
Manipulation Planning with Caging Grasps

Rosen Diankov∗ Siddhartha S. Srinivasa† Dave Ferguson† James Kuffner∗

∗The Robotics Institute †Intel Research Pittsburgh

Carnegie Mellon University 4720 Forbes Ave.

Pittsburgh, PA, USA Pittsburgh, PA 15213, USA

{ridankov, kuffner}@cs.cmu.edu {siddhartha.srinivasa, dave.ferguson}@intel.com

Abstract— We present a novel motion planning algorithm
for performing constrained tasks such as opening doors and
drawers by robots such as humanoid robots or mobile manip-
ulators. Previous work on constrained manipulation transfers
rigid constraints imposed by the target object motion directly
into the robot configuration space. This often unnecessarily
restricts the allowable robot motion, which can prevent the robot
from performing even simple tasks, particularly if the robot
has limited reachability or low number of joints. Our method
computes “caging grasps” specific to the object and uses efficient
search algorithms to produce motion plans that satisfy the task
constraints. The major advantages of our technique significantly
increase the range of possible motions of the robot by not
having to enforce rigid constraints between the end-effector and
the target object. We illustrate our approach with experimental
results and examples running on two robot platforms.

I. INTRODUCTION

In this paper, we address the problem of a robot manipulating

an object whose motion in the world is constrained. Examples

of this interaction include turning a crank or handle, and

opening or closing a door, drawer, or cabinet. Previous work

on constrained manipulation typically utilize some form of

compliance control (e.g. [1]), in which constraints on the

object are transformed into task constraints on the end-effector

of the robot. Constraints are then enforced by maintaining

a fixed relative position and orientation (i.e. a rigid grasp)

between the object and end-effector. Unfortunately, for many

robots, such rigid grasp constraints can be overly restrictive.

For example, the opening of a door using a doorknob with one

rotational degree of freedom (DOF), imposes five constraints

on the robot end-effector if only rigid grasps between the

doorknob and end-effector are considered.

The key insight obtained through the experiments presented

in this paper, is that for a large class of constrained tasks, the

robot end-effector does not have to be rigidly attached to the

object throughout the entire motion (Fig.1). In fact, as long

as the object is caged [2], [3] by the end-effector, moving the

end-effector can produce a corresponding motion of the object.

In other words, there exists a grasp space the end-effector can

reside in such that the target object desired motion can be

achieved, while providing the robot a greatly expanded range

of allowable motion.

Relaxing task constraints through caging grasps has enabled

real-world implementations of constrained task execution us-

ing low DOF robots. We present experimental results on

Fig. 1. A robot hand opening a cupboard by caging the handle. Space of all
possible caging grasps (blue) is sampled (red) along with the contact grasps
(green).

the six-DOF Manus Assistive Robot Service Manipulator [4]

and the seven-DOF Barrett WAM [5], involving the tasks of

autonomously pulling doors and cabinets open at arbitrary

placements of the robot base. We compare our caged grasp

planning approach to a traditional planner that enforces rigid

task constraints. The results indicate that relaxing task con-

straints through caging grasps provide a much a greater motion

envelope for the robot as well as versatility in base placement.

This expanded range of allowable motions of the robot directly

results in: 1) improvements in the efficiency and the success

rate of planning for a variety of constrained tasks; 2) greater

success in executing the desired motion and achieving the final

object goal state.

The expanded range of motion comes at the cost of algo-

rithmic complexity. In the absence of a rigid grasp, care must

be taken to ensure that the object does not slip out of the

robot end-effector. Of greater concern is the fact that there

no longer exists a one-to-one mapping from robot motion

to object motion: since the object is loosely caged, there

can exist end-effector motions that produce no object motion,

and object motion without explicit end-effector motion. The

planner proposed in this paper uses a remarkably simple

yet effective technique to narrow the grasp set choices as it

moves towards the goal state. The planner works produces arm

motions that have a high probability of accomplishing the task

regardless of the uncertainty in the object motion.

II. RELATED WORK

Our work builds upon related work in two areas of manip-

ulation: caging, and task constrained manipulation.

