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Manipulation of acoustic wavefront 
by gradient metasurface based on 
Helmholtz Resonators
Jun Lan1, Yifeng Li1,2, Yue Xu1 & Xiaozhou Liu3

We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad 

bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is 
constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each 

unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators 

(HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the 

impedance matching between the metasurface and the background medium can be realized by 

adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent 

wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, 
sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure 
may offer potential applications for the imaging system, beam steering and acoustic lens.

Recent years have witnessed intense investigation of acoustic metasurface capable of realizing general wavefront 
modulation1–9. According to the generalized Snell’s law10, the angles of reflected, refracted and diffracted waves can 
be artificially operated by the metasurface with gradient change of acoustical phase7–9, 11, 12. In addition, the fasci-
nating phenomena and capabilities, such as acoustic bending13, 14, anomalous refraction15, ultrathin flat lens4, 16–18,  
conversion of propagating wave to surface wave19–21, tunable acoustic negative refraction22, etc., have been exhib-
ited by different kinds of gradient metasurfaces. The research on acoustic metasurface has significantly inspired 
the review of the fundamental physics and broadened the horizon for acoustic waves. In order to manipulate 
wavefront flexibly, some methods by employing the acoustic metasurface with transversal gradient refractive 
index or gradient velocity have been demonstrated. For the construction of the acoustic metasurface with gradi-
ent refractive index, previous studies have focused on space folding unit cells such as labyrinthine and interdigi-
tated shapes16, 17, 23–25, which successfully exhibit the transversal relative refractive index in a gradient distribution 
and manipulate the acoustic wavefront through appropriately selecting the folding degree to delay the phase of 
acoustic wave. However, all of these metasurfaces have complex structures since the gradient refractive index is 
determined by the folding degree or the size of unit cell. In addition to adjusting the refractive index, tailoring the 
acoustic velocity is another effective method to realize the wavefront manipulation12. Recently, the metasurface on 
the basis of the two-dimensional (2D) pentamode metamaterial has been introduced and fabricated12. This kind 
of metasurface with gradient velocity provides a new design methodology for acoustic wave modulation and real-
izes a well matched impedance to improve the transmission efficiency. Successful wavefront manipulations, such 
as anomalous refraction, non-diffracting Bessel beam and flat lens have been demonstrated with the pentamode 
metasurface. However, this approach has high requirement for the metasurface structure. So far, broaden the 
application of the existing gradient metasurfaces is still a challenge. For the metasurface based on space folding 
unit cells, despite the acoustic phase can manipulated flexibly, the impedance matching between the metasurface 
and the background medium is relatively poor25, 26 and good matched impedance is realized only at the resonant 
frequency. For the pentamode metasurface, the impedance matching and broadband transmission are achieved, 
however, the high requirement of the structure restricts the flexibility of applications.

In this work, we design an acoustic metasurface capable of realizing general wavefront modulation based on 
the generalized Snell’s law for the acoustic refracted wave. The proposed metasurface comprises a series of unit 
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cells based on Helmholtz resonators (HRs)27–29, which are composed of a decorated metal plate with four periodi-
cally arrayed HRs and a single slit at the right side. The designed metasurface exhibits the properties of broadband 
and high efficiency transmission compared with previous space folding metasurfaces16, 17, 24, 25. Besides, the dis-
crete distribution of the acoustic velocity and the impedance matching can be easily realized by tailoring the slit 
width. Theoretical analysis and numerical calculation show that the proposed metasurface will be able to realize 
four distinct wavefront manipulations: anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat 
focusing, and effective tunable acoustic negative refraction. All of these four properties are analyzed with the the-
oretical descriptions through the generalized Snell’s law. Our gradient velocity metasurface developed here helps 
to offer a new design methodology for acoustic wavefront engineering.

Results
Gradient acoustic velocity and impedance matching. We firstly illustrate the construction of the gra-
dient acoustic velocity metasurface. Figure 1 is the schematic diagram of an acoustic metasurface in the xy-plane, 
in which the unit cells are located one by one along the y-axis. The proposed model introduces transversal gra-
dient acoustic velocity instead of gradient refractive index to manipulate the refracted wave arbitrarily. The unit 
cell of the metasurface is shown by the black dotted box in Fig. 1, which is composed of a decorated metal plate 
with four periodically arranged HRs and a single slit at the right side. The height of the plate (H) and the periodic 
constant of HR (L) are 32 mm and 8 mm, respectively. The height (a) and width (b) of the cavity of HR are 6 mm 
and 2.5 mm, respectively. The length (h) and width (l) of the neck of HR are respectively 2 mm and 1 mm. Here, 
d and D are the widths of the right slit and the whole metasurface, respectively. An acoustic wave impinges nor-
mally on the metasurface along the +x direction. The background medium is air with density ρ0 of 1.21 kg/m3 
and acoustic velocity c0 of 343 m/s.

