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ABSTRACT
Electron transfer in solid is crucial to switchable magnetic, electrical, optical and mechanical properties.
However, it is a formidable challenge to control electron-transfer behaviors via manipulation of crystalline
phases, especially through dynamic crystalline transformation. Herein, three crystalline phases of an
{Fe2Co2} compound were obtained via enhancement of intermolecular π ···π interactions inducing
successive single-crystal-to-single-crystal transformations, from solvated 1·2CH3OH·4H2O, to desolvated
1 and its polymorph 1a accompanying electron transfer. 1·2CH3OH·4H2O showed thermally induced
reversible intermetallic electron transfer in mother liquor. No electron-transfer behavior was observed in 1.
1a showed reversible intermetallic electron transfer upon thermal treatment or alternative irradiation with
808- and 532-nm lasers at cryogenic temperatures.The electron-transfer behaviors significantly change the
magnetic and optical properties, providing a strategy to realize different electron-transfer behaviors and
switchable functions via π ···π interactions manipulated dynamic crystalline transformation.

Keywords: electron-transfer, dynamic structural transformation, successive crystalline transformations,
reversible, polymorphs

INTRODUCTION
Electron transfer is a common phenomenon in
nature and plays important roles in biology, en-
ergy, materials, catalysis and other fields [1–4]. In-
termetallic electron transfer not only changes the
valence states and electron configurations of the
participant metal ions, but also switches the cou-
pling interactions between them [2,5–7].Therefore,
the control of electron transfer is an efficient way
to tune the magnetic, electric and optical proper-
ties of materials [8–22]. Thermally and/or photo-
induced electron transfers have been utilized to
induce paramagnetic and diamagnetic transforma-
tions, presenting photo-switchablemagnet behavior
[11–13].Moreover, the polarity and dielectric prop-
erties can be switched by utilizing electron-transfer-
induced changes in charge distribution [23,24].

Typical examples showing external stimuli-
tuned intermetallic electron-transfer behaviors are
cyanide-bridged complexes, wherein the electron-
transfer behaviors depend on the metallocyanate
building blocks and ancillary ligands [11]. The

modulation of electron-transfer behavior requires
chemical modification, such as ligand substitution,
anion and solvent exchange in solution reaction
[11,17,20]. It is a formidable challenge to realize
different electron-transfer behaviors by manipulat-
ing dynamic structural transformations in the solid
state, especially through physical stimuli-induced
single-crystal-to-single-crystal (SCSC) transfor-
mations. Such transformation processes usually
involve the movement of atoms in the crystal and
rearrangement of chemical bonds, which result in
drastic changes in not only the molecular structure,
but also the physical/chemical properties [25–28].
On the other hand, SCSC transformations can
provide access to compounds that are difficult
or impossible to be directly obtained by solution
reactions [28]. More importantly, the procedure
of SCSC transformations can directly and accu-
rately provide a molecular-level understanding
of the mechanism of the transformation, and
help to gain more insights into the correlation
between the structures and properties [29,30].
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It has been reported that two crystalline phases
with different electron-transfer behaviors could be
obtained upon solvation and desolvation, because
hydrogen-bonding interactions between coordi-
nated solvents and the framework can tune the
redox potentials of metal ions [31–36]. However,
the formation and breakage of hydrogen bonds
could only induce one-step SCSC transformation
and generate two crystalline phases with different
electron-transfer behaviors [32–36]. Moreover,
the crystallinity is often disrupted owing to break-
age of the hydrogen-bonding interactions that
are important to maintain the integrity of the
crystalline framework [25,31], restricting further
investigation of the electron-transfer mechanism.
How to induce successive crystalline transformation
to obtain more than two crystalline phases with
different electron-transfer behaviors is interesting
but still remains a challenge, especially for poly-
morphs with different electron-transfer behaviors.
To induce successive SCSC transformations, in-
troducing flexible π ···π interactions may provide
a rational strategy [9,37], as the distances of π ···π
interactions can bemodulated in a continuous range
(3.3–3.8 Å) [38]. Moreover, the variations in π ···π
interactions between ligands around the metal ions
can induce different distortions of coordination
spheres and the strength of the ligand field, which
can tune the redox potential of metal centers and
result in different electron-transfer behaviors.