Early work on caging [6] considered the problem of design-

ing algorithms for capturing a polytope using a given number

of points. Since then, there have been several applications

to cooperative manipulation as well as grasping. Pereira,

Kumar and Campos [7] proposed decentralized algorithms for

planar manipulation via caging using multiple robots pushing

the object. Rimon and Blake [2], [3] viewed caging as an

intermediate step to immobilizing an object and computed

caging sets that would lead to a pre-specified immobilization

grasp. Sudsang, Ponce, and Srinivasa [8] introduced a more

relaxed notion of capture regions, placing fingers where the

object could be prevented from escaping to infinity. A state-

of-the-art cage synthesis algorithm and survey of recent results

in caging may be found in Vahedi and Van der Stappen [9].

One of the first formulations of task-constrained manipula-

tion was provided by Mason [1] who observed that motion

along task constraints which produced configuration-space

surfaces or C-surfaces required the combination of position

control to move along the C-surface, and force control to

guarantee contact with the surface, which he termed compliant

motion. He proposed a formalism that combined the natural

constraints presented by the task and the desired goal trajectory

to produce control policies in terms of artificial constraints.

There has been a vast amount of literature following this work

[10], [11], [12], [13].

Usually solving a task constrained problem is tightly cou-

pled with simultaneously solving the compliant control and

visual servoing problems. [14] implement a behavioral module

that scripts the general task of opening a door while being

compliant to unknown variables at run-time like direction

to open the door and turn the handle. [15], [16] propose a

framework to simultaneously solve the task by controlling

forces and velocities through a visual servo loop.

Perhaps the work that is closest in spirit to ours is that of

Prats et. al. [17] who allow the end-effector to move freely

along certain directions during manipulations. One limiting

factor is that these directions are carefully chosen by hand to

ensure that they do not affect the overall task. In fact, end-

effectors do not always have to cage the object; as long as

the target object moves in the desired direction, just consid-

ering pushing can also increase the free space of the robot

[18]. We believe our work is a generalization of the above

ideas: instead of specifically parameterizing the relationship

between the end-effector and the object using simple rules,

we automatically generate a data-driven representation of this

relationship: the caging manifold.

The main contribution of our work is a relaxation of the

task constraint framework using caging and two algorithms

for planning under this framework. In this paper, we define

a cage as the condition where a robot hand constrains the

configuration space of an object to a finite volume. In our case,

we are interested in keeping the size of this volume small so

the object can be controlled with the hand. The configuration

space of the object itself can be one degree of freedom for a

door hinge, a pose in the 2D plane, or a pose in 3D.

III. RELAXED PROBLEM FORMULATION

We formulate the problem using the configuration space of

the robot q ∈ Q , the configuration space of the end-effector

g ∈ G, and the configuration of the constrained target object

ρ ∈ R. Each of these spaces is endowed with its corresponding

distance metric d : X × X → R.

We represent g, henceforth termed a grasp, as the 6D pose

of the end-effector in SE(3). Although our proposed method

is general enough to include joints in the grasp configuration,

we assume that the hand joints do not move while planning.

The assumption is mandated by our physical setup which does

not provide accurate synchronization of arm and end-effector

motion.

In the relaxed task constraint formulation, each target object

is endowed with a task frame which is rigidly attached to it,

and a set of grasps G represented in that task frame. The set

G is carefully chosen to ensure that any grasp is guaranteed

to cage the object. If we define Rg to be the set of target

configurations reachable under a grasp g, then the target at

configuration ρ is caged by the robot if ρ ∈ Rg ⊂ R and

every point on the the boundary of Rg is in collision with

the end-effector at pose g. Although this is a conservative

definition of a cage, it is necessary because end-effector is the

only physical body known with certainty and caging should

be environment independent. Note that a limiting case of a

cage is a form closure grasp where Rg = {ρ}.
In congruence with the traditional task constraint formula-

tion, we describe the pose of grasps in G with respect to a

coordinate frame that is rigidly attached to the object, termed

the task frame. A transform Tρ relates the task frame at an

object configuration ρ to the world reference frame. The utility

of this representation arises from the observation that, under

a rigid grasp, the pose of the end-effector is invariant in the

task frame. This allows us to compute and cache G offline,

thereby improving the efficiency of the online search. At any

configuration ρ, we denote the grasp set in the world frame

by

TρG = { Tρg | g ∈ G }. (1)

Given a grasp g we define the set of (inverse kinematics)

robot configurations q that achieve g as

IK(g) = { q | g = FK(q) } (2)

where FK(q) is the forward kinematics transforming robot

configuration to a grasp. One of the relaxed planning assump-

tions is that the end-effector of any configuration of the robot

always lies within the grasp set G with respect to the task

frame. Because this couples the motion of both the object and

the robot during manipulation, their configurations need to be

considered simultaneously. Therefore, we define the relaxed

configuration space C as

C = {(ρ, q) | ρ ∈ R, q ∈ Q, FK(q) ∈ TρG} (3)

We define the free configuration space Cfree ⊆ C as all states

not in collision with the environment, the robot, or the object.