In order to efficiently modify the radiation pattern of the transmitted sound wave, it is first of all necessary to 
illustrate how the velocity of the acoustic wave in metasurface can be engineered by HRs. The unit cell of the meta-
surface shown in Fig. 1 consists of an array of HRs, which exhibits an effective bulk modulus Beff expressed as30
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where B0 = ρ0c0
2 is the bulk modulus of the air, F = ab/Ld is the area ratio of the HR cavity to the slit section, ω0 

and Γ are the resonant frequency and the intrinsic loss of the HR, respectively. Equation (1) implies that the unit 
cell of metasurface has two characteristic frequencies ω = C M1/ HR HR0  and ω ω= + F1n 0 , where 
CHR = ab/ρ0c0

2 is the acoustic capacitance representing the spring action of the HR cavity, MHR = ρ0heff/l is the 
acoustic mass corresponding to the mass of the air in the HR neck, and heff is the effective neck length19, 31. Here, 
the value of the resonant frequency of HR is f0 = ω0/2π = 7331 Hz. The real part of the effective bulk modulus is 
negative in the frequency range of ω0 < ω < ωn. According to the acoustic wave equation and Newton’s law, the 
existence of HRs does not affect the effective density32. Therefore, the effective acoustic velocity and wave vector 

of the unit cell of metasurface can be expressed as ρ=c B /eff eff 0
 and ω ρ=k B/ eff

2

0
, respectively. For the fre-

quency range of ω0 < ω < ωn, the wave vector is an imaginary number, and the acoustic wave attenuates rapidly in 
the +x direction and cannot propagate through the metasurface. For the other frequency ranges of ω < ω0 and 
ω > ωn, the wave vector is a real number, and the acoustic wave can propagate well in the metasurface. The recip-
rocal of the effective acoustic velocity in the unit cell of metasurface without intrinsic loss can be expressed as

Figure 1. Schematic illustration of metasurface and its constituting elements. The black dotted box indicates 
the unit cell of the gradient metasurface.
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Equation (2) indicates that: (i) As the frequency decreases from ω0 to 0, the effective velocity increases from 0 to 

the asymptotic value +c F/(1 )0
2 , which is smaller than the speed of sound in air c0. (ii) For the frequency range 

of ω > ωn, with the increasing of the frequency, the effective velocity decreases from infinity to c0. (iii) The acoustic 
velocity is affected by the area ratio F of the HR cavity to the slit section. For the frequencies below ω0, the value 
of effective velocity is inversely proportional to F. Through appropriately selecting the width of slit d, the value of 
F is changed simultaneously, and there is an inverse proportion relation between d and F. Therefore, in the fre-
quency range of ω < ω0, the desired gradient acoustic velocity can be easily obtained by changing the width of slit 
d. The acoustic velocity distributions for the different wavefront manipulations will be demonstrated in detail 
later.

For the purpose of designing an ideal acoustic metasurface with high efficiency transmission, it is crucial to 
keep the impedance matching between the metasurface and the background medium. Intuitively, the impedance 
of the proposed metasurface does not match with the background medium because of the sudden change of 
cross-sectional areas at the interface, i.e., Sm < Sn, where Sm and Sn are the cross-sectional areas of the metasur-
face and the background medium at the inlet or outlet of a unit cell, respectively. In acoustics, the coefficients of 
reflection and transmission of an acoustic wave between two media are determined by the acoustic impedance 
(Zac = ρc/s), which is inversely proportional to the corresponding cross-sectional area33, 34. Therefore, in order to 
fulfill the impedance matching condition, either effective density or effective bulk modulus of the gradient meta-
surface needs to convert to a small value. Here, we manipulate the value of effective bulk modulus and make it 
smaller than that in the background medium, which would result in a small phase speed and slow wave. Equation 
(2) implies that, for the frequencies below ω0, the effective acoustic velocity in the metasurface is smaller than 
that in the background medium, which indicates a well impedance matching can be achieved at this frequency 
range. To verify this unique characteristic, the energy transmissions as a function of the frequency for the meta-
surface units with twelve different slit widths (from 2.3 to 4.5 mm) are illustrated in Fig. 2. The results show that 
the metasurface units could realize high efficiency transmission in the frequency range from 6000 to 7000 Hz, in 
which the transmission efficiency is nearly 0.9. Since the ratio of the cross-sectional areas between the metasur-
face and background medium is finite, the frequencies of transmission band are less than f0

