a (T − 1)-dimensional multivariate
normal distribution, and the final element is explicitly set to 0.

The generative model for object types in a container is:

η ∼ N (µ,Σ) µ ∈ R
T , Σ ∈ R

T×T ,Σ ≻ 0 (1)

θi = σ(η) =
eηi

∑T

k=1 e
ηk

1 ≤ i ≤ T (2)

P(type = ti | θ) = θi 1 ≤ i ≤ T (3)

This additional generative component is shown in Fig. 1.

However, the increased representational power comes at a

computational price in filtering. In particular, the posterior

on η (and θ) is non-conjugate:

P(η | ti) ∝ P(ti | η)P(η) =
eηi

∑T

k=1 e
ηk

N (η;µ,Σ) (4)

The posterior distribution of η, θ cannot be directly extracted

from this form. Instead, we resort to sampling η from the

posterior distribution, and apply the logistic transformation

on these samples to obtain posterior samples of P(θ | {toj}).
Details on the Markov chain Monte Carlo sampler for

posterior inference are in Hoff [14]. In brief, a Laplace

approximation is used to fit a normal distribution to the con-

ditional posterior distribution of η, given the observations so

far {toj}. This can be approximately optimized with several

iterations of Newton’s method. The normal approximation is

used as the proposal distribution for posterior η samples, and

sample acceptance is determined by the standard Metropolis-

Hastings procedure. The logistic transform is applied to

accepted samples (after discarding burn-in), giving posterior

θ samples that induce a distribution over the unobserved {ti}.

The prior hyperparameters µ,Σ are estimated by max-

imum likelihood. In particular, training data consists of

containers, whose multiset of object types within has been

observed. After normalization, this gives empirical obser-

vations of θ (and η after an inverse transform). Maximum

likelihood estimation of normal distribution parameters from

the empirical η then gives the desired µ,Σ. As a robot

explores new domains, emptying out containers to find θ can

provide domain-specific training data. Because the prior is

parametric, it can be instantiated with little a priori data; as

more training data is available through domain exploration,

the prior will become stronger and performance of the model

will improve. Alternatively, training data might be acquired

from the Web, as has been done in previous work (e.g., [10]).

B. Enforcing spatial constraints by sampling configurations

So far we have viewed a container as a partially observed

multiset of object types, where the likelihood of the multiset

depends on how much it conforms to the type similarity

structure. However, since container capacity is limited, most

multisets with many objects are unlikely to have a feasible

configuration that fits in the container. The spatial arrange-

ments of objects within a container, e.g., their spacing,

depends on the process that puts them there. Given a model

of that process from which samples can be drawn, we can

approximate this process by attempting to pack geometric

realizations of the object types into the known container

space, and return 1 for the spatial constraint factor if the

packing is successful, and 0 otherwise.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Cups observed

P
ro

ba
bi

lit
y

θ[cup]
θ[can]
P(cup in c)
P(can in c)

(a) Weak prior (5 training examples)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Cups observed

P
ro

ba
bi

lit
y

θ[cup]
θ[can]
P(cup in c)
P(can in c)

(b) Moderate prior (20 training examples)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Cups observed

P
ro

ba
bi

lit
y

θ[cup]
θ[can]
P(cup in c)
P(can in c)

(c) Strong prior (100 training examples)

Fig. 2. Demonstration of generative model where cups and cans are known to be similar object types. The progression of posterior θ (no spatial constraint;
shown with dashed lines) and probabilities of containing cups and cans (with spatial constraints; shown with solid lines) is shown, as cups are revealed
one by one from a container that only contained cups. Probabilities for cup is in red, can is in black. See text in section III-C for details.

Algorithm 1 Sampling algorithm.

Input: Obs. types {toj}; unobs. space in c; prior params. µ,Σ
Output: Estimate of P(q in c | {toj}) based on sampling

1: Sample η from posterior P(θ | {toj}) (see Section III-A)
2: count ← 0
3: for all η samples do
4: θ ← σ(η), contents ← 〈〉, remain space ← unobs space
5: loop
6: Sample type t from θ
7: if not CanPack(Mesh(t), remain space) then break
8: Append t to contents
9: remain space ← Pack(Mesh(t), remain space)

10: if type q ∈ contents then count ← count +1
11: return count / num. samples

Fig. 3. Container contents are generated by sampling object types one by
one from θ, placing each type’s template mesh into the remaining space, and
terminating when a mesh cannot fit. The two left images show a top view of
sample arrangements in an unseen container. For the two right ones, the big
bright green object has been observed; only space behind it is unobserved,
so fewer things fit and the probability of finding the target decreases.