Given these definitions, the relaxed task constraint problem

becomes:

Given start and goal configurations ρstart and

ρgoal of the object, compute a continuous path

{ρ(s), q(s)}, s ∈ [0, 1] such that

ρ(0) = ρstart (4)

ρ(1) = ρgoal (5)

{ρ(s), q(s)} ∈ Cfree (6)

FK(q(1)) ∈ Tρ(1)Gcontact (7)

Eqn.4 and Eqn.5 ensure that the target object’s path starts

and ends at the desired configurations. Eqn.6 forms the crux

of the relaxed task constraint planning problem. Because the

caging criteria dictates that each grasp be in the grasp set

G, Eqn.6 ensures that any robot configuration q(s) produces

a grasp FK(q(s)) that lies in the world transformed grasp

set Tρ(s)G. Eqn.7 constrains the final grasp to be within a

contact grasp set Gcontact ⊆ G. This set is formally defined

in Section IV. Informally, any grasp in this set is in contact

with the object and guarantees that the object will not move

away from the goal.

While the above equations describe the geometry of the

problem, we make the following assumptions about the

physics of the problem. These assumptions constrain the

automatically generated grasps we use for planning as well

as the motion of the robot and object during manipulation.

Our analysis is purely quasi-static. The robot moves slow

enough that its dynamics are negligible. Furthermore, we

assume that the object’s motion is quasi-static as well. This

can be achieved in practice by adding a dash pot to the hinges,

damping their motion, or by a sufficient amount of friction in

the case of an object being dragged across a surface. We also

assume that we have access to a compliant controller on the

robot. Under this assumption, we are guaranteed that the robot

will not jam or exert very large forces on the object being

manipulated. For our robot experiments, we implemented a

compliance controller on the WAM, greatly facilitated by the

cable-driven transparent dynamics of the robot. The Manus

arm has built-in compliance since it was originally designed

for wheel-chair users and close human interaction.

Fig. 2. A dainty grasp that was rejected by the random perturbation in the
grasp exploration stage, even though it mathematically cages the handle.

IV. GRASP SETS

We generate the grasp set G by exploring the space around

an initial seed caging grasp g, producing a collection of

candidate grasps. Each candidate grasp that cages the object

is added to G. By using caging grasps rather than grasps that

fix the target object’s configuration through contact force, we

are able to provide the manipulator with significantly more

flexibility in accomplishing the task while still guaranteeing

the object cannot escape from the end effector’s control.

Additionally, to guarantee that the object is eventually held

and maintained at its desired final configuration, we compute

the set Gcontact comprised of grasps in G that are both in

contact with the object and do not allow any object motion.

The only human input to the entire algorithm is the initial

seed grasp g. All subsequent steps are completely automated.

A. Generating the Grasp Set

Given a seed grasp g, we use Rapidly-exploring Random

Trees (RRTs) [19] to explore the configuration space of the

end-effector. In our experiments, we parametrize this space by

freezing the joints of the end-effector and by parameterizing

the end-effector pose in SE(3) with three dimensions for

translation and four dimensions for rotations represented as

quaternions. The choice of exploration strategy is not central

to our algorithm. In practice, we found that the RRT explored

the constrained space quickly and efficiently.

Specifically, the RRT is run with a particular target config-

uration and only considers collisions between the object and

the end-effector. From an initial grasp g, the RRT produces

collision-free candidate grasps. A candidate grasp is added to

G only if it passes two tests. First, we test for caging by mov-

ing choosing a random direction in the object’s configuration

space and moving small discrete steps along it to test if it

can escape1. Second, we check for robustness by randomly

jittering the grasp and re-testing for caging (Fig.2). Because

1Although this test is conservative, it produces a lot of caging grasps. A
real caging test would have to run a sophisticated motion planner.