Herein, we were intrigued by the possibil-
ity of introducing intermolecular cooperative
π ···π interactions to manipulate successive
crystalline transformations to obtain different
crystalline phases featuring different electron-
transfer behaviors. Inspired by this, we adopt an
ancillary ligand prazino[2, 3-f][1, 10]phenan-
throline (dpq), with an extended π -conjugation
system, to prepare a tetranuclear {Fe2Co2} com-
pound [FeII(PzTp)(CN)3]2CoIII2(dpq)4 · 2ClO4
·2CH3OH ·4H2O (1·2CH3OH ·4H2O, PzTp =

tetrakis (pyrazolyl)borate). 1 ·2CH3OH ·4H2O
undergoes successive SCSC transformations as
a result of enhancement of intermolecular π ···π
interactions in the process of desolvation and struc-
tural rearrangement, forming a pair of polymorphs
[FeIII(PzTp)(CN)3]2CoII2(dpq)4·2ClO4 (1) and
[FeII(PzTp)(CN)3]2CoIII2(dpq)4·2ClO4 (1a).The
three crystalline phases present different electron-
transfer behaviors upon thermal treatment and
light irradiation. Especially, it is the first time that
crystalline transformation between a pair of poly-
morphs in intermetallic electron-transfer-related
compounds has been observed.

RESULTS
Crystal structure of 1·2CH3OH·4H2O
and its successive crystalline
transformations
Single-crystal X-ray diffraction analysis revealed
that 1·2CH3OH·4H2O crystallizes in the triclinic
space group P1 (see Supplementary Table 1). The
crystal structure consists of cationic tetranuclear
{Fe2Co2}2+ square units, ClO4

– anions, uncoor-
dinated methanol and water molecules (Fig. 1).
At 298 K, the Fe–C and Co–N bond lengths
are 1.877(7)–1.889(7) and 1.879(5)–1.946(5) Å,
respectively (see Supplementary Table 2), which
are consistent with those observed for {FeIILS(μ-
CN)CoIIILS} (LS = low spin) linkages [17,33].
When the green crystals are slowly heated to 360 K
in the mother liquor, a dramatic color change from
green to red is observed, indicating a possible trans-
formation to {FeIIILS(μ-CN)CoIIHS} (HS = high
spin) linkages. On cooling to 298 K, the crystals
return to the initial green color. This phenomenon
indicates that 1·2CH3OH·4H2O undergoes a ther-
mally induced reversible electron transfer in the
mother liquor (see Supplementary Movie 1).
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Figure 1. Crystal structures of 1·2CH3OH·4H2O, 1 and 1a. The hydrogen atoms and ClO4
− anions are omitted for clarity. Fe,

dark yellow; Co, turquoise; C, gray; N, blue; B, orange; O, red.
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Figure 2. Photographic images showing the SCSC transformation. Images show the
conversions among these three species through subsequent desolvation and vapor in-
duction.

There are two important structural charac-
teristics in 1·2CH3OH·4H2O. The first is that
uncoordinated water and methanol molecules are
located between the {Fe2Co2}2+ square units,
with hydrogen-bonding interactions between un-
coordinated water molecules and terminal cyanide
nitrogen atoms (see Supplementary Fig. 1 andTable
4). The second is that the {Fe2Co2}2+ square units
are linked via π ···π interactions (average distance
= 3.753(2) Å) between the dpq ligands and C–
H···π interactions (average distance= 3.148(1) Å)
between the C–Hmoieties of the dpq/PzTp ligands
and the pyrazol/pyrazine rings of the PzTp/dpq lig-
ands (see Supplementary Fig. 2 and Table 5).These
intermolecular interactions are very important to
stabilize the crystalline framework and make it pos-
sible to undergo SCSC transformations upon desol-
vation. Furthermore, the formation and destruction
of hydrogen bonding can significantly affect the
redox potential of the iron centers [31,33], provid-
ing the possibility of desolvation-induced electron
transfer. Thus, two crystalline phases with different
electron-transfer behaviors are reasonably expected.

