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Abstract— This paper presents the ResolveSpatialConstraints
(RSC) algorithm for manipulation planning in a domain with
movable obstacles. Empirically we show that our algorithm
quickly generates plans for simulated articulated robots in a
highly nonlinear search space of exponential dimension. RSC
is a reverse-time search that samples future robot actions and
constrains the space of prior object displacements. To optimize
the efficiency of RSC, we identify methods for sampling object
surfaces and generating connecting paths between grasps and
placements. In addition to experimental analysis of RSC, this
paper looks into object placements and task-space motion con-
straints among other unique features of the three dimensional
manipulation planning domain.

I. INTRODUCTION

While extracting disaster victims from rubble or looking

for tools in a mechanic’s workshop, autonomous robots

will be required to remove obstacles in order to perform

manipulation tasks. In this paper we present an efficient

algorithm that reasons about the motion space of articulated

robots and constructs plans for obstacle manipulation.

II. RELATED WORK

The proposed domain is a generalization of Navigation

Among Movable Obstacles (NAMO). In addition to travers-

ing the space the robot must also manipulate a desired object

to its goal configuration. NAMO is known to be NP-hard and

currently intractable for brute force planners [1], [2]. The first

practical planner in this domain, [3], follows a hierarchical

greedy strategy that leads to local minima. [2] and [4]

discuss graph-based methods for detecting and removing

objects that directly block robot motion. Most recently,

[5] and [6] introduced techniques for removing indirectly

blocking objects. [6] employs a probabilistic approach that

incrementally advances search by increasing the probability

of displacing colliding objects. [5] uses a reverse planning

method that directly computes the volume of space that is

necessary for future object motions.

Existing solutions to NAMO have focused on planar

examples with mobile robots. These tasks do not require the

planner to choose object placements or handle articulated

kinematics. We will extend [5] to 3D manipulation by an

articulated robot. Our work is closely related to assembly

planning, [7], [8]. However, assembly planners focus on

separating a collection of parts and typically ignore the

robot/manipulator. Domain operators also allow unassembled

Fig. 1. The robot displaces objects to make space for a desired manipulation
of the target. In this simulated experiment the robot autonomously plans to
move the fan and the gear prior retrieving the hammer.

parts to be removed to “infinity.” Rearrangement planning

includes the robot, but specifies the final configurations of all

objects [9], [10]. Similarly, high dimensional manipulation

planners do not address the interactions between multiple

movable objects described in Section IV [11], [12], [13]. We

assign a single manipulation task and ask the robot to detect

and resolve the displacements of interfering objects.

Our approach of placing constraints on past motions by

analysis of future tasks is similar to backward chaining,

[14]. Rather than explicit pre-image computation, we sample

future paths. Using these paths as constraints for motions is

related to [15]. In contrast to assuming a priority on object



motions, we search the space of object choices and orders. To

generate the sample paths we apply multi-goal RRT-Connect,

a rapid motion planner described in [16], [17].

III. PROBLEM STATEMENT

Our domain contains a robot manipulator with n

degrees of freedom, a set of rigid body static obstacles

OF = {F1, . . . , Ff} and a set of rigid movable objects

OM = {O1, . . . , Om}. Each movable object is associated

with the following:

Geometry One closed triangular mesh.

Center of Gravity A given point.

Motion Constraints One vector specifying allowable mo-

tion in generalized coordinates.

Grasps A set of workspace transforms for the

end effector in the local object frame.

Each object has a workspace configuration q consisting

of a translation and orientation. The robot configuration

r is defined in joint space. We are given the initial con-

figuration of the robot and all movable obstacles: W 0 =
(0, r0, q0

1 , q0
2 , . . . , q0

m) and a final configuration q
goal
G for

movable obstacle OG. The robot must construct a sequence

of joint paths that result in the desired object placement.

A. Operators

The desired sequence of paths can be interpreted as an

iteration of operators: Navigate : N(τ) and Manipulate :
M(τ,Oi), also referred to as Transit and Transfer in

[11], [5]. The former moves only the robot, while the latter

also displaces a single rigidly grasped object. Each operator

is parameterized by a path in the configuration space of the

robot: τ : [0, 1] → r, where τ(ri, rj) is some path from ri

to rj . Let τ(s) be a configuration along the path.

