
Manipulation with Multiple Action Types

Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, Tomás Lozano-Pérez

Abstract

We present DARRT, a sampling-based algorithm for planning with multiple types

of manipulation. Given a robot, a set of movable objects, and a set of actions for

manipulating the objects, DARRT returns a sequence of manipulation actions that

move the robot and objects from an initial configuration to a final configuration. The

manipulation actions may be non-prehensile, meaning that the object is not rigidly

attached to the robot, such as push, tilt, or pull. We describe a simple extension to

the RRT algorithm to search the combined space of robot and objects and present

an implementation of DARRT on the Willow Garage PR2 robot.

1 Introduction

Consider a robot trying to move a plate that is lying flat on a cluttered table to

another table. The robot cannot grasp the plate while the plate lies flat on the table,

so it has to first maneuver the plate to the edge of the table and then grasp the plate in

a way that enables it to later place the plate. This task requires at least three different

types of manipulation: push, pick and place.

The classic “pick and place” tasks use only two types of manipulation: transit, in

which the robot moves alone, and rigid-transfer, in which the robot moves a rigidly

attached object. These two types of manipulation are usually planned separately,

connected only by the grasp. Human manipulation, however, is not limited to pick-

ing and placing but instead combines many different types of manipulation: pushing,

J. Barry, L. Kaelbling, T. Lozano-Pérez

MIT, Cambridge, MA email:{jbarry, lpk, tlp}@csail.mit.edu

K. Hsiao

Willow Garage, Menlo Park, CA e-mail: hsiao@willowgarage.com

This material is based upon work supported by the National Science Foundation Grant No.

1122374.

1

hsiao@willowgarage.com


2 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

pulling, flipping, etc. To extend robotic manipulation capabilities towards those of

humans we must be able to plan for and control sequences of diverse actions.

In this paper we outline an algorithm for planning with multiple types of manip-

ulation. The algorithm has the structure of a rapidly exploring random tree (RRT)

searching the combined configuration space of the robot and objects. The RRT al-

gorithm attempts to directly connect points in configuration space and, if that fails,

samples possible intermediate points and connects those. In many spaces this “con-

nection” is straightforward, usually just a straight line in Euclidean space. Because

objects cannot move by themselves, however, such a connection is not viable in the

combined space of the robot and objects. Instead, we must use a path that reflects

the underlying dynamics of the system. Because of the necessary interactions of

the robot and objects during manipulation, this requires modifications to both the

extension phase and the sampling phase of the RRT algorithm. We discuss these

modifications and describe and analyze experiments run on the PR2 robot.

2 Related Work

There is a large body of work on manipulation actions for us to draw upon. Ma-

son [13] discusses the mechanics of pushing an object, while Brost [2] and Dogar

and Srinivasa [5] propose to combine pushing and grasping in a push-grasp, and

Huang and Mason investigate striking or tapping objects [9]. However, these papers

focus on describing and simulating the dynamics and control of a specific action.

When they address planning, they emphasize working with a particular type of ma-

nipulation rather than combining it with other types. We take a different view; we

assume that by building on this work, we can simulate the forward motion of the

object and focus on planning given a diverse set of these actions.

There has also been work on problems that require the robot to manipulate multi-

ple objects. Much of this work assumes only rigid grasping [1, 14, 17, 18, 19] or that

each object moves only once [14, 17, 18, 19]. van den Berg et al. [1] relax this sec-

ond assumption, but their approach relies on describing connected components of a

robot’s configuration space, which is intractable for high-dimensional configuration

spaces. Cosgun et al. [3] discuss trying to place an object on a cluttered surface.

They assume only the object to be placed is grasped, but that this object can push

other objects out of the way. Multiple objects can be moved at once, but this still

incorporates only a single manipulation action. Dogar and Srinivasa [6] consider the

problem of trying to move an object in clutter and have a library of manipulation

actions, including non-prehensile actions, but assume each object or piece of clutter

is moved only once using a single manipulation action. In contrast, we are interested

in using multiple types of manipulation to manipulate a single object.