The TGA (see Supplementary Fig. 3) of
1·2CH3OH·4H2O was measured to explore the
possibility of desolvation-induced SCSC trans-
formation. The plot shows a weight loss of 6.0%
from 300 to 360 K, corresponding well to the
loss of two methanol and four water molecules

(calcd: 6.2%). After this weight loss, a long plateau
is observed until 540 K, suggesting the formation
of a new stable phase. When the green crystals
are slowly heated to ∼350 K in air, the color
of the crystals changes from green to red, indicating
the formation of a new redox state. Moreover,
the crystallinity is well retained (Fig. 2 and see
Supplementary Movie 2). The crystallographic
data demonstrate that the red crystals retain the
{Fe2Co2} tetranuclear structure and have the
formula of [Fe(PzTp)(CN)3]2Co2(dpq)4·2ClO4
(1, Fig. 1). At 298 K, the Fe–C and Co–N bond
lengths are 1.925(8)–1.944(9) and 2.097(7)–
2.169(7) Å, respectively (see Supplementary
Table 2), corresponding with those observed
for {FeIIILS(μ-CN)CoIIHS} linkages [17,39].
These results indicate that electron transfer occurs
in the desolvation process with a transforma-
tion from {FeIILS(μ-CN)CoIIILS} linkages in
1·2CH3OH·4H2O to {FeIIILS(μ-CN)CoIIHS}
linkages in 1. Furthermore, an endothermic peak is
seen in theDSCcurve of 1·2CH3OH·4H2O, further
confirming the first-order phase transition from
1·2CH3OH·4H2O to 1 (see Supplementary Fig. 4).
With the transformation from 1·2CH3OH·4H2O
to 1, the average π ···π interaction distance be-
tween the dpq ligands decreases from 3.753(2) to
3.664(1) Å, and the average C–H···π interaction
distance between theC–Hmoieties of the dpq/PzTp
ligands and the pyrazol rings of the PzTp ligands
decreases from 3.148(1) to 3.102(1) Å. Such results
suggest that the intermolecular interactions are en-
hanced in the process of crystalline transformation
(see Supplementary Fig. 5 and Table 6).

Interestingly, when the red crystals of 1 were
placed in water vapor and heated at 100◦C for
24 h, the color of the crystals changed from red to
green (Fig. 2, see Supplementary Fig. 6), suggesting
the formation of a new phase, as confirmed by
single-crystal X-ray diffraction (Fig. 1) and powder
XRD analyses (see Supplementary Fig. 7). The
new phase exhibits a composition consistent with
the formula [Fe(PzTp)(CN)3]2Co2(dpq)4·2ClO4
(1a). Although 1 and 1a are a pair of polymorphs,
they exhibit different electron-transfer behaviors.
For 1a at 298 K, the Fe–C and Co–N bond lengths
are 1.852(4)–1.914(4) and 1.877(3)–1.949(3)
Å, respectively (see Supplementary Table 2),
indicating the existence of {FeIILS(μ-CN)CoIIILS}
linkages. When the crystals of 1a are slowly heated
to 350 K, a dramatic color change from green to red
is observed.The corresponding Co–N bond lengths
are 2.077(4)–2.145(3) Å (see Supplementary
Table 2), indicating the formation of {FeIIILS(μ-
CN)CoIIHS} linkages [17,39]. Moreover, the
crystals return to the initial green color on cooling to
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1 2CH3OH 4H2O in heating process

1 2CH3OH 4H2O in desolvated process
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Figure 3. Magnetic characteristics for 1·2CH3OH·4H2O, 1
and 1a. Plots of χT vs temperature for 1·2CH3OH·4H2O, 1
and 1a. 1·2CH3OH·4H2O was soaked in the mother liquor
upon cooling, and cycling the temperature back to 400 K; 1
upon cooling; 1·2CH3OH·4H2O upon heating and concomi-
tant desorption of methanol and water; 1a upon cooling and
reheating to 400 K (temperature sweeping rate: 1 K/min for
10–400 K and 0.5 K/min for 2–10 K).