Fig. 3. Grasp Set generated for the Manus Hand.

the collision free caging grasps can be dependent on the

configuration of the target, the grasp generation process runs

multiple RRTs at multiple target configurations. The union of

all the computed grasps is taken and a subset spanning the

grasp space is extracted.

B. Generating a Contact Grasp Set

In order to guarantee that an end-effector pose is able to

move the target object to its final destination, the end-effector

has to exert forces through contact to keep the target object

close to that configuration. We call this set Gcontact.

A valid contact grasp is one where we are unable to move

the object a small step ǫ without colliding with the grasp.

Thus, the contact grasp approaches form-closure. This may

be formalized as

Gcontact = {g ∈ G|∀ρ ∈ R, d(RTρg) < ǫ} (8)

where

d(R) = max
ρ1∈R,ρ2∈R

d(ρ1, ρ2) (9)

is the maximum distance between any two configurations in

R. Fig.1 shows the results of the RRT exploration, pruning,

and finally the grasps picked for the contact set. Fig.3 show

the grasp set computed for the Manus Hand.

V. PLANNING WITH RELAXED CONSTRAINTS

We describe two planning algorithms to solve the relaxed

constraint problem: a discretized version and a randomized

version. The randomized algorithm is more flexible and makes

less assumptions about the problem statement, however the

discretized algorithm is simple to implement and useful for

explaining the concepts behind relaxed planning (as well as

the motivation for a randomized algorithm).

Fig. 4. The basic framework used for planning discrete paths {qi}|
n

1
in robot

configuration space to satisfy paths {ρi}|
n

1
in object configuration space.

A. Discrete Formulation

The underlying assumption of the discrete formulation is

that a desired path of the target object is specified. Specifying

the path in the object’s configuration space as an input to

the planner is trivial for highly constrained objects like doors,

handles, cabinets, and levers. The configuration space of these

objects is one dimensional, so specifying a path from a to b

is easily done by disretizing that path into n points. In the

more general case where an object’s configuration space can

be more complex, we denote its desired path as {ρi}|
n
1 where

each of the configurations ρi have to be visited by the object

in that order.

The discrete relaxed constrained problem is then stated as:

given a discretized object configuration space path {ρi}|
n
1 , find

a corresponding robot configuration space path {qi}|
n
1 such

that

∀1≤i≤n (ρi, qi) ∈ Cfree (10)

FK(qn) ∈ Tρn
Gcontact (11)

∀1<i≤n d(FK(qi−1), FK(qi)) < ǫ1 (12)

∀1<i≤n d(qi−1, qi) < ǫ2 (13)

where Eqn.10 and Eqn.11 constrain the end-effector to lie

in the current grasp set defined for the object and Eqn.11 guar-

antees the final grasp is in contact. To satisfy the continuity

constraint on the robot configuration space path, Eqn.12 and

Eqn.13 ensure that adjacent robot and grasp configurations are

close to each other.

A straightforward discrete planning approach to solve this

problem is provided in Algorithm 1. We begin by first running

a feasibility test through the entire object trajectory. This step

is also used to initialize the grasp and kinematics structures

used for caching. We assume an inverse kinematics solver is

present for every arm. Furthermore, if the arm is redundant

the solver will return all solutions within a discretization level.

We compute the set of contact grasps that will keep the object

in form-closure at its desired final destination ρn (line 11).

For each grasp in this set we compute IK solutions for the

complete configuration of the robot, and for each IK solution

we attempt to plan a path through configuration space that

Fig. 5. The scenes used to test the algorithm: 6DOF Manus Arm, 6DOF Puma arm, and 7DOF WAM arm in an ’easy’ and a ’harder’ scene

Algorithm 1: Q← DISCRETESEARCH()

for i = 1 to n− 1 do1

Gi ← Tρi
G2

for g ∈ Gi do3

if (IKi,g ← IK(g)) 6= ∅ then4

break5

Gi.remove(g)6

end7

if Gi = ∅ then8

return ∅9

end10

for g ∈ Tρn
Gcontact do11

for q ∈ IK(g) do12

Qnext ← DISCRETEDEPTHFIRST(q, n− 1)13

if Qnext 6= ∅ then14

return {Qnext, q }15

end16

end17

return ∅18

tracks the object path {ρi} using depth first search (line 13)2.

Fig.4 provides a diagram of the discrete search framework.