The re-grasping problem [12, 16], especially as framed by Siméon et al., is an

example of planning with two manipulation actions. Siméon et al. [16] take a hi-

erarchical approach to the problem, first finding a high-level sequence of transits

(motions for the robot alone) and rigid-transfers (motions in which the robot rigidly



Manipulation with Multiple Action Types 3

grasps an object) and then planning each in the robot’s configuration space. Unfortu-

nately, their method relies on the grasped object being able to move instantaneously

in any direction, which does not hold for non-prehensile manipulation.

The problem of manipulation with multiple actions is a multi-modal planning

problem. Hauser [7] defines a multi-modal planning problem as one in which the

system moves among configurations and also among a set of modes. The mode

space is part of the problem description and each mode describes a set of con-

figurations that all satisfy certain mode-specific constraints. For example, a mode

might be the set of configurations in which the robot and object are in a specific

grasp. In his initial work Hauser focused on problems with discrete mode spaces, but

low-dimensional mode transitions. He showed how to create a two-level roadmap

of modes and configurations using interspersed mode and configuration sampling.

Later Hauser [8] extended this work to domains like manipulation where the mode

space is continuous and used interleaved intra-mode and inter-mode planning to find

paths for a walking robot pushing an object on a table. However, that work required

the implementation of complicated mode samplers and a number of heuristics, some

of which took substantial pre-processing time. Here we show how to solve the prob-

lem of manipulation with multiple actions as an RRT with no pre-processing.

3 Problem Definition

We address problems in which we have a robot, a set of movable objects, and a set of

diverse, possibly non-prehensile manipulation actions. The input is the configuration

space (c-space) of the robot and movable objects, a set of fixed obstacles, a set of

manipulation primitives, a starting configuration, and a set of goal configurations.

The goal set may be infinite in size. For example, in manipulation, goal positions

are often specified only for objects. The goal set is then any configuration in the

combined space in which the objects are in their goal positions.

A manipulation primitive is a function that takes an initial configuration of the

robot and objects and a displacement of the robot’s configuration and returns a final

configuration of the robot and objects. A primitive instance is an instantiation of

the primitive with a specific initial configuration and displacement. A solution is a

sequence of primitive instances that takes the initial configuration into the goal set.

Any type of manipulation can be represented as a manipulation primitive pro-

vided it is possible to describe the effect of the primitive on any given configuration

of the robot and objects. For complicated primitives it is possible that this would

require computational integration of equations of motion, but we use simpler prim-

itives. Throughout this paper we use the following primitives as examples:

• Transit: The robot moves alone whenever there is no collision between the robot

and the objects or any obstacles in the world.

• Rigid-transfer: The robot moves an attached object whenever there is no colli-

sion between the robot or object and any obstacles or other objects in the world.



4 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

Fig. 1 When the gripper and plate are in two-point contact, the robot can push the plate along the

ray connecting its gripper to the plate’s center.

• Pick: The robot rigidly grasps an object and lifts that object from a support

surface when the robot and object are in a feasible grasp configuration.

• Push: The robot pushes an object when it has two-point contact between its

gripper and the object. The push can only be along the ray connecting the center

of the contact points with the center of mass of the object, as shown in Figure 1.

Given a DR degree-of-freedom robot and n objects each with Di degrees of free-

dom, we have a problem with DR +∑
n
i=1 Di degrees of freedom. In Section 4, we

discuss our approach to solving this problem.

4 DARRT Algorithm

In Algorithm 1, we present the Diverse Action Rapidly Exploring Random Tree

(DARRT) algorithm, a sampling-based algorithm for motion planning problems

with diverse, non-prehensile manipulation actions. DARRT has the structure of a

rapidly exploring random tree (RRT) with controls [11], but the indirect control

of the objects, the high-level manipulation primitives, and the necessity of switch-

ing between primitives all require modifications to the classic state sampling, ac-

tion sampling, and distance metrics. We describe DARRT’s EXTENDTOWARDS and

SAMPLE methods in detail and discuss its distance metric approximation.

4.1 Extension

We first describe the method for extending from a configuration c1 towards a con-

figuration c2. Note that the canonical method of using a short straight line extension

in Euclidean space is not applicable here. The Euclidean extension moves c1 a small

amount towards c2 in each dimension. This moves the robot a short distance from

its configuration in c1 to its configuration in c2, but also moves each object a short

distance from its configuration in c1 towards its configuration in c2. Because objects

cannot move by themselves, it is not possible to actually execute this extension. We

need an extension method that reflects the actual dynamics of the system.



