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Current organ transplantation therapy is life-saving but accompanied by well-recognized

side effects due to post-transplantation systematic immunosuppressive treatment.

Dendritic cells (DCs) are central instigators and regulators of transplantation immunity

and are responsible for balancing allograft rejection and tolerance. They are derived from

monocyte-macrophage DC progenitors originating in the bone marrow and are classified

into different subsets based on their developmental, phenotypical, and functional

criteria. Functionally, DCs instigate allograft immunity by presenting donor antigens to

alloreactive T cells via direct, indirect, and semidirect recognition pathways and provide

essential signaling for alloreactive T cell activation via costimulatory molecules and

pro-inflammatory cytokines. Regulatory DCs (DCregs) are characterized by a relatively

low expression of major histocompatibility complex, costimulatory molecules, and altered

cytokine production and exert their regulatory function through T cell anergy, T cell

deletion, and regulatory T cell induction. In rodent transplantation studies, DCreg-based

therapy, by in situ targeting or infusion of ex vivo generated DCregs, exhibits promising

potential as a natural, well-tolerated, organ-specific therapeutic strategy for promoting

lasting organ-specific transplantation tolerance. Recent early-phase studies of DCregs

have begun to examine the safety and efficacy of DCreg-induced allograft tolerance

in living-donor renal or liver transplantations. The present review summarizes the basic

characteristics, function, and translation of DCregs in transplantation tolerance induction.
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INTRODUCTION

Organ transplantation has progressed greatly over the past half-century to become the optimal
treatment for a variety of end-stage organ diseases. However, the life-long, systemic immune
suppression after a transplantation has major associated adverse effects, including severe infections,
malignancies, psychosocial issues affecting patients, and a high cost to the health care system (1, 2).
Immunosuppressive drugs can prevent acute cellular rejection but fail to control donor-specific
antibody production and later-phase chronic organ rejection that may eventually lead to graft
failure (3–5). Donor-specific tolerance is recognized as superior to systemic immunosuppression in
beingmore conducive to donor organ acceptance without compromising host protective immunity.
In this context, regulatory immune cell-based therapies are emerging as novel, promising strategies
for establishing permanent donor-specific immune tolerance and minimizing or even obviating
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the need for immunosuppressive drugs after organ
transplantation. Many types of regulatory immune cells,
such as regulatory T cells (Tregs) (6), type 1 regulatory T cells
(Tr1) (7), regulatory macrophages, regulatory B cells (Bregs)
(5, 8), myeloid-derived suppressor cells (9), and regulatory
dendritic cells (DCregs) (10), have already been investigated in
animal transplantation models, and entered the clinical trials
in organ transplantation and shown clear benefits in terms of
safety and graft survival (11, 12). Among these cells, DCregs are
particularly attractive due to their role as central regulators of the
immune response.

BASIC PROFILE OF DCs

DCs are a rare, heterogeneous population of the most efficient
antigen-presenting cells (APCs) derived from bone marrow.
They play a critical role in the instigation and regulation of
the immune response (13, 14). DCs are distributed ubiquitously
throughout the body and serve as immunologic sentinels
specialized in sensing danger signals and capturing, processing,
and presenting antigenic materials (13, 15–17). DCs can initiate
both the innate and adaptive immune responses, for example, via
natural killer (NK) cells and cytotoxic T cells. In these processes,
DCs undergo complicated phenotypical and functional changes
in response to the environment, signals, and antigens (18).