Given an object path {ρi}|
n
1 we search for a robot path {qi}|

n
1

that consists of a sequence of robot configurations qi, 1 ≤ i <

n such that FK(qi) ∈ Tρi
G and FK(qn) ∈ Tρn

Gcontact.

Each of these configurations qi is generated as an IK solution

from one of the grasps in the grasp set Tρi
G. The depth first

search process takes a robot configuration at a time step j

and calculates all the robot configurations that correspond to

valid grasps at time j − 1 (i.e. are members of set Tρj−1
G),

then recursively processes each of these configurations until a

solution is found.

B. Randomized Formulation

There are several disadvantages to the discretized algorithm.

First, it is highly dependent on the discretization level of the

grasp set and IK solver. For robots with six degrees of freedom

2This depth first search expands states in the same order as A* would using
a heuristic function based on (an underestimate of) the target object distance
to goal.

Fig. 6. Comparison of fixed feasibility regions (left) and relaxed feasibility
regions (right) for each scene.

Fig. 7. WAM arm used to open a kitchen cupboard.

or less, enumerating all IK solutions isn’t a problem. However,

as soon as the joints increase or a mobile base is considered,

the discretization required for IK(g) to reasonably fill the

null space grows exponentially. Second, the desired object

trajectory is fixed, which eliminates the possibility of moving

the door in one direction and then another to accomplish the

task (see [12] for an example where this is required).

To overcome these limitations, we also applied a random-

ized planner to the problem. We chose the Randomized A*

algorithm [20], which operates in a similar fashion to A*

except that it generates a random set of actions from each

state visited instead of using a fixed set. Randomized A*

is well suited to our current problem because it can use

the target object distance to goal as a heuristic to focus its

search, it can guarantee each state is visited at most once,

it does not need to generate all the IK solutions for a given

grasp, and it can return failure when no solution is possible.

The key difference between Randomized A* and regular A*

is the sampling function used to generate neighbors during

the search. For our relaxed constraints problem the task of

this sampling function is to select a random configuration

(ρnew, qnew) and a random grasp gnew ∈ Tρnew
G such that

qnew ∈ IK(gnew). Ideally, this should be done efficiently

without wasting time considering samples previously rejected

for the same configuration. The A* criteria will ensure that the

same configuration isn’t re-visited and that there is progress

made towards the goal, so the sampling function needs only

return a random configuration in Cfree around the current

configuration (ρ, q) as fast as possible.

Algorithm 2 provides our implementation of the sample

function. It first samples a target object configuration ρnew

close to the current configuration ρ (line 3), then searches

for feasible grasps from the new grasp set Tρnew
G′ (line

6), and then samples a collision-free IK solution close to q

(line 8). In order to guarantee we sample the entire space,

RANDOMCLOSECONFIG should discretize the sampling space

of the target configuration so that the number of distinct ρnew

that are produced is small. This is necessary to ensure that

sampling without replacement is efficient. Each time a sample

is chosen (line 6), it is removed from Gρnew
so it is never

considered again, an operation that takes constant time. If the

target is close to its goal then G′ is the contact grasp set

Gcontact, otherwise G′ is the regular grasp set G. Once a

Algorithm 2: {ρnew, qnew} ← SAMPLENN(ρ, q)

G ← ∅, qnew ← ∅1

while qnew = ∅ do2

ρnew ← RANDOMCLOSECONFIG(ρ)3

if not EXIST(Gρnew
) then4

Gρnew
← Tρnew

G′
5

gnew ← SAMPLEWITHOUTREPLACEMENT(Gρnew
)6

if gnew 6= ∅ then7

qnew ← SAMPLEIK(gnew, q)8

else if CHECKTERMINATION() then9

return {∅, ∅}10

end11

return {ρnew, qnew}12

Discrete Randomized

6DOF Manus Arm 441% 503%
6DOF Puma Arm 130% 126%
7DOF Barrett WAM 13% 24%
7DOF Barrett WAM (Harder) 163% 162%

TABLE II

INCREASE IN FEASIBILITY SPACE WHEN USING RELAXED PLANNING COMPARED TO

FIXED-GRASP PLANNING.

grasp is found, SAMPLEIK samples the nullspace of the IK

solver around q until a collision-free solution is found. If not,

the entire process repeats again. If all grasps are exhausted

for a particular target configuration, the sampler checks for

termination conditions and returns false (line 9).