The operators map W t = (t, rt, qt
1, q

t
2, . . . , q

t
m) to W t+1,

where qt+1 = qt for all unaffected objects. The operators are

subject to constraints: N(τ(rt, rt+1)) is valid when the robot

in any configuration τ(s) does not collide with an element

of OF or OM in W t or itself.

To define a valid Manipulation, let K(rt) be the

workspace end effector pose as found by direct kinematics.

T
K(rt)

qt
i

is a relative transform from the end effector pose to

the object configuration/pose at the start of the action. Due

to rigid grasping the object path is defined by the robot path:

τOi
(s) = T

K(rt)

qt
i

K(τ(s)) (1)

M(τ(rt, rt+1), Oi) requires three conditions: First, the rel-

ative transform T
K(rt)

qt
i

must be a valid grasp. Second, any

robot configuration τ(s) and corresponding object configura-

tion τOi
(s) must be collision free with respect to unaffected

objects in W t and self-collision. Lastly, the final object

configuration τOi
(1) must be a statically stable placement

of the object.

B. Simplifying Assumptions

For the purposes of computational efficiency and algo-

rithmic clarity we present methods that are applicable to a

subset of domain problems. We first assume that the problem

(a) The C-space of the first two robot links before and after box B is moved.

(b) The C-space of the robot grasping B before and after C is moved. For
visualization, only translations of B are permitted.

Fig. 2. Visualization of the workspace and configuration space (C-space)
of a planar robot are computed in our simulator.

is monotone or that if a solution exists, it can be found

by moving each obstacle once. Consequently we need not

consider plans longer than the number of movable obstacles.

We further constrain object placements to variations of

initial configurations that alter position and rotation about

z. The objects must be placed on a flat surface to establish

planar contact under the COG. While movable objects may

be stacked initially, they can only be placed on fixed objects

by the robot. These are sufficient but not necessary conditions

for static stability. They allow us to pre-sample the space for

possible placements without regard for object shape or the

displacement of potential surfaces.

IV. CHALLENGES

Despite the assumptions in Section III-B the computational

complexity of our domain remains exponential. Suppose that

there are p sampled placements for objects. At each branch

point t, a forward planner has chosen t displacements and

must select from m − t objects and p placements for each

object. If we let e be the time to verify the existence of

Navigate and Manipulate paths, the overall complexity

is O(m!(pe)m), as estimated in [5]. Searching the configu-

ration space of an articulated manipulator, e, is expensive,

especially in the case of redundant joints [18]. Exponential

repetition of the search is currently intractable.

Clearly, not all displacements are equally useful. Perhaps

we can reason about spatial connectivity to identify which

manipulation actions help the robot reach the goal [2]. In

Fig. 2(a), displacing object B deforms the configuration

space, (C-space), of the robot, creating free space for a valid

Navigation to grasp object A. Analogously, in Fig. 2(b),

displacing object C makes the Manipulation of object B

possible. Constructive subgoals take the form of creating free

space for some path in the robot C-space or the joint C-space

of the robot and a grasped object.

However, even translations of cubes create complex non-

linear deformations in the configuration space. We have

no analytical means for representing the mapping between

object displacements and their effect on C-space. Further-

more, while an object displacement may permit an immediate



Manipulation, it could block a future path for the robot.

Explicitly representing all possible displacements of each

object and its effect on the C-space of all other objects would

be exponentially expensive in memory and time [11].

V. ALGORITHM

Rather than explicitly planning to establish spatial con-

nectivity as described in Section IV, we propose to sample

the space of future paths. We recursively use these samples

to construct paths for blocking objects.

The last step of the plan is always to Manipulate OG to

its goal configuration along some path τ . If no objects are

moved from their initial configurations, Manipulate(τ,OG)
would collide with a set of objects: OPAST . Our planner

identifies these objects and plans to displace them. Since

these displacements may also be blocked, the set OPAST is

expanded to include indirectly blocking objects.

Observe that while there may be infinite possible paths

for object displacement, there is a finite number of object

orderings. For a particular choice of paths, the number of

objects that must be moved is relatively small. Hence we can

search the space of orderings while incrementally selecting

object placements and paths that are valid with regard to

future Navigation and Manipulation.