Based on their developmental, phenotypical, and functional
features, DCs can be categorized into several different subsets.
Traditionally, DCs were subdivided into classical or conventional
DCs (cDCs), plasmacytoid DCs (pDCs), monocyte-derived DCs
(MoDCs), and langerhans cells (LCs) (19). All subsets of
DCs express major histocompatibility complex (MHC) class
II and CD11c surface molecular markers. The cDC subtype
regularly located in lymphoid organs and most non-lymphoid
organs has a superior ability to capture, process, and present
antigens to naïve T cells. Indeed, studies of transgenic mice,
constitutive or conditionally deficient in cDCs, have confirmed
the central role of cDCs in priming the naïve T cell response
(20, 21). The cDC subtypes can be further subdivided into cDC1
(CD8α+/CD103+ in mice; CD141+ in humans) and cDC2
(CD11b+ in mice; CD1c+ in human) subsets. Moreover, the
cDC1 subset is adept in cross-presentation and priming CD8+
cytotoxic T cells while the cDC2 subset is most proficient at
driving the CD4+ T cell response (22–24). The pDCs patrolling
the blood and peripheral organs excel in producing high levels
of type I IFN in response to viruses and RNA/DNA or immune
complexes, a direct consequence of their constitutively expressing
IRF7 (25, 26). They also participate in antigen presentation,
control the T cell response, and usually exhibit tolerogenic
properties by favoring the generation of Tregs (27, 28). MoDCs,
also known as inflammatory DCs, derive from monocytes
infiltrating under inflammatory conditions and are capable of
releasing large amounts of tumor necrosis factor alpha (TNF-
α) and inducible nitric oxide synthase (iNOS) upon pathogen
recognition (29). Although identified as a subset of DCs, MoDCs
share many features with both cDCs and macrophages, and their
classification is still debated (30, 31). LCs are a distinct subset

of DCs resident in the epidermal layer of the skin. Although
LCs are similar to cDCs in terms of phenotype and function,
they also have unique differentiation and homeostatic features
(19, 32). LCs are generated from embryonic hematopoietic
precursors which are seeded in the skin in the prenatal period
and self-renew in situ at a very low rate under physiological
steady-state conditions without replenishment by blood-borne
precursors (33, 34). In contrast to cDCs, LC development is
independent of FMS-like tyrosine kinase 3(Flt3) and Flt3 ligand
(Flt3L) but requires colony-stimulating factor 1 receptor (Csf-
1R) like many tissue-resident macrophages, such as microglial
cells and Kupffer cells (35, 36). Recently, IL-34 has been identified
as the second functional ligand for Csf-1R and was required for
the development of LCs and microglial cells (37). In the current
classification of DCs, it is unclear whether DCregs constitute an
independent DC subset or represent a specific functional state
of DCs. In fact, most DC subsets can exert regulatory function
through T cell anergy, T cell deletion, and Treg induction (38, 39).

The lifespan of DCs is generally short, and continuous
replenishment from bone marrow progenitors is essential to
maintaining DC homeostasis (40). Except for LCs, the majority
of DC subsets originate from the same progenitors, namely
monocyte-macrophage DC progenitors (MDPs), which reside
in the bone marrow (19, 41) (Figure 1). MDPs further give
rise to common monocyte progenitors (cMoPs) and common
DC progenitors (CDPs) (42, 43). cMoPs develop into blood
monocytes in the bone marrow but further differentiate into
MoDCs in tissue as a consequence of inflammation or infection
(29, 43–46). CDPs further give rise to pDCs and pre-DCs (47,
48). pDCs terminally differentiate into fully developed cells in
the bone marrow, then migrate out to patrol the blood and
peripheral organs (49, 50). Pre-DCs migrate out of the bone
marrow through the blood to seed non-lymphoid and lymphoid
organs, where they terminally differentiate into cDCs (36, 51, 52).
LCs derive predominantly from embryonic fetal liver monocytes
with a minor contribution from yolk sac-derived macrophages
and are maintained locally by self-renewal under steady-state
conditions (33, 53). In severe inflammatory conditions, LCs are
replaced by blood-borne monocytes and acquire the capacity for
self-renewal (35, 54).