298 K, indicating the thermally induced reversible
intermetallic electron transfer. With the transfor-
mation from 1 to 1a, the average π ···π interaction
distance between the dpq ligands decreases from
3.664(1) to 3.457(1) Å at room temperature, and
the average C–H···π interaction distance between
the C–H moieties of the dpq/PzTp ligands and
the pyrazol/pyridine rings of the PzTp/dpq ligands
decreases from 3.102(1) to 3.002(1) Å, leading
to the enhanced intermolecular interactions (see
Supplementary Fig. 8 and Table 7). When heated
to 350 K, both the average π ···π interaction and
C–H···π interaction distances of 1a increase slightly
(see Supplementary Fig. 9 and Table 8).

Magnetic characterization
The magnetic properties of the three crystalline
phases were subsequently investigated (Fig. 3). The
χT versusT curve for 1·2CH3OH·4H2O in mother
liquor shows that χT values remain essentially con-
stant at 0.46 cm3 mol−1 K below 355 K, confirming
the existence of {FeIILS(μ-CN)CoIIILS} linkages.
Upon heating, χT values abruptly increase to
6.44 cm3 mol−1 K at 390 K, which are in agreement
with the theoretical value of 6.67 cm3 mol−1 K
expected for two LS FeIII and two HS CoII ions
[16]. When the temperature is lowered from 400 K,
χT values decrease rapidly to its initial value at
355 K with a small thermal hysteresis loop of∼8 K,
indicating that the system regains the {FeIILS(μ-
CN)CoIIILS} linkages. Thus, 1·2CH3OH·4H2O
shows thermally induced reversible intermetallic
electron transfer upon thermal treatment in the
mother liquor.

However, 1 exhibits a different electron-transfer
behavior. Its χT value is 6.51 cm3 mol−1 K at 400 K
(Fig. 3), corresponding to paramagnetic {FeIIILS(μ-
CN)CoIIHS} linkages. As the temperature is low-
ered, χT values gradually decrease, reaching a min-
imum value of 5.36 cm3 mol−1 K at 24 K. Be-
low this temperature, the χT value increases up
to 5.44 cm3 mol−1 K at 14 K and then decreases
rapidly to 3.50 cm3 mol−1 K at 2 K. This represents
a typical paramagnetic behavior without electron-
transfer-induced spin transition.The transformation
of the magnetic behavior in the desolvation pro-
cess was monitored for as-synthesized crystals of
1·2CH3OH·4H2O. χT values remain essentially
constant at 0.36 cm3 mol−1 K below 310 K and
reach a maximum value of 6.43 cm3 mol−1 K at
360 K, which is in agreement with paramagnetic
{FeIIILS(μ-CN)CoIIHS} linkages as observed for
1. Such magnetic behavior confirms that the elec-
tron transfer occurs in the desolvation process from
1·2CH3OH·4H2O to 1. This electron-transfer pro-
cess seems analogous to that observed during the
heating of 1·2CH3OH·4H2O in mother liquor, but
with a lower transition temperature. This is due to
the difference in the intermetallic electron-transfer
mechanism, as the former stems from the loss of sol-
vent molecules, while the latter arises from thermal
stimuli.

For 1a, χT values remain nearly constant be-
tween 2 and 315 K at 0.43 cm3 mol−1 K (Fig. 3).
Heating from 315 to 360 K causes an increase in the
χT value to 6.47 cm3 mol−1 K.TheχT value returns
to its initial value with a small thermal hysteresis
∼5 K wide, showing reversible electron-transfer be-
havior that involves transformation between the dia-
magnetic {FeIILS(μ-CN)CoIIILS} (LT phase= low
temperature phase) linkages and the paramagnetic
{FeIIILS(μ-CN)CoIIHS} (HTphase=high temper-
ature phase) linkages. Consistently with magnetic
data, endothermic/exothermic peaks for 1a are ob-
served with Tmax = 331.2 and 325.3 K, indicating
the occurrence of the first-order phase transition
(see Supplementary Fig. 10).