To formalize the search we let CV be the volume of space

that must be unoccupied to validate future operators. After

sampling Manipulate(τ,OG), CV contains the workspace

volume that is occupied by the robot and OG during the

continuous execution of τ . All objects that collide with CV

are placed in OPAST and must be displaced to configura-

tions that do not collide with CV . Recursively, paths that

Manipulate these objects and Navigate to the subsequent

subgoals define volumes of workspace that are added to CV

to constrain the placement of prior obstacles.

Our algorithm RESOLVESPATIALCONSTRAINTS(RSC) is

detailed in Fig. 4. RSC follows Fig. 3 in a depth first

search over orderings of the blocking obstacles. Each node in

the diagram represents a sampled Manipulation of some

object and Navigation from grasping the object in its final

configuration to grasping the subsequent object in its initial

configuration. The children of the node are choices for the

directly preceding object displacement.

The algorithm is initialized by specifying the goal object,

OG, and a goal configuration for the robot, rt+2. The

first call to RSC specifies these two parameters and empty

sets for OPAST , OFUT and CV . The planner terminates a

branch when PLANGRASP, PLANMANIPULATION or PLAN-

NAVIGATION are unsuccessful. It also backtracks when all

the orderings represented by a node’s children terminate

unsuccessfully.

VI. MOTION SAMPLING

In order to apply the RSC algorithm we are required

to choose a method for sampling the placement space of

objects and the space of robot paths for Navigation and

Manipulation. Operator paths are generated using the rapid

RRT-Connect algorithm. Placements are drawn from a uni-

form distribution to avoid bias.

Fig. 3. Construction of a plan by searching object orderings and selective
sampling of paths. Object displacements are planned in reverse order from
execution.

RESOLVESPATIALCONSTRAINTS(Oc,OPAST ,OFUT , rt+2,CV )
1 (rt, GRASP) ← PLANGRASP(Oc)
2 P ← FINDPLACEMENTS(Oc, GRASP,OFUT ,CV )

3 M(τM , Oc) ← PLANMANIPULATION(Oc, r
t,P,OFUT )

4 OFUT ← OFUT. append Oc

5 N(τN ) ← PLANNAVIGATION(τM (1), rt+2,OFUT )
6 CV ← CV append SWEPTVOLUME(τM , τN )

7 OPAST ← OPAST append IDENTIFYBLOCKING(τM , τN )
8 if OPAST = ∅

9 then return ⋄

10 for each OP in OPAST

11 do if RESOLVESPATIALCONSTRAINTS

12 (OP ,OPAST − OP ,OFUT , rt,CV )
13 then return ⋄

14 return NIL

Fig. 4. Pseudo-code for the RSC algorithm. The algorithm retunrs NIL

and backtracks if any of the three PLAN operations fail (Lines 1,3 and 5).

A. Sampling Paths

Any node in the RSC tree shown in Fig. 3 corresponds to

the displacement of some object Oc. The displacement can

be defined by three reference configurations for the robot:

rt, rt+1 and rt+2. rt+2 is the grasping configuration for the

parent object Op. rt and rt+1 are grasping configurations

for Oc in its initial and final configurations respectively.

Since Op is scheduled to be displaced immediately after

Oc, rt+2 is known. PLANGRASP, PLANMANIPULATION

and PLANNAVIGATION are three calls to a motion planning

algorithm that are used to select rt,rt+1 and sample paths

τM (rt, rt+1) and τN (rt+1, rt+2) that connect them.

Since we are interested in changing and changeable

environments, we apply a single query planner to con-

struct sample paths. Namely, the RRT-Connect algorithm has

been experimentally validated for rapid planning in high-

dimensional spaces [16]. Furthermore, since objects can have



(a) (b)

Fig. 5. Randomly sampled placements autonomously selected for the drill.
(a) shows collision free placements. (b) is the subset that has valid grasps.

numerous grasps, placements and inverse kinematics solu-

tions, we apply multi-goal RRT-Connect whenever possible

[17]. This planner grows random configuration space trees

from each of the goals and allows the start tree to be

connected to any of them.

We now describe the three motion plans in a step

of RSC. For all plans the planner is not allowed to

collide with static obstacles or obstacles in OFUT , whose

initial configuration remains static until after Oc is displaced.