Manipulation with Multiple Action Types 5

Algorithm 1

Input: M: c-space of movable components, robot R and objects {o1, ...,on}, B: fixed

obstacles, A: manipulation primitives, cI : initial configuration, G: goal set

Output: Graph with a configuration in G.

DARRT(M,B,A,cI ,G)

1 V ←{cI}
2 while no configuration in V is in G

3 s← SAMPLE(M)
4 t← argminv∈V Distance(v,s,M,A)
5 {c1, ...,cl}← EXTENDTOWARDS(t,s,M,B,A)
6 V ←V ∪{c1, ...,cl}
7 return V

SAMPLE(M)

1 {m1, ...,m j}← randomSubset({R,o1, ...,on})
2 r← random configuration for each mi

3 return r

EXTENDTOWARDS(c1,c2,M,B,A)

1 e← PATH(c1,c2,M,A)
2 {e1, ...,el}←Discretize(e)
3 for ei, if collision(ei,M,B), return {e1, ...,ei−1}
4 return {e1, ...,el}

PATH(c1,c2,M,A)

1 if c1 = c2 or no useful primitives, return {}
2 p← randomUsefulPrimitive(c1,c2,M,A)

3 P← propagate(p,c1,c2,M)
4 c← state after applying P to c1

5 return P∪PATH(c,c2,M,A)

However, this is not just a case of planning in a non-holonomic system because

manipulation usually requires specific relative configurations of the robot and ob-

jects. Thus, the subspaces in which primitives can be executed are usually lower-

dimensional than the full configuration space. For example, in Pick, the robot must

be holding the object in a feasible grasp; for Push, the robot’s gripper must be in

two-point contact with the object. Both of these primitives require configurations

that have zero probability of being sampled at random from the full configuration

space. Moreover, non-prehensile manipulation constrains the space in which the

object can move. For example, an object that is being pushed can only be moved

along a single ray as shown in Figure 1. Thus, even if c1 is a configuration in which

the gripper and object are in two-point contact, the ray along which the object can

move must also be “towards” c2. Therefore, we not only need to pass through con-

figurations in the subspace in which the primitive is executable, we must be in the

particular part of that subspace in which the object can be moved towards c2.



6 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

Sampled

plate position
Sampled

robot position

Transit
Transfer
Push
Pick

Fig. 2 An extension from the state shown in the photograph towards the sample shown with the

white dashed lines. This sequence first transits the robot to a pushing configuration (blue), pushes

the plate towards the edge of the table (yellow), transits the robot to a grasp (blue), picks up the

plate (green), transfers it to its sampled position (magenta), and finally transits the robot to its

sampled position (blue).

The classic method for extending an RRT with actions is to use a single, short

application of some action to move a short distance from c1 towards c2. However,

it is difficult to ensure that such short applications can reach and then remain in the

subspaces that must be traversed to reach c2. Therefore, rather than extend a short

way towards c2, we try to find a sequence of actions that moves all the way from

c1 to c2. Attempting to extend all the way towards the sampled configuration is the

version of the RRT described in Lavalle Chapter 5 (2006).

The problem of manipulation with multiple actions is particularly difficult be-

cause the presence of obstacles may require complex paths that use a large num-

ber of primitives. Without obstacles, finding a path between two configurations is

usually easy. There are a number of ways to implement a search for such a path.

In our implementation, we required that a primitive p implement useful and

propagate functions. Propagating c1 towards c2 returns a sequence of primitives

that applied to c1 result in a state nearer to c2 than c1 is in the subspace in which the

primitive operates. A primitive is useful if propagating c1 towards c2 will result in

a state closer to c2 than c1 is. For example, propagating c1 towards c2 using Transit

results in a state in which the objects are in their positions in c1 and the robot is in its

position in c2. Therefore Transit is useful if all objects are in the same position in c1

and c2 but the robot is not. Push is useful when an object is on a support surface in

c1 and in a different position in c2. Propagating c1 towards c2 using Push returns two

primitives: Transit to the pushing configuration and Push from the object’s position

in c1 to the object’s position in c2 or the point on the edge of the support surface

nearest the object’s position in c2. Pseudo-code is shown in the PATH function in