FUNCTION OF DCs IN TRANSPLANTATION

DCs are critical to linking the innate and adaptive response
in transplantation, in other words, to initiating robust, donor-
specific, alloreactive T cell activation. During a classical immune
response, immature DCs sense the presence of damage- and
pathogen-associated molecular patterns (DAMPs and PAMPs),
the so-called “Signal 0s,” from damaged cells and microbial
molecules, respectively, via pattern recognition receptors (PRRs)
(55, 56). These PRRs mediate internalized antigens and their
routing to antigen-processing pathways (57). Subsequently, PRRs
activate a series of intracellular pro-inflammatory molecular
signaling cascades, such as interferon-responsive factor and
nuclear factor kappa B pathways (58, 59). Activation of these
signaling pathways leads to maturation of DCs, characterized
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FIGURE 1 | Origin and development of dendritic cells. With the exception of LCs, DCs develop from bone marrow-derived precursors. CDPs give rise to cDCs and

pDCs. Monocytes differentiate into MoDCs in tissue as a consequence of inflammation or infection. LCs originate in prenatal precursor cells and are maintained locally

by self-renewal under steady-state conditions. While under a severe inflammatory condition, LCs are replaced by blood-borne monocytes and acquire the capacity of

self-renewal. DC, dendritic cell; LC, langerhans cells; CDP, common dendritic cell progenitor; cDC, classical dendritic cell; pDC, plasmacytoid dendritic cell; MoDC,

monocyte-derived dendritic cell; YS-EMPs, Yolk sac-derived erythromyeloid progenitor cells; P-Sp/AGM para-aortic splanchnopleure/aorta, gonads, and

mesonephros; HSC, hematopoietic stem cells; CMP, common myeloid progenitor cell; MP, myeloid progenitor cell; cMoP, common monocyte progenitor; GMP,

granulocyte-macrophage progenitor; MDP, monocyte-macrophage DC progenitor.

by upregulation of MHC molecules, costimulatory molecules
(e.g., CD80, CD86), chemokine receptors (e.g., C-C chemokine
receptor type 7, CCR7), adhesion molecules (e.g., CD62L),

and pro-inflammatory cytokines (e.g., TNF-α, IL-12) (60–62).
Chemokine receptors and adhesion molecules permit DCs to
migrate to lymphoid organs, where they contact and prime T
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cells (63–65). Antigens loaded on MHC class I molecules are
presented to CD8+ T cells, whereas antigens loaded on MHC
class II molecules are presented to CD4+ T cells. Costimulatory
molecules and pro-inflammatory cytokines provide the essential
signals for T cell activation (66, 67).

Unlike immune responses to conventional antigens, the
trigger of allograft immunity relies on both donor- and host-
derived DC-mediated antigen recognition (Figure 2). Following
transplantation, donor-derived DCs migrate out of the graft
to the graft-draining lymphoid tissues, where they directly
present intact, donor (allogeneic) MHCmolecules to alloreactive
T cells. The direct allorecognition pathway is considered to
dominate primary immune responses following allografting,
which leads to acute graft rejection. The donor-derived DCs
are rapidly eliminated by the early response of NK cells.
Thus, direct allorecognition decreases along with a drop in the
number of donor-derived DCs after transplantation. Meanwhile,
host-derived DCs capture, process, and present donor-derived
antigens to alloreactive T cells via the indirect pathway. These
donor-derived antigens originate in damaged donor cells within
a graft or in dying donor-derived DCs within draining secondary
lymphoid organs. The indirect allorecognition pathway partially
contributes to the early alloresponses and gradually dominates,
leading to alloantibody production and chronic rejection. In
addition, alloreactive T cells can also be stimulated via the
semidirect allorecognition pathway, i.e., the recognition of intact
donor MHC molecules transferred to host DCs by cell-cell
contact or extracellular vesicles. The semidirect allorecognition
pathway generates effector T cells that are donorMHC-restricted,
as with the direct allorecognition pathway. Although each of
these allorecognition pathways can solely or synergistically lead
to allograft rejection, the maturity of DCs greatly influences the
magnitude and quality of the T cell response (68–70).