This generative process is detailed in the bottom right

segment of the graphical model in Fig. 1. Object types

thought to be in the remaining unobserved container space

are generated according to the posterior composition θ. Using

template meshes gi for each posited object type ti, a greedy

packing strategy fits all the meshes into the unobserved

space, shown from a bird’s-eye view in Fig. 3.

Reasoning exactly about all object type multisets is in-

feasible. We make inference efficient by using an aggressive

sampling strategy, shown in Algorithm 1. Since the posterior

on θ is already in the form of samples, we generate an object

configuration for each θ sample and return the proportion of

configurations that contain the query type q as our estimate

of P(q in c | {toj}). For each θ sample, we draw object types

according to θ (line 8) and pack their meshes into the un-

observed space as described above (line 11). This continues

until the first time a mesh cannot fit in the unobserved space

(line 9; the process is not continued, to avoid biasing towards

small objects). At this point, one sample configuration of

the container’s unobserved space is obtained, and whether q

exists in this sample can be easily determined (line 13).

C. Demonstration of model

We illustrate some of the basic characteristics of the model

with a simple demonstration. Consider a small universe of

object types which contains cups, cans, and 2 other irrelevant

types. Cups and cans have the same fixed volume. Assume

that some containers have been observed for training, where

it is found that cups and cans are always either both present

or both absent, and in the former case that they occur with

similar frequency. Now suppose that we have an unobserved

container that contains 15 cups whose capacity is also 15
cups (or cans). As cups are observed one by one, the posterior

composition and capacity of the container changes, causing

the posterior probability of there being a can in the container

to change as well. These probabilities are shown in Fig. 2.

The progression of posterior probabilities shows a number

of interesting properties. First, even without observing a

single can, the probability of a can being present increased

significantly after observing a cup when using moderate and

strong priors. This is caused by the type co-occurrence prior

increasing θcan after observing cups, since they tended to co-

occur in training examples. Second, although the posterior

composition of cans is not high, the probability that a can

is present is initially much greater because of the large

amount of remaining capacity. Third, as more cups are

observed, the current container’s composition deviates from

the training samples. The posterior θcan and P(can in c)
therefore decrease, at a rate that depends on the prior strength

(number of containers in the training set). Finally, as the

remaining capacity reaches 0, P(can in c) becomes 0 as well.

For comparison, the probabilities for cups are also shown

(in red). θcup changes similarly to that of cans, except in the

opposite direction as cups are observed. P(cup in c) refers

to the probability of cups being present in the unobserved

portion of the container (otherwise it would always be 1 after

the the first observation). Since θcup is large, the probability

of a cup being present in the remaining space stays close to

1, until the capacity constraint becomes relevant.

The above reasoning would not be possible in a simple

non-hierarchical model of object type correlation (e.g., [1]).

Although initially seeing a cup made the presence of a can

more likely, we were able to update our belief about the

make-up of this particular container, eventually coming to

believe that it was likely to contain only cups.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Items moved

P
er

ce
nt

ile

Systematic
Sim
Sim+Geom

(a) Searching for a small object

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Items moved

P
er

ce
nt

ile

Systematic
Sim
Sim+Geom

(b) Searching for a large object

Fig. 4. Comparison between three different searching strategies in simulation over 1000 randomly-generated domains. Plots show, for each search strategy,
the percentage of simulation trials that found the target object within the number of moves on the horizontal axis. The dashed lines around each solid line
show cumulative statistics on 10 bootstrap-resampled datasets, roughly indicating the variance of the cumulative plots. See text in section IV for details.