Manipulation with Multiple Action Types 7

(a)

Transit

Push

(b)

Fig. 3 A robot arm pushes a plate on a table. (a) If there are obstacles between the robot and the

plate, every direct path (solid colored) will be truncated at the obstacle regardless of the sampled

pose of the plate (dashed colored). The colors of the paths added to the tree in this figure correspond

to the colors of the sample; i.e. if the plate is sampled in the position shown by the red dashed line,

the small red arrow is all that is added to the tree. (b) By sampling robot and object configurations

separately, we will eventually sample a configuration for the robot (dashed) that allows a direct

path to the plate. A subsequent sample for the plate (dash-dot) results in a much longer extension.

Algorithm 1. Figure 2 shows an example of a path. Note that the path not only in-

cludes configurations for executing pushing and grasping, but also ensures that the

configuration used for the non-prehensile Push primitive is one that can move the

plate towards its sampled position.

Therefore we extend c1 towards c2 by finding a sequence of primitive instances

that, in the absence of obstacles, takes c1 to c2. We check this path for collisions,

truncating it to the first collision, and then add the truncated path to the tree.

4.2 Sampling the Space

Although extending with a sequence of actions rather than a single action as de-

scribed in Section 4.1 finds configurations that lie in lower dimensional subspaces,

it creates another problem because we have subspaces with different controllability.

We are able to fully control the robot, but can only move objects when the robot

can immediately manipulate them. Thus, the robot’s first action along an extension

will always be to move directly towards a position from which it can manipulate

an object. Sampling random configurations from the space does not in fact sample

random movements for the robot.

To illustrate, consider a simple world in which a robot arm is pushing a plate on

a table as shown in Figure 3. If we simply sample configurations in this world, there

is zero probability that we will sample a configuration with the plate in its initial

position. Since the plate cannot move on its own, the robot must first move the plate

into its new position. A valid pushing path requires that the gripper be in two-point

contact with the plate so the first part of the extension will always be a direct robot

transit into two-point contact with the plate. If all such direct movements intersect

an obstacle, as shown in Figure 3(a), the planning will fail.



8 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

To alleviate this problem, rather than sample an entire configuration, we first

sample a (possibly proper) subset of the movable components (objects and robot)

O = {m1, ...,m j}. We then generate a partially specified sample s in which only

the configurations of those components in O are specified. The distance from a fully

specified configuration c to s is the distance to the nearest configuration to c such that

each of the components in O are in the configurations specified in s. An extension

from c to s is any path that results in the components in O being in the configurations

specified in s. By using partially specified sample configurations, we allow the robot

and objects to take up new positions relative to each other as shown in Figure 3(b).

Sampling partially specified configurations is all that is necessary to reposition

the robot and subsets of objects. However, in experimentation, we found that sam-

pling configurations for the robot and objects together tended to be unhelpful be-

cause the path is usually truncated before the segment in which the robot moves to

its position. Therefore, we either generate a sample that specifies only configura-

tions of objects or one that specifies only a configuration of the robot.

As is common practice when implementing an RRT, some fixed fraction of sam-

ples are from the goal set. When sampling from the goal set, we do not explicitly

split the sample into robot and object subspaces but we can take advantage of goals

for which that split is natural. In many manipulation problems the goal only specifies

positions for the objects, in which case a goal sample fits well into this framework.

4.3 Distance Metric

We must also define the distance between two configurations, c1 and c2. Because the

configuration space contains subspaces that are not directly controllable, the sum of

Euclidean distances in each subspace is a significant underestimate of the actual

distance between configurations. The correct distance from c1 to c2 is the length of

the shortest path traveled by the robot that moves each movable component from its

position in c1 to its position in c2.

Evaluating the correct distance function is, of course, intractable. Thus, we first

simplify it by ignoring any obstacles in the world; however, the remaining problem

is still hard. The robot must “visit” the action of moving each object exactly once,

so this is a version of the Traveling Salesman Problem. In our implementation, we

used a greedy algorithm to find the Cartesian distance from c1 to c2 by finding a

path from c1 to c2 in which the robot always moves the closest object first.