T cells are critical players in transplantation immunity,
which directly mediates allograft rejection. The activation of
alloreactive T cells depends on three distinct DC-derived signals,
including T-cell receptor engagement (signal 1), costimulation
(signal 2), and cytokine stimulation (signal 3) (66). These
DC-derived signals determine the fate of alloreactive T cells
and tilt the balance toward graft survival or rejection (71).
DCregs comprise a heterogeneous population of immature or
semi-mature DCs characterized by a relatively low expression
of MHC class II molecules, costimulatory molecules, and
altered cytokine production. DCregs are thought to exert their
regulatory function through various mechanisms (Figure 3).
With the presentation of low levels of antigens in the absence
of costimulatory molecules, such as CD80 and CD86, T cells
will become anergic and lose their ability to proliferate (72, 73).
The presence of coinhibitory signals during T cell activation,
such as programmed cell death 1(PD-1) and PD ligand 1(PD-L1)
interaction, CD80/CD86 and cytotoxic T lymphocyte antigen 4
(CTLA-4) interaction, inducible T-cell costimulator (ICOS) and
ICOS ligand (ICOS-L) interaction, and heme oxygenase-1 (HO-
1), can also lead to T cell anergy (74–78). HO-1 expression was
also shown to be beneficial to DC survival and immunoregulatory
properties (79, 80). Altered cytokine production; low levels
of pro-inflammatory cytokines, such as IL-12; and high levels

of anti-inflammatory cytokines, such as transforming growth
factor β (TGF-β) and IL-10 mediate T cell anergy and Treg
induction (81). DCregs can also induce clonal deletion of
alloreactive T cells via the Fas/FasL pathway or indoleamine
2,3-dioxygenase (IDO)-induced apoptosis (82, 83). Furthermore,
DCregs can induce several subtypes of regulatory lymphocytes,
including classical Foxp3+ Tregs, Tr1, CD8+ Tregs, and Bregs
via mechanisms involving direct cell-cell interaction signaling
through surface molecules (e.g., immunoglobulin-like transcript
(ILT)-3/4, CTLA-4, PD-L1, FasL, ICOS-L, and others), as well
as the immunosuppressive milieu through secretory factors (e.g.,
IL-10, TGF-β, IL-27, IL-35, IDO, retinoic acid, adenosine, HO-
1, and nitric oxide). DCregs and Tregs interact with each
other through a self-maintaining regulatory loop required for
maintaining immune tolerance (84).

EX VIVO GENERATED DCregs

DCreg induction has been intensively studied for its potential
therapeutic value in transplantation (Figure 4). The current
literature has described various protocols for generating
DCregs ex vivo. Generally, DCregs are generated from bone
marrow precursors in rodents and from CD34+ hematopoietic
precursors or blood monocytes (CD14+) in humans (85).
The most widely used strategy is the deployment of culture
progenitors using granulocyte-macrophage colony-stimulating
factor (GM-CSF) ± IL-4 with the addition of one or more
pharmacological agents that stably inhibit their maturation
and promote their tolerogenicity (86, 87). GM-CSF is a
critical cytokine required for ex vivo DC generation, but some
researchers have used Flt3L instead of GM-CSF for DCreg
differentiation (88, 89). The pharmacological agents include
IL-10, dexamethasone, vitamin D3, rapamycin, and others
(87, 90, 91). DCregs conditioned by IL-10 are resistant to
maturation and are capable of inducing antigen-specific T
cell anergy and Treg activity (92–94). IL-10-modulated DCs
are the most suitable candidate for DC-based transplantation
tolerance induction therapy (95). IL-10-induced monocyte-
derived DCregs, characterized by a high IL-10/IL-12 ratio and
high expression levels of tolerogenic molecules, HLA-G and ILT-
4, are potent inducers of adaptive Tr1 cells (96). Dexamethasone-
induced DCregs express low levels of costimulatory molecules
but high levels of inhibitory receptors, ILT-2 and ILT-3, and
produce high amounts of IL-10 and IDO (95, 97, 98). Vitamin
D3 and its analogs promote the tolerogenic phenotype of
DCreg via the induction of effector T apoptosis and generation
of antigen-specific Tregs (90, 99, 100). The combined use of
dexamethasone and vitamin D3 leads to “alternatively activated”
DCs with an enhanced migration ability inducing memory T
cell hyporesponsiveness while skewing naive T cells toward a
low IFN-γ/high IL-10 cytokine profile (101, 102). Rapamycin-
conditioned DCs have attracted much attention for their role in
alloantigen Foxp3+ Treg expansion and migratory activity via
enhancing CCR7 expression (91, 103).