33. All of the above 
provide solid evidence that the acoustic impedance matching condition ρ0ceff/sm = ρ0c0/sn is satisfied. Therefore, 
this designed structure can be used as gradient acoustic metasurface with a relatively broad bandwidth and high 
efficiency transmission.

Excellent wavefront manipulations of the metasurfaces. The gradient velocity metasurface intro-
duces the phase discontinuity across the surface. Generally, the arbitrary wavefront manipulations can be guided 
and concluded by the generalized Snell’s law, and the transmitted wave across the acoustic metasurface can be 
expressed as follows8

θ θ=
Φ

+y
k

d y

dy
ysin ( )

1 ( )
sin ( ),

(3)
t i

0

where θt(y) and θi(y) are the angles of refraction and incidence, respectively. Φ(y) and k0 = ω/c0 are the phase 
factor and wave vector of air, respectively. It is found that the incident acoustic wave can be refracted arbitrarily 
by engineering the gradient of phase factor. When a plane acoustic wave (i.e.,θi(y) = 0) propagates through the 
metasurface in the interesting frequency range, the gradient distributed and slowed acoustic velocity can be real-
ized by suitably selecting the slit width of metasurface unit. The gradient phase can be expressed as 

Figure 2. Energy transmission spectra for twelve metasurface units with different widths (from 2.3 to 4.5 mm).
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Φ =d y dy Hk c d c y dy( )/ [ 1/ ( )/ ]0 0 , where c(y) is the velocity along the metasurface in y direction12. Substituting the 
gradient phase into Eq. (3), the refracted angle can be obtained as

θ = .y Hc
d c y

dy
sin ( )

1/ ( )

(4)
t 0

Equation (4) indicates that the refracted angle is determined by the gradient of 1/c(y) directly. Therefore, by 
engineering the gradient velocity term, arbitrary wavefront modulations can be achieved, including anomalous 
refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective acoustic negative refraction.

Anomalous refraction. We will first demonstrate how to generate the anomalous refraction by the designed 
metasurface which is composed of twelve unit cells. Figure 3a illustrates the concept schematic of the conversion 
process of generating anomalous refraction. Considering the acoustic wave with normal incidence on the metas-
urface along the +x direction (i.e., θi(y) = 0), the reciprocal of the velocity along y direction can be derived from 
Eq. (4)
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where the angle of the refracted wave is constant along the y direction and set to be θt = 20°. According to the 
mechanisms of gradient acoustic velocity and impedance matching as mentioned above, the acoustic velocity in 
the metasurface unit is depended on the slit width, and high efficiency transmission can be obtained when the 
acoustic impedance matching condition is satisfied. Thus, for the unit cells with the slit width of 4.5 mm and 2.3 
mm, the corresponding ideal effective velocities are c0/2.2 and c0/3.4 at the working frequency range, respectively. 
In order to design an acoustic metasurface with the property of anomalous refraction, we choose the maximum 
velocity at the left edge and the minimum velocity at the right edge of the metasurface, which are c(0) = c0/2.2 and 
c(D) = c0/3.4, respectively, while the widths of slits are changed from 4.5 mm to 2.3 mm with a step of 0.2 mm. The 
reciprocal of the velocity distribution for the ideal metasurface is shown by the black solid line in Fig. 3b. Using 
our gradient metasurface, this ideal reciprocal of the velocity profile can be discretized into twelve stepwise zones, 
as shown by the red solid line in Fig. 3b. We depict the simulated acoustic pressure field under the normal inci-
dence at the working frequency 6970 Hz in Fig. 3c. It should be observed that, when the plane wave propagates 
through the metasurface, the transmitted wavefront deflect from the incident direction. The propagation angle of 

Figure 3. Acoustic metasurface for the anomalous refraction. (a) The concept schematic of the conversion 
process of generating anomalous refraction. (b) The reciprocal of the velocity distributions for the ideal 
metasurface (black solid line) and gradient metasurface (red solid line) at the working frequency range. (c) The 
simulated pressure field distribution of the gradient metasurface.
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the transmitted wave is coincident to that obtained with theoretical analysis, and the simulated result for the angle 
of the refracted wave corresponding to the black arrow is shown in Fig. 3c.