Optical studies
The solid-state UV–vis–NIR absorption spectra of
1·2CH3OH·4H2O, 1 and 1a were measured at
room temperature to study their color changes
and to further support the electronic state as-
signments deduced from the structural and mag-
netic analyses (Fig. 4a). The absorption spectra of
1·2CH3OH·4H2O and 1a are similar, presenting
bands at 427 and 763 nm, respectively. The absorp-
tion band at 427 nm may be assigned to ligand-
to-metal charge transfer (LMCT) of the FeII chro-
mophore [17]. The broad band at 763 nm can be
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Figure 4. Optical spectra for 1·2CH3OH·4H2O, 1 and 1a. (a) Solid-state UV–vis spectra for 1·2CH3OH·4H2O, 1 and 1a at room temperature.
(b) Variable-temperature solid-state UV–vis spectra for 1a in heating (298→360 K) mode.

assigned as the FeII → CoIII intervalence charge-
transfer (IVCT) band [17,35]. In contrast, a broad
absorption band at 459 nm with a small shoulder
band at 534 nm is observed for 1.The higher-energy
band at 459 nm is assigned to a spin- and Laporte-
allowed LMCT transition, and the small shoulder
band at 534 nm can be assigned to the CoII →
FeIII IVCT band [39]. These results confirm that
1·2CH3OH·4H2O and 1a possess the diamagnetic
{FeIILS(μ-CN)CoIIILS} linkages, whereas 1 pos-
sesses the paramagnetic {FeIIILS(μ-CN)CoIIHS}
linkages at room temperature.

Variable-temperature solid-state UV–vis–NIR
absorption spectra of 1a were measured in the
temperature range of 298–360 K (Fig. 4b). As
the temperature increases, there is a gradual
decrease in the broad absorption centered at 763 nm
for the characteristic bandof theFeII →CoIII IVCT,
and the LMCT/MLCT band at 427 nm is shifted
to the lower-energy region associated with the ap-
pearance of the CoII → FeIII IVCT band at 527 nm.
The observed spectral change confirms the occur-
rence of thermally induced electron transferwith the
transformation from the {FeIILS(μ-CN)CoIIILS} to
{FeIIILS(μ-CN)CoIIHS} linkages.

Photomagnetic characterization
The photomagnetic effects of 1a were examined to
determine the possibility of photo-induced electron
transfer. Because an FeII → CoIII IVCT band was
observed at 763 nm for the LT phase of 1a, an
808 nm laser was selected to stimulate the FeII →
CoIII IVCT band and used for photomagnetic ex-
periments. When the sample is irradiated at 20 K
for 120 min, χT values rapidly increase and reach

a maximum value of 5.61 cm3 mol−1 K (Fig. 5a).
When the sample is heated from 2 K after irradi-
ation, χT values first increase steeply to a sharp
maximum of 6.38 cm3 mol−1 K at 8.2 K, indi-
cating an almost complete conversion from dia-
magnetic {FeIILS(μ-CN)CoIIILS} to paramagnetic
{FeIIILS(μ-CN)CoIIHS} linkages (Fig. 5b). The in-
crease in χT values from 2 to 8.2 K is attributed
to the presence of intermolecular antiferromag-
netic interactions and/or zero field splitting [16].
Upon further heating to 73 K, the photo-induced
metastable paramagnetic {FeIIILS(μ-CN)CoIIHS}
linkages relax to the initial diamagnetic {FeIILS(μ-
CN)CoIIILS} linkages, indicating that magnetiza-
tion can be increased by light irradiation and recov-
ered with thermal treatment.

On the basis of the optical studies, 1a in HT
phase displays a CoII → FeIII IVCTband at 527 nm.
The photo-induced metastable phase after irradia-
tion with an 808 nm laser was further irradiated
with a 532 nm laser in order to investigate the
photo-induced reversibility. As a result, χT val-
ues decrease from 5.61 to 2.27 cm3 mol−1 K after
120 min irradiation at 20 K (Fig. 5b), indicat-
ing 59.5% recovery of the diamagnetic state. This
successive photoreversibility of the magnetization
can be well repeated (Fig. 5a and see Supple-
mentary Fig. 11). This magnetic change verifies
the occurrence of photo-induced reversible elec-
tron transfer in 1a. The relaxation of the photo-
induced metastable state was monitored at dif-
ferent temperatures in order to probe the sta-
bility of the photo-induced phases (see Supple-
mentary Fig. 12). In the low-temperature (10–
40 K) region, relaxation time τ was less de-
pendent on temperature. This result additionally
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Figure 5. Photoreversibility of the magnetization for 1a. (a) Plots of χT vs time under cycles of successive irradiation at
808 and 532 nm at 20 K for 1a. (b) Plots of χT vs temperature for 1a before irradiation, after irradiation at 808 nm, the
metastable-induced state irradiated at 532 nm, and after thermal annealing treatment at 100 K.

confirms that the photoreversibility changes were
induced by light rather than the thermal relaxation
effect.