Although pharmacological conditioning offers effective
strategies for ex vivo generation of DCregs, there are some
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FIGURE 2 | Allorecognition pathways in transplantation. DCs instigate allograft immunity by presenting donor antigens to alloreactive T cells via direct, indirect, and

semidirect recognition pathways. In the direct pathway, donor-derived DCs directly present intact donor (allogeneic) MHC molecules to alloreactive T cells. In the

indirect pathway, host-derived DCs present donor-derived antigens, captured from damaged graft tissue or dying, donor-derived DCs, to alloreactive T cells. In the

semidirect pathway, intact donor MHC molecules transferred to host DCs by cell-cell contact or extracellular vesicles are recognized. DC, dendritic cell; MHC, major

histocompatibility complex; TCR, T-cell receptor.

limitations in ex vivo-generated DCregs, such as undesirable
pro-inflammatory factors, rematuration in vivo, and low
migratory activity. Genetic manipulation by adenovirus vectors
and small interfering RNAs (siRNAs) provides a powerful tool
for modifying specific features of ex vivo-generated DCregs
(104). Previous studies have reported that gene silencing of
CD80/CD86 and IL-12 promoted the regulatory activity of
DCregs (105, 106). Genetic interference with NF-κB induced a
stable immature state by preventing the rematuration of DCregs
(107). Dong et al. reported that concurrent CCR7 overexpression
and RelB knockdown in DCregs displayed enhanced migratory
and regulatory activity (108).

In addition to DCregs generated naturally from progenitor
cells, we generated DCregs from murine induced pluripotent
stem cells (iPSCs), which were able to remain in a stable
immature state even under strong stimulation (109). iPSC-
derived DCregs worked as a therapeutic cellular vaccine
to generate Tregs and induced donor-specific allograft
acceptance. Other researchers have explored using human
PSCs, including iPSCs and embryonic stem cells, as a
source of DCs for immune therapy (110–112). These studies

have highlighted the potential of PSC-derived DCregs in
clinical transplantation.

As discussed above, transplantation immunity involves both
donor- and host-derived DCs via three allorecognition pathways.
Therefore, there is a question of whether DCregs should be
derived from the donor or the host. It is also worth noting
that the risk of host-sensitization to donor antigens due to the
presence of transferred allogeneic molecules should be taken
into consideration in DCreg-based therapy. The therapeutic
efficacy of DCregs in organ transplantation was first examined by
Rastellini et al. and Fu et al. (113, 114). Donor-derived DCregs,
infused 1 week before transplantation, significantly prolonged
the survival of murine non-vascularized (pancreatic islet) and
vascularized (heart) allografts. Alloantigen-specific T-cell anergy
was observed in vitro. Subsequently, the role of DCreg-based
therapy was explored extensively in multiple transplantation
models and clinical studies (10). The sources of the DCregs
included donor-derived DCregs and host-derived DCregs,
either pulsed or unpulsed with donor antigens. Additional
host treatment, including costimulation blockade, conventional
immunosuppressive drugs, and lymphocyte depletion, was used
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FIGURE 3 | Mechanisms of regulatory dendritic cells. DCregs exert a regulatory function through T cell anergy, T cell deletion, and regulatory T cell induction. These

mechanisms involve direct cell–cell interactions through surface molecules, as well as through the immunosuppressive milieu via secretory factors. DCregs and Tregs

interact with each other through a self-maintaining regulatory loop. DC, dendritic cell; PD-L1/2, programmed cell death ligand 1; ICOS-L, inducible T-cell costimulatory

ligand; TGF-β, transforming growth factor β; HLA-G, human leukocyte antigen G; FasL, Fas ligand; ILT-2/3/4, immunoglobulin-like transcript-2/3/4; TRAIL, tumor