5 Results

We implemented DARRT on the Willow Garage PR2 robot and ran experiments in

several domains with a variety of manipulation primitives.



Manipulation with Multiple Action Types 9

5.1 Implementation

We planned for one of the PR2’s seven degree-of-freedom arms, its base, and a

single rigid object, for a total of sixteen dimensions in the state space. The imple-

mentation is built on top of the Open Motion Planning Library (OMPL) [4], which

allows the user to define a custom state space, control space, distance metric, sam-

pling algorithm, and extension algorithm for an RRT.

Because we have much finer control over the arms of the robot than we do over

the base, we implemented separate transit and rigid-transfer primitives for the arm

and the base. At present the planner does not reason about the precision of the prim-

itives, but we hope to add that capability in future work. In total, we implemented

eight primitives for the PR2:

• Arm-Transit: The arm moves towards a joint goal in a straight line in joint space.

• Straight-Line-Arm-Transit: The arm moves the gripper in a straight line in

Cartesian space. This was used for approaching and retreating from objects.

• Arm-Rigid-Transfer: The arm moves an attached object towards a goal pose

using a straight line in joint space.

• Base-Transit: The base moves towards a goal pose.

• Base-Rigid-Transfer: The base moves an attached object towards a goal pose.

• Pick: When the gripper is in a valid grasp pose, the object is attached to the

robot’s gripper and lifted in a straight line in Cartesian space.

• Place: The object attached to the gripper is set down on a support surface in a

straight line in Cartesian space and detached from the gripper.

• Push: When the gripper contacts the perimeter of a round object on a support

surface, the object is pushed along the ray connecting the gripper’s center to the

object’s center. This primitive is shown in Figure 1.

We detected objects at the start of planning using a point cloud from a Microsoft

Kinect by segmenting the cloud above the plane of the table. We did not re-detect

the objects at any time during execution. We used a three-dimensional map of the

environment for collision checking, as shown in Figures 5 and 6. During execution,

we used Monte Carlo localization to localize the base of the robot.

5.2 Domains and Problems

We ran experiments on four problems in two different domains, shown in Figures 4-

6: Plate1, Plate2, Plate3, and Bowl. In the Plate domain, we had the robot manipulate

a flat plate that it could not grasp while the plate was sitting on a table. In the Bowl

domain, we demonstrated that the planner works with a bowl that can be directly

picked up from a flat surface. In all problems the goal allowed any orientation around

the object’s z axis, because our objects were symmetric around this axis. To illustrate

the difference in execution successes between pushing and rigidly grasping, we did

not include the Push primitive in the Bowl domain.



10 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

Bowl Goal

Plate Goal

Fig. 4 The world in which we ran DARRT. For each plate problem, the plate started on the central

table and the goal was the corner of the side table. The bowl started on the shelf and the goal was

on the central table.

Problem Name Planning Time (s) Restart Time (s) Execution Successes on PR2 Robot

Plate1 257 60 2/5

Plate2 461 200 4/5

Plate3 480 200 3/5

Bowl 66 30 5/5

Plate3 (No Place) 82 60 –

Simple Plate 19 30 –

Table 1 Performance of the unoptimized planner and execution performance on the PR2 for each

of the four problems. The Execution Successes are the fraction of the trials in which the robot was

able to successfully execute the plan in the real world. We also show planning time for a version

of Plate3 in which the goal does not involve a place (Plate 3 (No Place)) and a simple world in

which there are no obstacles on the table (Simple Plate). The restart time is the amount of time the

planner was given before restarting from the initial state. Times were averaged over 10 trials.

We used two metrics in our experiments. We looked at planner performance on

the problems by evaluating the time it took to plan paths for each problem. We also

measured the ability of a real robot to execute the plans returned by our planner.

An execution was considered a “success” if the object (plate or bowl) was placed

in the goal position without disturbing the rest of the environment (i.e. knocking

anything off the table). The robot executed these plans “open-loop” in that it sensed

the object’s position once before planning and never again during execution.