IR spectra
The IR spectra analysis of 1·2CH3OH·4H2O,
1 and 1a also supports the redox state assign-
ments deduced from the structural and magnetic
analyses. For 1·2CH3OH·4H2O, the typical ab-
sorption bands of cyanide groups (2107, 2089 and
2071 cm−1, see Supplementary Fig. 13) indicate
that the compound possesses the diamagnetic
{FeIILS(μ-CN)CoIIILS} linkages [17,33]. Three
absorption bands for cyanide groups are observed
in the IR spectrum of 1 (see Supplementary
Fig. 13), corresponding to the stretching vi-
brations for the bridging cyanide ions in the
{FeIIILS(μ-CN)CoIIHS} linkages (2148 and
2143 cm−1) and the terminal cyanide ions in the
[PzTpFeIII(CN)3]– anions (2122 cm−1) [20].
At 300 K, 1a shows absorption bands at 2069,
2085 and 2106 cm−1, confirming that 1a possesses
the {FeIILS(μ-CN)CoIIILS} linkages in the LT
phase (see Supplementary Fig. 14). When the
temperature increases to 360 K, the intensity of
the cyanide stretching bands for the {FeIILS(μ-
CN)CoIIILS} linkages decreases, and new bands
for the {FeIIILS(μ-CN)CoIIHS} linkages appear at
2150 and 2159 cm−1 as seen in 1. Furthermore,
upon cooling to room temperature, the IR spectra
of 1a return to their initial state, suggesting that the
thermally induced intermetallic electron transfer is
reversible.

The irradiation-time dependence of the IR spec-
tra was measured to further verify the occurrence
of photo-induced reversible electron transfer in 1a
upon successive and alternative irradiation with 808
and 532 nm lasers at 20 K (Fig. 6). Upon irradia-

tion at 808 nm, the intensity of the cyanide stretch-
ing bands attributed to the {FeIILS(μ-CN)CoIIILS}
linkages decreases and a new peak appears at
2162 cm−1, which is attributed to the {FeIIILS(μ-
CN)CoIIHS} linkages. The intensity of the new
peak gradually increases with irradiation time. Con-
versely, the photo-induced metastable phase was ir-
radiated at 532 nm, inducing a decrease in the in-
tensity of the cyanide stretching band attributed to
the {FeIIILS(μ-CN)CoIIHS} linkages, and the in-
tensity of the peaks attributed to the {FeIILS(μ-
CN)CoIIILS} linkages increases. Bynormalizationof
the peak intensities for the {FeIIILS(μ-CN)CoIIHS}
linkages vs irradiation time upon irradiation at
808 and 532 nm, the recovery of the {FeIILS(μ-
CN)CoIIILS} linkages is estimated to be 60.0%,
which is comparable to the value obtained from
photomagnetic measurements (see Supplementary
Fig. 15). Therefore, the observed spectral changes
further confirm the occurrence of photo-induced
reversible electron transfer with interconversion
between {FeIIILS(μ-CN)CoIIHS} and {FeIILS(μ-
CN)CoIIILS} linkages through successive and alter-
native irradiation at 808 and 532 nm.

Structure and property discussion
Air-stable 1a can be obtained by two-step-wise
SCSC transformations from the air-unstable
1·2CH3OH·4H2O. This unprecedented succes-
sive single-crystalline transformations-induced
electron transfer inspired us to investigate their
structural correlations. First, the structure of
1·2CH3OH·4H2O indicates that hydrogen-
bonding interactions are formed between the
nitrogen atom of the terminal cyanide and an
uncoordinated water molecule with the N···O
distance of 2.713(12) Å (see Supplementary Fig. 1
and Table 4). Hydrogen-bonding strength can
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Figure 6. Photo-induced IR spectra for 1a. Irradiation-time dependence of the IR spectra for 1a irradiated at 808 nm (a) and
the photoreversibility upon irradiation at 532 nm (b) at 20 K.