VI. EXPERIMENTS

The robotic simulation environment we used to perform all

planning, testing, and real robot control is OpenRAVE [21], the

Open-Source Cross-Platform Robotics Virtual Environment.

To test the performance of the algorithm, the planning times

and feasibility regions are calculated for three different robots

in various scenes (Fig.5, Fig.7). All the handles of the target

objects are measured carefully from their real-world counter-

parts. The tasks are as follows:

• The Manus Arm is required to open the door 90 degrees.

Trials Grasp Set Size Discrete (Successes) Discrete (Failures) Randomized (Successes) Randomized (Failures)

6DOF Manus Arm 7784 550 0.235 s 0.234 s 0.143 s 0.23 s
6DOF Puma Arm 6755 300 1.49 s 0.043 s 1.83 s 0.028 s
7DOF Barrett WAM 2734 276 10.5 8.43 10.5 37.4
7DOF Barrett WAM (Harder) 2422 123 0.116 s 0.021 s 0.209 s 0.029 s

TABLE I

STATISTICS FOR THE SCENES TESTED SHOWING AVERAGE PLANNING TIMES (IN SECONDS) AND SIZE OF THE GRASP SETS USED.

Fig. 8. WAM arm autonomously opening a cupboard, putting in a cup, and closing it. Wall clock times from start of planning are shown in each frame.

• The Puma Arm is required to open the cupboard 115

degrees.

• The WAM arm is required to open the closer cabinet 90

degrees and the farther cabinet 60 degrees.

In each scene, the robot is randomly positioned and oriented

on the floor, and then the planners are executed. Thousands of

random positions are tested in each scene to calculate average

running times (Table I). The parameters for the randomized

algorithm stayed the same across all robots. Note that the

planning times for the easier WAM scene are much higher

than the rest of the scenes. This shows that the more open the

space is, the longer it takes to search for all possible solutions,

and especially longer to declare failure when a solution doesn’t

exist.

To show that relaxed grasp sets really do increase the

regions the arm can achieve its task from, we compare the

feasibility regions produced with the relaxed grasp set method

and the fixed grasp method. The fixed grasp method uses a

single task-frame grasp throughout the entire search process.

To make things fair, we try every grasp in Gcontact before

declaring that the fixed grasp method fails. Table II shows

how many times the feasibility region increased for the relaxed

methods compared to the fixed method. As expected, the

lower dimensional manipulators benefit greatly from relaxed

task constraints. Furthermore, the door can be opened much

further using the relaxed approach than with the fixed grasp

method. The randomized algorithm’s improvement over the

fixed method is occasionally less than that of the discrete

algorithm because we are using early termination criteria;

running the algorithm for longer produces feasibility regions

that are greater than or equal to what the discrete algorithm

produces. Fig.6 shows the feasibility regions in each scene

between relaxed grasps and fixed grasps.

Real experiments were done on two robots: the Manus Arm

on a wheelchair opening a door (Fig.9), and the Barrett WAM

putting cups in a cupboard (Fig.8). It is impossible to open the

door so wide with the Manus Arm without considering relaxed

grasps because the reachability is so low. The experiment we

performed with the WAM is to autonomously open a cabinet,

put a cup inside it, and close it. The robot autonomously

planned for collision-free and reachable grasps when picking

up the cup using the grasp planning framework proposed by

[22]. It should be noted that the final destination is very

tight, but the planner was able to find a solution and the

robot successfully completed execution of the entire task in

a combined time of 1 minute and 58 seconds.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a motion planning method for con-

strained manipulation tasks that combines object “caging

grasps” and efficient search algorithms to produce motion

plans that satisfy the task constraints. The effectiveness of

our approach has been illustrated by experimental results

on two different real-world autonomous manipulation tasks.

Relaxing the task constraints can give the arm more chances

to finish the task without relying on synchronization with

Fig. 9. Manus arm on a wheel chair opening a door.

Fig. 10. The humanoid robot HRP-2 opening a cupboard.

the mobile base. This method is especially useful when the

robot’s own localization is not accurate because it allows

for the robot to control how far away it is from collisions.

Furthermore, these results can be generalized to arbitrary

pushing tasks where the robot ”cages” certain directions of

the object configuration space. Our experimental results have

shown that planning using caging grasps can be implemented

efficiently, and can result in improved overall planning times

and execution performance. The proposed algorithm generally

applies to a large class of manipulators, and can easily be

adapted for the dynamic actions of humanoid robots (Fig.10).