• PLANGRASP decides rt, the grasp of Oc: This is

a multi-goal plan from r0, the initial configuration,

to any robot configuration that grasps Oc. This step

ensures that rt can be reached by the robot from the

initial state given the static objects.

• PLANMANIPULATION decides rt+1: This multi-goal

plan is given the starting configuration rt and the

associated GRASP of Oc. Its goal is to connect rt

to any valid configuration in the set pre-selected by

FINDPLACEMENTS (Section VI-B). The returned plan

is the path τM .

• PLANNAVIGATION - The final path planner is a single

goal RRT-Connect that identifies τN . The planner

searches from the final grasp of Oc: τM (1) = rt+1 to

the grasp of the next object rt+2.

Since RRT trees grow indefinitely when a solution is not

found, we limit the depth of expansion. RSC backtracks

when any of the three plans are unsuccessful.

Observe that in each call to PLAN, we accept the first

successful connection as the path sample. Therefore, the RRT

tends to connect objects to nearby goal configurations. This

choice is reasonable but not exhaustive. When all obstacle

orderings have been attempted, one should consider choosing

different path samples. We propose two methods that avoid

using the same paths and placements in subsequent trials:

removing goals from the multi-goal RRT and biasing RRT

search away from previous solutions.

B. Sampling Placements

The set of placements consists of random points on trian-

gles, T , with upward facing normals, n(Tj). It is important

to select placements uniformly from the entire surface area

since the areas of Tj may differ. The area of the sample

space, S, is a sum of bounding box areas for the triangles

b(T ). For a conditional impulse δ, we have:

|S| =
∑

Oi∈OF

∑

Tj∈Oi

area(b(Tj))δ(n(Tj)=[0 0 1]T ) (2)

We rejection sample a placement by randomly choosing a

triangle according to its boxed contribution to S and selecting

a point from a uniform distribution U(S) over b(T ). The

probability distribution of a point p is:

P (p) = U(S) =
area(b(T (p)))U(T (p))

|S|
(3)

Each sampled point decides the translation of the placement

and a separate random draw is used for orientation around the

z-axis. Since objects may only be placed on static surfaces,

we initialize the algorithm by sampling a set of potential

object placements.

The call to FINDPLACEMENTS(Oc, GRASP,OFUT ,CV )
positions Oc at each of the sampled placements subject

to three constraints. First, the object may not be in col-

lision with a static object or a swept volume of a future

Navigation or Manipulation path. Second, there must be

a valid inverse kinematics solution, rt+1, for the GRASP

previously selected in PLANGRASP. Third, the robot in

configuration rt+1 may not collide with fixed obstacles or

elements of OFUT which are fixed in their initial configura-

tions due to the monotone assumption. The function returns

a set of grasping configurations that satisfy these criteria.

VII. CONSTRAINTS

In addition to the standard collision detection that is

required for motion planning, RSC search must handle

other forms of constraints. One simple example of higher-

order constraints is an ordering constraint on the motion of

supporting objects. Obstacles that are initially supported by

other movable objects must be moved prior to manipulating

their support. Two of the more complex constraints are the

placement constraints that result from reverse search and the

motion constraints on real world objects.

A. Placement Constraints

The RSC algorithm is based on sampling future motions

and using the resulting paths as constraints for previous mo-

tion. Namely, CV is a swept volume of the space occupied by

the future motions of the robot and displaced obstacles. This

volume must be cleared of all objects for the sampled path

to be valid. CV serves two purposes: to detect objects that

collide with sampled paths and to constrain the displacement

of these objects. When searching for object placements, we

ensure that the objects do not collide with the swept volumes.

In our current implementation, CV is represented sim-

ply as a discrete sequence of robot and object models.

This is reflected in the running time of placement search

(Section VIII). When generating these constraints, future

work should consider local convex hull approximations or

occupancy grid methods to reduce the collision checking

involved in placement selection. An important topic is to

ensure the safety of the volumes. While overestimating the



Fig. 6. Still frames from our simulation environment. In this experiment an 8-DOF mobile manipulator operates the workshop. The robot is asked to
deliver the drill. RSC autonomously identifies the door and the pulley as blocking objects and generates motion plans to remove them.

size of a volume may lead to the removal of some valid

placements, underestimating it would mean that the planner

constructs invalid paths.