The planner was able to find solutions for all four problems. Running times and

execution success fractions are given in Table 1. In this table we also give results

for a problem identical to Plate3 except that the goal was in the center of the envi-

ronment rather than on a table. This problem is included to emphasize how difficult

it is to plan to place a plate. For comparison’s sake, we also include planning time

for a problem in which the goal is in the center of the environment and there are no

obstacles placed on the table around the plate. Videos of the trajectories executed

by the PR2 in each of the domains are on our website1.

1 http://people.csail.mit.edu/jbarry/pr2/darrt

http://people.csail.mit.edu/jbarry/pr2/darrt
http://people.csail.mit.edu/jbarry/pr2/darrt


Manipulation with Multiple Action Types 11

Push Pick

Base

Rigid

Transfer

Arm Rigid

Transfer

Place

(a) Plate1

Push

Pick

Base

Rigid

Transfer

Arm

Rigid 

Transfer

Place

(b) Plate2

Push Base

Rigid

Transfer

Arm

Rigid

Transfer

Place

Pick

(c) Plate3

Fig. 5 The plate domain problems. The 3D map of the obstacles present in every domain (walls and

tables) is shown as a colored grid while obstacles that we added and removed from the environment

(bowls, cups, etc) are shown as blue boxes. For each problem, we show the starting state of the robot

and obstacles, possible trajectories for pushing the plate to the edge of the table (white arrows),

and the planned trajectory for the plate color-coded by primitive. Videos are on our website1.

6 Performance Analysis

The running times given in Table 1 are for an unoptimized version of the planner.

Optimizing the planner will significantly decrease these times. However, we include

them because they give a good metric of the relative difficulty of different problems.

http://people.csail.mit.edu/jbarry/pr2/darrt


12 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

Pick

Base Rigid Transfer
Arm Rigid 

Transfer

Place

Fig. 6 The Bowl domain. Videos are on our website1.

6.1 Problem Difficulty

It is clear from the running times in Table 1 that some problems are easier for the

planner than others. In the Plate1 problem (Figure 5(a)), for instance, the plate can

be moved to the edge of the table in a straight line parallel to the robot’s torso. This

is an easy manipulation for the robot and requires only three primitive instances

(Arm-Transit, Straight-Line-Arm-Transit, and Push), making it relatively easy to

find a plan in this domain. Similarly, the Bowl domain (Figure 6) is an easy domain

with no pushing at all. We included this domain to show that the algorithm can work

easily with other types of objects.

The Plate2 and Plate3 problems, however, require longer plans. In the Plate2

problem (Figure 5(b)), it is possible to move the plate to the edge of the table by

pushing the plate back towards the robot using a single push or to the left edge of

the table using a minimum of two pushes to move the plate around the small bowl.

However, it is not possible to find an arm trajectory that can push the plate towards

the robot without first moving the robot’s base. In the Plate3 problem (Figure 5(c))

we removed all possible straight line paths to the edge of the table, forcing the

planner to plan at least two pushes. This problem shows that the algorithm can find

plans requiring multiple instances of a non-prehensile primitive.

6.2 Planning Time Analysis

We also analyzed our experiments to find the bottlenecks in planning. As with most

sampling-based algorithms, the majority of the planning time is spent finding paths

around obstacles. This is a problem common to almost all RRT implementations

because the algorithm is greedy in its choice for the nearest state in the tree. For

example, as shown in Figure 7(a), we usually quickly grow an RRT all the way to-

wards an obstacle. Subsequent samples beyond the obstacle (shown in orange in the

figure) find the point near the obstacle (shown in red in the figure) as the “nearest”

point in the tree, but this point cannot be extended towards the sample. It takes a

http://people.csail.mit.edu/jbarry/pr2/darrt


Manipulation with Multiple Action Types 13

(a)

Contact

(b)

Fig. 7 For most RRT based algorithms the majority of the time is spent finding paths around

obstacles. (a) An example in the two dimensional case with a single obstacle (black rectangle).

The initial state is shown in blue, a sample in orange, and the nearest point to the sample in red.

(b) A similar example in our domain. When the plate is at the edge of the table the robot can grasp

it. However, in trying to move from the pushing configuration (left) to the approach to the grasp

(right), the gripper usually contacts the plate.

large number of samples to find a path around the obstacle. In our experiments, this

problem was most evident in two situations: transitioning from pushing to grasping

and placing on the table. We describe these scenarios in detail below.