necrosis factor-related apoptosis inducing ligand; BTLA, B- and T-lymphocyte attenuator; CCR7, C-C chemokine receptor 7; CXCR-4, C-X-C chemokine receptor

type 4; IL, interleukin; RALDH, retinaldehyde dehydrogenases; NO, nitric oxide; ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine

monophosphate; IDO, indoleamine 2,3-dioxygenase; CO, carbon monoxide; HO-1, Heme oxygenase 1; Cox2, cyclooxygenase 2; PGES1, prostaglandin E

synthase-1; ARG1, arginase 1; iNOS, inducible nitric oxide synthase; MHCII, major histocompatibility complex class II; PGE2, Prostaglandin E2; Tregs,

regulatory T cells.

as an alternative combination to enhance tolerogenic properties
and to minimize the risk of host sensitization. These studies
have extensively investigated the safety and efficiency of donor-
and host-derived DCregs. Although donor-derived DCregs were
shown to be capable of inducing transplant tolerance in vivo, the
underlying mechanisms remain unclear. It is generally assumed
that donor-derived DCregs mediate transplantation tolerance via
the direct allorecognition pathway, leading to alloreactive T cell

anergy, T cell deletion, or Treg induction. However, Divito et al.
demonstrated that host DCs mediated the therapeutic effects of
the infused donor-derived DCregs (115), which are likely to be
rapidly killed by host NK cells or captured and reprocessed by
host splenic DCs, which induce Tregs and graft tolerance. This
notion was further supported by the finding that the deletion
of host DCs abrogates the tolerogenic effects of donor-derived
DCregs (116).
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FIGURE 4 | Manipulation of regulatory dendritic cells to promote transplantation tolerance. DCreg-based therapy is a promising strategy for establishing permanent,

donor-specific immune tolerance and minimizing or even obviating the use of immunosuppressive drugs in transplantation. Manipulation of DCregs can be done by in

situ targeting or infusion of ex vivo-generated DCregs or mediating donor-specific tolerance via alloreactive T cell anergy, T cell deletion, and Treg induction

(Continued)
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FIGURE 4 | mechanisms. DCreg, regulatory dendritic cell; PSC, pluripotent stem cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-4, interleukin-4;

PA, pharmacological agent; regulatory T cells.

Contrary to the accepted paradigm, donor-derived DCregs
function as antigen-transporting cells rather than APCs to
promote transplantation tolerance. Alternatively, host-derived
DCregs, either pulsed or unpulsed with donor antigens, have
also been used to regulate the alloreactive T cell response
and promote transplantation tolerance (117, 118). Taner et
al. showed that infusion with rapamycin-treated, alloantigen-
pulsed, host-derived DCregs 1 week before transplantation
induced antigen-specific T cell regulation and prolonged graft
survival (117). Segovia et al. reported that host-derived DCregs
unpulsed with donor antigens, referred to as autologous DCs,
when combined with suboptimal doses of immunosuppression,
induced prolonged donor-specific allograft survival through
tmem176b-dependent antigen cross-presentation (119).
Moreover, host-derived DCregs were reportedly more efficient
in prolonging cardiac allograft survival than donor-derived
DCregs (118, 120). From the clinical perspective, host-derived
DCregs appear to be more feasible. Host-derived DCregs can
be generated in vitro whenever needed while donor-derived
DCregs require collecting cells from donors several days prior
to transplantation, which is infeasible in cases of deceased organ
donation. DCregs using unpulsed, host-derived, immature DCs
infused on the day of transplantation decrease the risk of host
sensitization against donor antigens (118).