have a significant effect on redox potential and
may have a significant effect on the intermetallic
electron-transfer behavior. Hydrogen bonding as
an electron-withdrawing effect can result in the
positive shifting of FeII redox potential [31,33].
FeII ions are more stable in this situation. Thus,
1·2CH3OH·4H2O exhibits stable {FeIILS(μ-
CN)CoIIILS} linkages in the solvated phase. When
1·2CH3OH·4H2O loses the solvent molecules
and transforms into the desolvated phase 1, the
hydrogen bonding is destroyed, accompanied
by a negative shift in the redox potential of FeII.
The {FeIILS(μ-CN)CoIIILS} linkages become
unstable and tend to transform into the {FeIIILS(μ-
CN)CoIIHS} linkages. Therefore, the electron
transfer from 1·2CH3OH·4H2O to 1 occurs as a
result of thermally induced desolvation.

Second, the average distances of π ···π and
C−H···π interactions between the adjacent
dpq/PzTp ligands are 3.753 and 3.148 Å for
1·2CH3OH·4H2O, 3.665 and 3.102 Å for 1
and 3.457 and 3.002 Å for 1a, indicating that
the interactions gradually become stronger from
1·2CH3OH·4H2O to 1 and 1a.The enhancement of
intermolecular interactions increases the synergistic
effects between molecules and causes an energy
decrease to a more stable structure, providing an
important driving force for the successive two-step
irreversible SCSC transformations. In comparison,
only polycrystalline powder 1a can be obtained
directly using solvothermal conditions at 100◦C
starting from the precursors, as confirmed by pow-
der XRD analyses (see Supplementary Fig. 16).This
results show the importance of successive crystalline
transformations.

In addition, the coordination spheres of cobalt
centers bring out different distortion accompa-
nying the changes in intermolecular interactions

(C–H···π and π ···π) between dpq ligands. This
can be observed directly in the deviation of the
Co–N≡C bond angles (see Supplementary Ta-
ble 3). Compared with the bond angles [171.8(5)
and 168.6(6)◦] in 1·2CH3OH·4H2O, the differ-
ence value (8.9◦) of the bond angles [171.1(6) and
162.2(7)◦] in 1 is larger, indicating larger devia-
tion from the ideal octahedron for the latter. For
1a, the bond angles [166.1(3) and 166.7(3)◦] are
nearly the same, which suggests that the distortion
of the CoN6 octahedron becomes smaller. Contin-
uous shapemeasurements (CShM) analysis and the
parameter� (the sum of |90 − α| for the 12 cis-N–
Co–N angles around the Co atoms) were also cal-
culated (see Supplementary Table 2). The CShM
of cobalt is 0.178 (1·2CH3OH·4H2O), 1.014 (1),
0.276 (LT phase of 1a) and 1.216 (HT phase of 1a),
respectively. A smaller value is generally associated
with a stronger ligand field, leading to an LS state of
the metal ion, whereas the larger value corresponds
to a weaker ligand field and support an HS state.
From 1·2CH3OH·4H2O to 1 and 1a, the values first
increase and then decrease, which suggests that the
strength of the ligand field changes from strong to
weak and back to strong. Thus, the Co ion exhibits
HS state in 1 and the LS state in 1·2CH3OH·4H2O
and 1a. This unusual behavior serves to illus-
trate how subtle change in C–H···π and π ···π
interactions can actually have a profound effect
on SCSC transformations and electron-transfer
properties.

CONCLUSION
The enhancement of intermolecular π ···π in-
teractions drives successive single-crystalline
transformations and achieves three crystalline
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phases with different electron-transfer behaviors.
Especially, this is the first time that the crystalline
transformation between two polymorphs in in-
termetallic electron-transfer-related compounds
has been observed, providing an ideal platform to
study the effect of intermolecularπ ···π interactions
on crystalline-transformation-induced change in
electron-transfer behaviors. The introduction of
π ···π interactions not only provides a strategy to
manipulate the crystalline phases, but also offers
access to construct switchable multifunctional ma-
terials displaying stimuli-induced dynamic-changes
functions in the future.

METHODS
Thedetailed preparation and characteristicmethods
of materials are available as Supplementary data at
NSR online.
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Supplementary data are available atNSR online.
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