When the plate is at the edge of the table, the robot can grasp it. However, in

moving the plate to the edge of the table, the robot must have used the push primi-

tive, which puts its gripper on the far side of the plate from the table edge, as shown

in Figure 7(b). During the transition to the grasp, the robot retreats upwards from the

push and then moves in a straight line in joint space to the approach to the grasp. In

many cases, there is a collision between the plate and the robot’s gripper along this

line. Subsequent samples for the plate will almost all be nearest to this state because

both the plate and the robot are close to a state in which the robot can approach a

grasp for the plate. However, the state in the tree cannot be extended directly to-

wards the approach to the grasp because of the gripper-plate collision. In order to

move around the plate, the gripper must first move off the direct line to the approach

to the grasp, around the plate, and then to the approach to grasp configuration. This

requires a large number of samples in the robot’s subspace.

The table on which we placed the plate is approximately one meter tall, which

makes it too high for the robot to manipulate upon easily, especially as the gripper

must be angled when placing flat plates. In addition, this table is about 25 centime-



14 J. Barry, K. Hsiao, L. Kaelbling, T. Lozano-Pérez

ters higher than the table from which we picked the plate, which means that if the

robot does a base transfer directly from the pick to the place, the plate will hit the

side of the table as the robot moves it towards the place position. This creates a state

in which the plate is near the place position but cannot be moved directly there.

To understand the relative difficulty of placing versus transitioning from pushing

to grasping, we also considered a problem in which the robot had to push the plate

off of the table and transfer it to a specific position in the environment but not place

it. One might expect pushing to be harder than placing, because the relative con-

figurations of the robot and object are more constrained. However, because of the

particulars of our test environment, the placements are more constrained. In partic-

ular, the central table where the pickup happens is one under which the robot can

move its base whereas the table for the place has a solid base. Without placing, the

planning time was not much over one minute.

7 Future Work: Accounting for Uncertainty

The planner does not take into account uncertainty in the world. Moreover, the ex-

ecution is open-loop in that we sense the plate’s position once at the beginning of

the planning and never again throughout execution. This gives us two main sources

of uncertainty: uncertainty in the initial detection and uncertainty in the robot’s mo-

tion. Slightly incorrect gripper positions originating from one of these tended to

compound so that domains requiring more pushes (Plate3) or domains requiring

long pushes (Plate1) tended to have execution failures2 more often.

We are considering several approaches to dealing with uncertainty. For uncer-

tainty created by the robot’s motion, we can use a re-planning strategy [10], detect-

ing when we have deviated from our planned path and updating the path accord-

ingly. For perception error in the initial detection, we can use closed-loop control,

checking the pressure sensor on the robot’s fingertips for contact with the plate and

adjusting. With more sensor input during the execution, we can also use strategies

that plan in belief space [15] to try to bias the planner towards actions that also gain

information about the environment.

Another method for minimizing uncertainty in execution is to choose primitives

to reduce the uncertainty as much as possible. For example, we use two point push-

ing rather than single-point pushing. By using two point pushing, placing one side

of the gripper on each of the center of friction, the robot is able to control the plate

much more effectively [13]. We also implemented base and arm movement sepa-

rately because the uncertainty models for the PR2 arms and base are very different,

making it difficult to accurately execute synchronous trajectories. In general, sepa-

rating primitives with different uncertainty models will also allow us to re-plan after

executing primitives we know are likely to result in an uncertain state.

2 http://people.csail.mit.edu/jbarry/pr2/darrt#failure_modes

http://people.csail.mit.edu/jbarry/pr2/darrt/#failure_modes
http://people.csail.mit.edu/jbarry/pr2/darrt#failure_modes


Manipulation with Multiple Action Types 15

We have shown that the DARRT algorithm can solve problems requiring the

use of many types of manipulation in a sixteen degree-of-freedom space. However,

we also found that the trajectories returned by the planner could be successfully

executed only about sixty percent of the time. We have given both an analysis of the

planner and directions for future work in reducing and planning for uncertainty.