IN SITU TARGETING OF DCregs

The infusion of ex vivo-generated DCregs in transplantation
to regulate the alloreactive T cell response and to promote
transplantation tolerance was evident in experimental models
and entered clinical studies (10, 121, 122). However, there are
some limitations to the clinical application of this approach,
including the risk of host sensitization due to the presence of
transferred allogeneic molecules; the risk of rematuration after
in vivo fusion, which could promote alloimmunity rather than
tolerance; donor-derived DCregs being unsuitable for deceased
organ donation; donor-derived DCregs being quickly eliminated
by host NK cells; and the decreased ability to migrate to
secondary lymphoid organs to present donor antigens. In situ
manipulation of DCs is an alternative approach to achieving
donor-specific transplantation tolerance. This approach utilizes
the in situ delivery of immunomodulatory factors targeting DC
to regulate the alloreactive T cell response, thereby avoiding the
drawbacks of ex vivo-generated DCregs, and demonstrates the
feasibility of tolerance induction.

The clearance of apoptotic cells by DCs is usually
immunologically silent and accompanied by TGF-β and IL-
10 release (123). Following the phagocytosis of apoptotic cells,
DCs begin to exhibit tolerogenic properties. Donor-derived
apoptotic cells have been used to deliver both donor antigens
and inhibitory signals simultaneously to host DCs to induce

antigen-specific allograft tolerance (124). Engulfing of apoptotic
DCs converted immature DCs into DCregs that were resistant
to LPS-induced maturation and induced the differentiation of
Foxp3+ Treg (125). Exosomes are nano-sized membrane-bound
extracellular vesicles produced in the endosomal compartment of
most eukaryotic cells (126, 127). The phenotype and function of
exosomes depend on the origin and state of the cell. DC-derived
exosomes may bear MHC molecules, costimulatory molecules,
and antigens and function as antigen-presenting nanovesicles
(128, 129). Recent research has revealed the role of DC-derived
exosomes in allorecognition and transplantation immunity
(130). The tolerogenic function of DC-derived exosomes was
demonstrated in experimental transplantationmodels (131, 132).
Exosomes from immature, donor-derived DCs induced donor-
specific allograft tolerance. Host DCs engulfed these exosomes
and presented intact, donor MHC antigens (allo-MHC cross-
dressing) and immunomodulatory molecules, such as IL-10,
PD-L1, and IDO, in what was considered to be the mechanism
underlying microchimerism and tolerance induction (130, 133).

Nanoparticle-based drug delivery systems are a valuable tool
in modulating DCs in situ by enabling the direct delivery
of encapsulated antigens and immunomodulatory agents via
cell-specific targeting in vivo, thus facilitating precise immune
regulation to induce transplantation tolerance (134). The poly
(lactic-co-glycolic acid) (PLGA) nanoparticles approved by
The Food and Drug Administration are the most frequently
used nanocarriers. Nanoparticles can also be engineered by
coating monoclonal antibodies so that they target specific
DC subsets (135, 136). Delivery to DCs can be achieved
by targeting DC receptors, including CD11c, CD40, CD205,
CD206, CD209, and Fc receptors. The encapsulated agents are
protected from enzymatic and chemical degradation, act directly
on the DCs, and are more efficient than methods of systemic
administration, especially of toxic reagents. Nanoparticle delivery
of mycophenolic acid upregulated PD-L1 expression on DCs,
prolonged mouse skin allograft survival, and avoided the toxicity
of soluble drug delivery (137). Maldonado et al. induced antigen-
specific immunological tolerance using polymeric synthetic
nanoparticles loaded with antigens and rapamycin, which
resulted in suppression of T cell activation and an increase
in regulatory cells (138). Clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein 9
(Cas9) is emerging as a powerful tool for engineering the
genome in diverse organisms. Zhang et al. encapsulated Cas9
mRNA (mCas9) and a guide RNA targeting CD40 (gCD40)
with nanoparticles (139). mCas9/gCD40 was effectively delivered
into DCs and disrupted CD40 signaling, significantly protecting
grafts from acute rejection-mediated injury and prolonging graft
survival. We also developed a novel siRNA delivery system with
a poly-dA extension at the 5′-end of the siRNA sense strand that
was stably incorporated into 1,3-β-glucan (schizophyllan, SPG)
(140). siRNAs silencing the CD40 gene were delivered into DCs
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through its receptor, Dectin-1, resulting in antigen-specific Treg
generation and permanent murine cardiac allograft tolerance.
Moreover, nanoparticles have also been used as integrating
imaging moieties for monitoring allograft rejection to provide
diagnostic and prognostic information as well as for quantifying
the treatment efficacy in transplant recipients (134).