B. Motion Constraints

The second type of constraint handled by our planner

restricts motion of scene objects. Each object is associated

with a transformation that serves as a reference frame for the

task constraint. A boolean vector determines which degrees

of freedom are can be changed for a valid displacement. For

instance, cabinet doors only permit rotation about the z-axis.

To maintain the random sampling of paths, we considered

modifications of the RRT algorithm for constrained objects.

[19] shows that First-Order Retraction (FR-RRT) is both

efficient and largely invariant to parameter choices. FR-RRT

modifies the NEW CONFIG method of the RRT planner.

First, it computes the task error, ∆xerr, of each sampled

configuration, qs, and the pseudo-inverse of the task Jacobian

for the manipulator, J
†
t . Then it retracts qs onto the constraint

manifold by recursively applying Eq. 4.

q′
s = qs − J

†
t∆xerr (4)

In our application, this planner found solutions to problems

with constrained objects and had no effect on planning for

unconstrained motion.

VIII. RESULTS

In order to test our approach, we performed simulated

experiments with a three-link planar robot arm and an 8-DOF

mobile manipulator based on the 6-DOF PUMA arm (Fig.

1,6,7). The planar environment shown in Fig. 7 consists of

five rectangular movable objects and one fixed cubicle. The

PUMA was placed in a simulated workshop environment

with various shapes of tools and mechanical objects. This

scene has 28 objects, 16 of which are movable. In the

workshop some objects such as doors were constrained to

only move along or about fixed axes.

For each scenario we performed 100 experiments. Table I

summarizes the average total planning time in seconds, ttotal,

the average number of objects moved, m, and individual

times for each operation of RSC. (tsv, tplace, tM , tN , tgrasp)
correspond to the time spent creating collision models for

swept volumes, identifying valid placements, sampling valid

Manipulate, Navigate and Grasp paths.

Table II shows the average proportion of time spent

on each subtask over all three experiments. RRT and

Place represent the cumulative cost for sampling paths and

placements throughout planning. In both tables subtasks are

grouped when their time measurements are independent.

Overall, we found that RSC consistently finds solutions to

monotone problems in seconds of planning time. Due to the

sampling strategy, the algorithm does not require significant

overhead for high dimensional problems. One clear distinc-

tion is that for Fig. 7 sampling τN takes longer than τM . This

contrasts Fig. 1, 6. Faster manipulation search is reasonable

since τM has multiple feasible goals. In the detailed scenarios

PLANMANIPULATION is more expensive due to collision

and motion constraints on complex manipulated objects.

IX. CONCLUSION

In this paper we have introduced the RSC sampling-based

reverse search algorithm for handling exponentially complex

non-linear spaces. These spaces are common in manipulation

due to the interactions between the robot, the movable objects

and the environment. We have shown that even in such spaces

there exist strategies for finding efficient solutions.



Fig. 7. A simulated example involving a planar robot arm. The goal is to retrieve the green object from the cubicle.

Exp. m ttotal trrt tsv tplace tM tN tgrasp

Fig. 1 3.0 13.12 6.55 1.12 1.75 7.52 1.06 1.15
Fig. 6 3.8 13.26 4.56 3.16 0.55 5.92 1.30 1.69
Fig. 7 4.6 7.15 2.63 1.68 0.97 1.10 2.38 0.71

TABLE I

RSC: RUN TIMES FOR ALGORITHM COMPONENTS

Total RRT SV P lace M N Grasp

100% 46.7% 22.9% 11.8% 44.9% 20.6% 12.5%

TABLE II

AVERAGE COST FOR EACH PROCEDURE OVER ALL EXPERIMENTS.

This domain leaves many interesting problems for future

work. For instance, we have concentrated on monotone

planning domains and were therefore able to terminate

the ordering of objects. In some situations there may be

interdependence between the motions of objects that will

require moving them one after another.

While we have presented simple motion sampling strate-

gies by using existing rapid configuration space planners

there may be alternatives for representing the space of paths.

The same question applies to the space of placements. Our

placement choices are dictated by their accessibility to the

motion planner. In the future it will be valuable to investigate

other metrics for placement, both in terms of stability and

utility for the complete motion plan.
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