IV. EXPERIMENTS

To test our approach, we implemented several object

search strategies in simulation. The universe of 9 object types

and 10 containers were fixed, along with their default shapes

and sizes. 9 example containers were constructed, and the

empirical proportions of object type counts in these were

used as training examples of θ, from which the maximum

likelihood prior hyperparameters µ,Σ were obtained. In each

of 1000 simulation trials, the true contents of each container

were generated similar to the process in Fig. 1. The contents

were all unknown to the agent initially. The visible front layer

of each container was returned when views of containers

were taken; occluded objects could only be seen after objects

in front were removed. A target object type q was also

selected for searching. Then, three strategies were tested:

• Systematic: Containers were chosen at random and

emptied until the target object was found.

• Sim: Only object type similarity information was used,

i.e., P(q in c | {toj}) was assumed to be P(θ | {toj}),
the posterior θ obtained from the observations and the

logistic-normal prior of section III-A.

• Sim+Geom: Both object type similarity and spatial

constraints were used; P(q in c | {toj}) is determined

using the model of Fig. 1 and algorithm 1.

After each observation, θ and P(q in c | {toj}) are updated,

and the container with the highest probability of containing

q is searched (front items moved to reveal occluded objects).

For the first two strategies, only non-empty containers were

allowed for further search; for Sim+Geom this check is in-

built due to consideration of unobserved space.

The results of simulating these three strategies are shown

in Fig. 4. We measure search performance in terms of the

number of items that need to be moved to reveal the occluded

target object because (for us) manipulation costs dominate

motion costs. The figure shows a cumulative plot of the items

moved per search strategy over 1000 trials. For example, for

Systematic (red) in Fig. 4(a), the median number of items

moved is 12, and 90% of simulation trials moved 20 items

or fewer. In general, the further left the line is, the better.

Fig. 4(a) shows performance when searching for a small

object. Unsurprisingly, strategies using object co-occurrence

information are superior, verifying previous findings ([1],

[4]). However, reasoning about spatial constraints does not

provide any improvements in this case; the lines in the plot

for Sim (blue) and Sim+Geom (black) overlap each other.

When searching for larger objects, the benefit of spatial

reasoning is more significant; the Sim+Geom line in Fig.

4(b) clearly dominates the other two strategies. Because large

objects were less prevalent in our domains, the Systematic

and Sim lines have generally shifted lower and to the right.

However, Sim+Geom is essentially unaffected.

The reasons for these performance gains can be seen more

clearly in Fig. 5, which shows the ‘manipulation footprint’ in

a typical simulation trial when searching for a large object.

The containers that items were removed from are shown (by

color) from left to right in the order of removal, until the

large object was found in the crimson container. First, we

see again that Systematic visits many irrelevant containers

(5 in expectation) compared to the other two strategies,

wasting moves to empty them. Second, although both Sim

and Sim+Geom started in the same container (dark blue), the

latter strategy quickly realized that the large object cannot

fit once front items were removed. Finally, Sim+Geom visits

one fewer container than Sim (purple), because that container

has empty space in the front, which made it less likely to

contain large objects. The additional spatial constraint allows

Sim+Geom to rule out unlikely containers faster than Sim,

just as both Sim and Sim+Geom are faster than Systematic

because they use prior co-occurrence information.

Fig. 5. Comparison between search strategies’ ‘manipulation footprints’
in one simulation run. Different colors represent different containers (of 10
total) in the domain. More sophisticated strategies are able to pinpoint more
relevant containers (and not move items in irrelevant ones), and can identify
more quickly when a container is unlikely to contain the target object.

(a) (b) (c) (d)

Fig. 6. Simulation trace of a PR2 robot performing object search. See text below for details; the full simulation can be found in the supplementary video.

We have applied our search strategy for a mobile manipu-

lator modeled on a Willow Garage PR2 robot. As shown in

Fig. 7, the robot is in an environment with 4 cupboards. Each

cupboard has high sides and movable objects in the front that

occlude the view of the rest of the contents. The robot’s goal

is to locate the green cup, which in this example is in the

back of cupboard N. Object type similarities are indicated by

color, with green and brown objects tending to co-occur, and

similarly for red and blue. The planning framework described

in Kaelbling and Lozano-Pérez [15] is used.