VIII. ACKNOWLEDGEMENTS

This project is partially supported by the Quality of Life

Technology Center and the Personal Robotics project at Intel

Research Pittsburgh. We are grateful to the HERL Pittsburgh

Lab for the wheel chair hardware, Exact Dynamics BV for

the Manus arm hardware. We also want to thank Mike Vande

Weghe for the WAM hardware support and his invaluable

input.

REFERENCES

[1] M. Mason, “Compliance and force control for computer-controlled
manipulators,” vol. 11, no. 6, 1981, pp. 418–432.

[2] E. Rimon and A. Blake, “Caging 2d by one-parameter two-fingered
gripping systems,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 1986.
[3] E. Rimon, “Caging planar bodies by one-parameter two-fingered grip-

ping systems,” The International Journal of Robotics Research, vol. 18,
pp. 299–318, 1999.

[4] “http://www.exactdynamics.nl.”
[5] “http://www.barrett.com.”
[6] W. Kuperberg, “Problems on polytopes and convex sets,” in DIMACS

Workshop on Polytopes, 1990.
[7] G. A. S. Pereira, V. Kumar, and M. F. M. Campos, “Decentralized

algorithms for multirobot manipulation via caging,” in Proceedings of

the Workshop on the Algorithmic Foundations of Robotics, 2002.
[8] A. Sudsang, J. Ponce, and N. Srinivasa, “Algorithms for constructing

immobilizing fixtures and grasps of three-dimensional objects,” in In

J.-P. Laumont and M. Overmars, editors, Algorithmic Foundations of

Robotics II, 1997.
[9] M. Vahedi and A. F. van der Stappen, “Geometric properties and

computation of three-finger caging grasps of convex polygons,” in
Proceedings of the 3rd Annual IEEE Conference on Automation Science

and Engineering, 2007.
[10] O. Khatib, “A unified approach to motion and force control of robot

manipulators: The operational space formulation,” IEEE Journal on

Robotics and Automation, vol. 3, 1987.
[11] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manip-

ulators,” ASME Journal of Dynamic, Measurements and Control, vol.
103, 1981.

[12] M. Stilman, K. Nishiwaki, and S. Kagami, “Learning object models
for humanoid manipulation,” in IEEE International Conference on

Humanoid Robotics, 2007.
[13] J. de Schutter, T. de Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbelien,

K. Claes, and H. Bruyninckx, “Constraint-based task specification and
estimation for sensor-based robot systems in the presence of geometric
uncertainty,” International Journal of Robotics Research, vol. 26, no. 5,
pp. 433–455, 2007.

[14] A. Jain and C. C. Kemp, “Behaviors for robust door opening and door-
way traversal with a force-sensing mobile manipulator,” in Proceedings

of the Manipulation Workshop in Robotics Science And Systems, 2008.
[15] M. Prats, P. J. Sanz, and A. P. del Pobil, “A control architecture for

compliant execution of manipulation tasks,” in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems (IROS),
2006.

[16] M. Prats, P. Martinet, A. P. del Pobil, and S. Lee, “Vision/force control
in task-oriented grasping and manipulation,” in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems (IROS),
2007.

[17] M. Prats, P. J. Sanz, and A. P. del Pobil, “A sensor-based approach
for physical interaction based on hand, grasp and task frames,” in
Proceedings of the Manipulation Workshop in Robotics Science And

Systems, 2008.
[18] V. Ng-Thow-Hing, E. Drumwright, K. Hauser, Q. Wu, and J. Wormer,

“Expanding task functionality in established humanoid robots,” in Pro-

ceedings of IEEE-RAS International Conference on Humanoid Robots

(Humanoids), 2007.
[19] J. Kuffner and S. LaValle, “RRT-Connect: An Efficient Approach to

Single-Query Path Planning,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2000.
[20] R. Diankov and J. Kuffner, “Randomized statistical path planning,” in

Proceedings of the IEEE International Conference on Intelligent Robots

and Systems (IROS), 2007.
[21] R. Diankov, “http://openrave.programmingvision.com.”
[22] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,

“Grasp planning in complex scenes,” in Proceedings of IEEE-RAS

International Conference on Humanoid Robots (Humanoids), 2007.