Non-diffracting Bessel beam. It is well known that the non-diffracting Bessel beam can be realized by 
applying two plane beams with opposite propagating angles, and the overlapping region is the Bessel forma-
tion zone35. The corresponding concept schematic of the conversion process of generating non-diffracting Bessel 
beam is shown in Fig. 4a. The reciprocal of the velocity distribution for the ideal acoustic metasurface can be 
deduced as follows

θ= − +
c y

y
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( )
sin

1

(0)
,
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t
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where θt represents the base angle which is same as anomalous refraction and c(0) is the minimum velocity at the 
metasurface center. Figure 4b shows the reciprocal of the velocity distributions for the ideal metasurface (black 
solid line) and the gradient metasurface (red solid line) by setting θt = 20° and c(0) = c0/3.4, which indicates that 
the gradient velocity exhibits a perfect mirror symmetry. In this case, the designed metasurface is composed of 23 
unit cells, and we choose the minimum velocity at the metasurface center and the maximum velocity at the meta-
surface edges to be cmin(0) = c0/3.4 and cmax(±D/2) = c0/2.2, respectively. Here, D is the width of the metasurface 
which is almost twice the size of anomalous refraction metasurface as mentioned above. The simulated acoustic 
pressure intensity field at the frequency 6970 Hz is shown in Fig. 4c. As expected, a non-diffracting Bessel beam 
propagating along the +x direction with a relatively long distance is observed. The simulated Bessel formation 
zone (black solid line) is in good qualitative agreement with the theoretical result (shown in Fig. 4a), which indi-
cates that the effect of excellent non-diffracting Bessel beam can be achieved.

Figure 4. Acoustic metasurface for the non-diffracting Bessel beam. (a) The concept schematic of the 
conversion process of generating non-diffracting Bessel beam. (b) The reciprocal of the velocity distributions 
for the ideal metasurface (black solid line) and gradient metasurface (red solid line) at the working frequency 
range. (c) The simulated pressure intensity field distribution of the gradient metasurface.
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Sub-wavelength flat focusing. We will now introduce how to design a sub-wavelength flat lens by the gra-
dient metasurface. The designed metasurface can focus incident plane wave on a focal point (x0, 0), and the con-
cept schematic is shown in Fig. 5a. The reciprocal of the velocity distribution along y direction can be expressed 
by the following equation
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where x0 = 44 mm and c(0) = cmin(0) = c0/3.4 are the abscissa of the focal point and the minimum velocity at 
the metasurface center, respectively. The maximum velocity at the metasurface edges is cmax(±D/2) = c0/2.2. The 
desirable continuous reciprocal of the velocity for the ideal metasurface is plotted by the black solid line in Fig. 5b. 
Using our gradient metasurface with sixteen unit cells, the continuous reciprocal of the velocity can be discretized 
into sixteen stepwise zones at the working frequency range, as shown by the red solid line in Fig. 5b. The simu-
lated pressure intensity field distribution of the gradient metasurface at the frequency 6970 Hz is shown in Fig. 5d, 
which indicates that the plane wave focusing is successfully realized. Moreover, it is found that the transmission 
energy is focused at (44, 0) with high amplitude, which is coincident to that obtained with theoretical analysis (x0, 
0), demonstrating the excellent focusing effect. To quantify the performance of the sub-wavelength flat focusing, 
we further calculate the normalized transverse cross-sectional pressure intensity distribution along the y-axis at 
the focal point for the designed lens, the result of which is shown by the black solid line in Fig. 5c. The intensity at 
the focal point is about 3.4 times larger than the one of incident plane wave (black dash line), which provides clear 
confirmation that the excellent acoustic focusing effect can be obtained by the presence of designed metasurface.

Next, according to the reciprocal theory, the designed sub-wavelength flat lens has the effect of efficient 
cylindrical-to-plane-wave conversion. The concept schematic of the conversion process is shown in Fig. 6a, a 
cylindrical wave is excited by a point source located at the left focal point of the metasurface. When the cylindrical 
wave propagates through the flat lens, a plane wave beam clearly emerges at the output space of the metasurface. 
Figure 6b shows the simulated pressure field distribution at the frequency 6970 Hz, which indicates that the cylin-
drical wave is converted into the plane wave efficiently by the gradient metasurface.