Antigen delivery to DCs in vivo using recombinant chimeric
antibodies, produced by genetically modifying original
monoclonal antibodies and chemically coupling them with
peptide antigens, is another promising approach to achieving
specific immunomodulation (141, 142). This approach enables
the delivery of antigens to DCs under steady-state conditions
and the induction of peripheral tolerance (143, 144). Reeves
et al. have shown that APC-targeted proinsulin expression
converted insulin-specific CD8+ T-cell priming to tolerance in
autoimmune-prone NOD mice (145). Ettinger et al. achieved
prolonged survival of transgenic mouse skin grafts by utilizing
an antibody recognizing the CD205 receptor to deliver the
immunodominant domain of type XVII collagen to host DCs
without inflammatory stimuli (146).

DCregs IN CLINICAL ORGAN
TRANSPLANTATION

In rodent and non-human primate transplantation studies,
DCregs exhibited promising potential as a natural, well-tolerated,
antigen-specific therapeutic strategy capable of promoting lasting
transplantation tolerance. The clinical study of the safety and
efficacy of DCregs in transplantations has lagged behind that
of autoimmune diseases, including type-1 diabetes, rheumatoid
arthritis, and Crohn’s disease, which have reported early safety
data (147). Recently, early-phase clinical trials of DCregs in
living-donor renal and liver transplantations have begun both in
Europe and the US (10, 148).

At the University of Nantes, investigators launched a phase
I/II trial of unpulsed autologous DCregs in living-donor renal
transplantation (clinicaltrials.gov identifier: NCT0225055). The
autologous, monocyte-derived DCregs were generated in a
low concentration of GM-CSF and infused into hosts 1 day
before transplantation. The hosts also received background
immunosuppression with prednisolone, mycophenolate mofetil,
and tacrolimus. Recently, the first results and related good
manufacturing practice protocols have been published (149, 150).
At the University of Pittsburgh, a three-arm, dose-escalation,
phase I clinical trial evaluating the safety and feasibility of donor-
derived DCreg using a single infusion 1 week prior to living-
donor renal transplantation, in combination withmycophenolate
mofetil steroid and tacrolimus immunosuppression therapy, is
currently underway (NCT0364265).

Given the unique immunological function of the liver,
almost half of highly selected liver transplant recipients
showed good tolerance even after complete weaning from
immunosuppression (151, 152). DCreg-based therapy
contributing to antigen-specific tolerance induction may
facilitate minimizing immunosuppression and early weaning
after liver transplantation. At the University of Pittsburgh,
Angus et al. has initiated two phase I/II trials to investigate
the safety and efficacy of a single infusion of donor-derived
DCreg 1 week before transplantation (NCT03164265) and 1
week before immunosuppression weaning (NCT04208919),
respectively, in living donor liver transplant recipients. The
donor monocyte-derived DCregs were generated in the presence
of IL-10 and Vitamin D3 (153), and the hosts were slowly weaned
off immunosuppression after meeting specific criteria.

CONCLUDING REMARKS

Dendritic cells are central instigators and regulators of
transplantation immunity and are critical in the balance between
allograft rejection and tolerance. Extensive studies focusing on
the development, phenotype, and function of DCs have provided
important insights into the mechanisms underlying tolerance
induction. DCregs comprise a heterogeneous population of
immature or semi-mature DCs which expressed low levels
of MHC, costimulatory molecules, and altered cytokine
production and mediated donor-specific tolerance through
alloreactive T cell anergy, T cell deletion, and Treg induction.
DCreg-based therapy, by in situ targeting or infusion of ex
vivo-generated DCregs represents an emerging approach to
preventing rejection and promoting donor-specific tolerance.
Further studies are required to explore the translation of DCregs
into clinical transplantation to induce tolerance and improve
allograft acceptance.
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