Fig. 6 shows snapshots of the search; please see the sup-

plementary video for the full simulation. The top row is the

robot’s belief state: gray areas show regions not yet viewed

by the robot; colored objects show detected objects. The

bottom row shows the estimate of P(green cup in c | {toj})
for each container. From left to right:

(a) After seeing the front of each cupboard, object type

similarity indicates only N and S are likely. Also, N is

more likely because it has more unobserved space.

(b) When exploring N, an unexpected red object is observed.

Since red objects tend not to co-occur with green objects,

the probability in N drops, and S becomes more likely.

(c) Removing an object from S reveals that there is no more

space behind the remaining object for a cup, so the

probability becomes 0. Approaches that do not reason

about spatial constraints (e.g., Sim) would remove the

remaining green object in S as well, since it is likely to

co-occur with the target green cup.

(d) N is now the most likely container again. Removing the

red object reveals the target green cup in the back of N.

V. CONCLUSION

We have presented an approach for manipulation-based

searching of occluded objects. A novel probabilistic model

of container contents was introduced that reasons about

object-object co-occurrences and spatial constraints, both of

which were identified as important aspects of object search.

Inference using the model was discussed, and our approach

was demonstrated in multiple simulated experiments. The

utility of object type similarity was verified, and spatial

reasoning was beneficial when searching for large objects.

Our approach complements previous vision-only approaches,

and we hope to integrate these ideas with the ones presented

here on our physical robot in the future.

Fig. 7. Bird’s-eye view of the initial object configuration in the PR2 robot
simulation. The goal is to find the green cup in the back of cupboard N.

REFERENCES

[1] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in ICRA, 2009.

[2] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt,
“Search in the real world: Active visual object search based on spatial
relations,” in ICRA, 2011.

[3] D. Joho, M. Senk, and W. Burgard, “Learning search heuristics for
finding objects in structured environments,” RAS, vol. 59, no. 5, pp.
319–328, 2011.

[4] M. Schuster, D. Jain, M. Tenorth, and M. Beetz, “Learning organiza-
tional principles in human environments,” in ICRA, 2012.

[5] Y. Ye and J. K. Tsotsos, “Sensor planning in 3D object search,” CVIU,
vol. 73, pp. 145–168, 1996.

[6] K. Sjöö, D. Gálvez-López, C. Paul, P. Jensfelt, and D. Kragic, “Object
search and localization for an indoor mobile robot,” J. Computing and

IT, vol. 17, no. 1, pp. 67–80, 2009.
[7] M. Hanheide, C. Gretton, R. Dearden, N. Hawes, J. L. Wyatt,

A. Pronobis, A. Aydemir, M. Göbelbecker, and H. Zender, “Exploiting
probabilistic knowledge under uncertain sensing for efficient robot
behaviour,” in IJCAI, 2011.

[8] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt,
“Plan-based object search and exploration using semantic spatial
knowledge in the real world,” in ECMR, 2011.

[9] L. E. Wixson and D. H. Ballard, “Using intermediate objects to
improve the efficiency of visual search,” IJCV, vol. 12, no. 2–3, pp.
209–230, 1994.

[10] M. Samadi, T. Kollar, and M. M. Veloso, “Using the web to interac-
tively learn to find objects,” in AAAI, 2012.

[11] P. Viswanathan, D. Meger, T. Southey, J. J. Little, and A. K. Mack-
worth, “Automated spatial-semantic modeling with applications to
place labeling and informed search,” in CRV, 2009.

[12] L. Kunze, M. Beetz, M. Saito, H. Azuma, K. Okada, and M. Inaba,
“Searching objects in large-scale indoor environments: A decision-
thereotic approach,” in ICRA, 2012.

[13] J. Aitchison and S. M. Shen, “Logistic-normal distributions: Some
properties and uses,” Biometrika, vol. 67, no. 2, pp. 261–272, 1980.

[14] P. D. Hoff, “Nonparametric modeling of hierarchically exchangeable
data,” Dept. of Statistics, U. of Washington, Tech. Rep. 421, 2003.

[15] L. P. Kaelbling and T. Lozano-Pérez, “Unifying perception, estimation
and action for mobile manipulation via belief space planning,” in
ICRA, 2012.