References

1. van den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path Planning among Mov-

able Obstacles: A Probabilistically Complete Approach. In: WAFR (2008)

2. Brost, R.C.: Automatic Grasp Planning in the Presence of Uncertainty. IJRR 7(1) (1988)

3. Cosgun, A., Hermans, T., Emeli, V., Stilman, M.: Push Planning for Object Placement on

Cluttered Table Surfaces. In: IROS (2011)

4. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics &

Automation Magazine (2012). URL http://ompl.kavrakilab.org. To appear.

5. Dogar, M., Srinivasa, S.: Push-Grasping with Dexterous Hands: Mechanics and a Method. In:

IROS (2010)

6. Dogar, M.R., Srinivasa, S.S.: A Framework for Push-Grasping in Clutter. In: RSS (2011)

7. Hauser, K.: Motion Planning for Legged and Humanoid Robots. Ph.D. thesis, Stanford Uni-

versity (2008)

8. Hauser, K., Ng-Throw-Hing, V.: Randomized Multi-Modal Motion Planning for a Humanoid

Robot Manipulation Task. IJRR 30(6) (2011)

9. Huang, W., Mason, M.T.: Experiments in Impulsive Manipulation. In: ICRA, vol. 2 (1998)

10. Kaelbling, L.P., Lozano-Pérez, T.: Pre-Image Backchaining in Belief Space for Mobile Ma-

nipulation. In: ISRR (2011)

11. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

12. Lozano-Pérez, T., Jones, J.L., Mazer, E., O’Donnell, P.A.: Handey: A Robot Task Planner.

MIT Press, Cambridge, MA (1992)

13. Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press, Cambridge, MA (2001)

14. Okada, K., Haneda, A., Nakai, H., Inaba, M., Inoue, H.: Environment Manipulation Planner

for Humanoid Robots Using Task Graph That Generates Action Sequence. In: IEEE/RSJ

IROS (2004)

15. Platt, R., Tedrake, R., Kaelbling, L., Lozano-Pérez, T.: Belief Space Planning Assuming Max-

imum Likelihood Observations. In: RSS (2010)

16. Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation Planning with Probabilistic

Roadmaps. IJRR 23(7-8) (2004)

17. Stilman, M., Kuffner, J.: Navigation Among Movable Obstacles: Real-Time Reasoning in

Complex Environments. In: HUMANOIDS (2004)

18. Stilman, M., Kuffner, J.: Planning Among Movable Obstacles with Artificial Constraints.

IJRR 27(11-12) (2008)

19. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation Planning Among Mov-

able Obstactions. In: ICRA (2007)

http://www.springerlink.com/content/pq2k30qm36277422/
http://www.springerlink.com/content/pq2k30qm36277422/
http://ijr.sagepub.com/content/7/1/3.short
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6094737
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6094737
http://ompl.kavrakilab.org
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5652970
http://www.roboticsproceedings.org/rss07/p09.html
http://www.iu.edu/~motion/papers/thesis.pdf
http://ijr.sagepub.com/content/30/6/678.short
http://ijr.sagepub.com/content/30/6/678.short
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=677233
http://www.isrr-2011.org/ISRR-2011/Program.html
http://www.isrr-2011.org/ISRR-2011/Program.html
http://planning.cs.uiuc.edu/
http://dl.acm.org/citation.cfm?id=130121
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8580
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1389555
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1389555
http://www.roboticsproceedings.org/rss06/p37.html
http://www.roboticsproceedings.org/rss06/p37.html
http://ijr.sagepub.com/content/23/7-8/729.abstract
http://ijr.sagepub.com/content/23/7-8/729.abstract
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1442130
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1442130
http://ijr.sagepub.com/content/27/11-12/1295.abstract
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4209604&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dmanipulation+planning+among+movable+obstacles
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4209604&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dmanipulation+planning+among+movable+obstacles

	Manipulation with Multiple Action Types
	Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, Tomás Lozano-Pérez
	Introduction
	Related Work
	Problem Definition
	DARRT Algorithm
	Extension
	Sampling the Space
	Distance Metric

	Results
	Implementation
	Domains and Problems

	Performance Analysis
	Problem Difficulty
	Planning Time Analysis

	Future Work: Accounting for Uncertainty
	References