Figure 5. Sub-wavelength flat lens constructed by a gradient acoustic metasurface. (a) The concept schematic 
of the design of acoustic sub-wavelength flat lens. (b) The reciprocal of the velocity distributions for the ideal 
metasurface (black solid line) and gradient metasurface (red solid line) at the working frequency range. (c) 
Normalized transverse cross-sectional pressure intensity distributions along the y-axis at the focal point. (d) The 
simulated pressure intensity field distribution of the gradient metasurface.
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Effective acoustic negative refraction. Based on the above discussions, our gradient velocity metas-
urfaces show the ability of controlling wavefront conversions: anomalous refraction, non-diffracting Bessel 
beam, and sub-wavelength flat focusing. Furthermore, as our gradient metasurfaces have high efficiency trans-
mission and flat geometry, the proposed metasurfaces with acoustic focusing characteristic can be cascaded to 
achieve effective acoustic negative refraction. Figure 7a presents the concept schematic of the composite metas-
urface for effective acoustic negative refraction, which is constructed by directly cascading two metasurfaces of 
sub-wavelength flat lens demonstrated above. The corresponding simulated pressure intensity field distribution 
at the frequency 6970 Hz is illustrated in Fig. 7b, it is observed that a cylindrical wave emitted from a point source 
is refocused after propagating through the composite metasurface, which confirms the effect of effective acoustic 
negative refraction. Most of the previous acoustic metasurfaces manipulate acoustic wavefronts in a static pat-
tern, which leads to restrict the practical application. Here, since this effective acoustic negative refraction can be 
generated by cascading two parallel metasurfaces, through adjusting the distance w of the two cascaded metas-
urfaces, the focal depth Fd can be modulated in a wide range. Figures 7b and 7c illustrate the simulated pressure 
intensity field distributions of the composite metasurfaces with the different distances w = 10 mm and 50 mm, 
respectively. When w = 10 mm, the focal depth is 98 mm. Then we calculate the focal depths at different distances 
between two cascaded metasurfaces, it is found that as the distance w increases linearly from 10 mm to 300 mm, 
the focal depth also increases from 98 mm to 340 mm, which means the effective acoustic negative refractive is 
flexible and tunable.

Discussion
In summary, we have designed the gradient velocity acoustic metasurfaces that can produce arbitrary complex 
modulations of the wavefronts. On the basis of Helmholtz resonator unit cell, the metasurfaces are shown to 
efficiently redirect the refracted waves as described by the generalized Snell’s law. By carefully selecting the slit 
width of unit cell, the assembled metasurface can exhibit effective acoustic velocity in a discrete distribution and 

Figure 6. Sub-wavelength flat lens for cylindrical-to-plane-wave conversion. (a) The concept schematic of the 
cylindrical-to-plane-wave conversion. (b) Pressure field distribution of the gradient metasurface.

Figure 7. Acoustic metasurface for effective acoustic negative refraction. (a) The concept schematic of the 
conversion process of generating effective acoustic negative refraction. (b) and (c) represent the simulated 
pressure intensity field distributions of the composite metasurfaces with the distances w = 10 mm and 50 mm, 
respectively.
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obtain matched impedance to improve transmission efficiency. As particular examples, anomalous refraction, 
non-diffracting Bessel beam, sub-wavelength flat focusing, and effective acoustic negative refraction are demon-
strated to confirm the excellent wavefront manipulations of the gradient metasurfaces. The designed metasurfaces 
possess superior properties, such as high efficiency transmission, better acoustic impedance matching, conven-
ient modulation and simple structure. This may provide a new design methodology for efficient modifications of 
sound radiation pattern and acoustic wave engineering.

Method
Throughout the paper, the numerical simulations are conducted with commercial software COMSOL 
Multiphysics 4.4. The design of metasurface is based on the theoretical analysis. The materials applied in the 
numerical simulations are air and metal (sound hard boundaries). For Figs. 3, 4 and 5, the plane wave radiation 
boundaries are imposed with an incident wave on the incidence boundaries. For Figs. 6 and 7, the cylindrical 
waves are excited by a point source and the cylindrical radiation boundary conditions are employed on the inci-
dent boundaries. The remaining boundaries of the calculating area are set to the radiation boundary conditions 
according to the wave shapes.
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