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Abstract 

Performance measures are quintessential to the design, synthesis, study and application of 

robotic manipulators. Numerous performance measures have been defined to study the 

performance and behavior of manipulators since the early days of robotics; some more widely 

accepted than others, but their real significance and limitations have not always been well 

understood. The aim of this survey is to review the definition, classification, scope, and 

limitations of some of the widely used performance measures. This work provides an extensive 

bibliography that can be of help to researchers interested in studying and evaluating the 

performance and behavior of robotic manipulators. Finally, a few recommendations are proposed 

based on the review so that the most commonly noticed limitations can be avoided when new 

performance measures are proposed. 

 

Keywords 
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1. Introduction: 

 

1.1. Goals 

 

This survey paper does not put forth any novel research ideas, approaches or results. The 

goal of this work is to document, classify and, discuss the scope and the merits and 

demerits of various performance indices used to quantify the behavior and performance 

of robotic manipulators. The contribution of this paper derives from consolidating and 

summarizing the great volume of published research in this domain by means of an 

extensive bibliography, conducted at various institutions over an extended period of time. 

 

There have been very few other such surveys in this area. For example, [1] by Klein and 

Blaho and  [2] by Tanev and Stoyanov are limited study of local performance indices 

based on the Jacobian, [3] by Merlet that is a study of performance indices applied to 

parallel manipulators, and the very recently published [4] by Moreno, et al. This paper, 

however, is more elaborate, up-to-date and reflects the current state-of-the-art in this 

field. This paper provides an elaborate discussion of the indices, their classification, 

scope and their inherent limitations. Various proposed improvements to overcome few of 

the limitations of these indices have also been reviewed and cited in this survey. This 

survey can be a useful guide to any robotic researcher involved in designing, performance 

evaluation, and application of robotic manipulators by providing a better understanding 

of the indices.  

 

1.2. Definition 

 

Doel and Pai [5] defined performance measures as a "field defined on the configuration 

manifold, i.e. the space of all postures of the manipulator, that measures some general 

property of the manipulator". 

 

Performance indices are metrics designed to measure and quantify the different 

performance characteristics of a robotic manipulator in its workspace. Performance 

indices help researchers study, evaluate and optimize manipulator designs and 

application. Performance indices are also needed to compare the architectures and 

performance of two manipulators applied to the same task. 

 

1.3. Motivation 

 

In [6] Chang notes, "a quantitative measure provides us with a rational basis upon which 

we can, without having to rely on experience and intuition alone, analyze, design, and 

control the systems". Performance indices or parameters are commonly used metrics in 

the design, synthesis, task planning, and performance evaluation of robotic manipulators. 

These metrics help specify task requirements in order to optimize manipulator structures. 

They also help in task planning and optimal task placement. In case of redundant 

manipulators that have multiple inverse kinematic solutions, performance metrics help 

choose the best solution based on a specific criterion, that is, pick the best posture to 
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perform a given task. The design of optimal task-oriented manipulators is based on 

minimizing or maximizing such performance indices. 

 

Numerous performance indices have been defined since the early days of robotics; some 

have been more widely accepted than others. The design and development of highly 

dexterous robots have fostered the formulation of these performance indices but their real 

significance, scope and limitations have not always been well understood.  

 

Most indices have some inherent limitations. Hence, a better understanding of these 

indices is needed so that they are applied in the right context and their value significance 

is properly understood. This literature and bibliography can serve as a guide for deciding 

the right performance parameter to study and to evaluate the performance of a 

manipulator.  

 

1.4. Paper Organization 

 

Although it is tempting to organize the indices by their scope or kinematic property like 

few of the previous survey on this subject, this paper follows a "mathematical derivation" 

approach in discussing three of the most important metrics – manipulability index, 

minimum singular value, and condition number. Such an approach helps in better 

understanding of the parameters as the both local and global versions of the same metric 

and their variations can be discussed together. 

 

The rest of this paper is organized as follows: First, a broad classification of indices is 

presented in Section 2 based on three different criteria. Section 3 discusses the 

manipulator workspace as a performance measure. Sections 4 to 9 discuss joint 

performance indices, such as service angle, dexterity index, etc. Section 10 discusses the 

Jacobain matrix, its importance and its dependencies. Next in Section 11, one the most 

widely used performance measure manipulability index is discussed in great detail with 

its limitations and suggested improvements and variations. In Section 14 and 15 

minimum singular value and relative minimum singular value are discussed. Next in 

sections 16 to 19, another important metric the condition number is discussed with its 

limitations and other suggested variations. In sections 20 to 24, more measures for 

measuring manipulator Isotropy are presented. Next, manipulator redundancy indices are 

discussed in sections 25 to 28, followed by task based performance indices in sections 29 

and 30. A few other interesting performance indices are present in sections 31 to 37. 

Finally, a unified approach for defining performance measures is discussed. 

 

Next, based on the literature review, a few recommendations are made so that the 

commonly noticed limitations of indices are avoided while defining new performance 

metrics. Finally, the conclusion summarizes the survey. 

 

In some robotic research literature the words 'dexterity' and 'manipulability' have been 

used ambiguously [6], however, in this paper dexterity strictly refers to all possible 

orientations of the end-effector about a point in the manipulator workspace, and 



Manipulator Performance Measures                       Page nr. 5 of 39 

 

5 

 

manipulability refers to the ability of the manipulator to move and apply forces in 

arbitrary directions. 

 

 

2. Classification of Performance Indices 

 

Performance indices have been broadly classified either based on their scope (local, global), 

performance characteristic of the manipulator (kinematic, dynamic, neither) or application 

(intrinsic, extrinsic). Every performance index can be categorized based on the following three 

groups. 

 

2.1. Local vs. Global Indices 

 

Local indices are performance metrics that are dependent on the posture of the 

manipulator, and are also known as posture-dependent indices. The scope of such local 

indices is confined to a particular manipulator posture or position alone in the workspace 

i.e., they demonstrate a local property of the manipulator. The value of these local indices 

varies from point-to-point or from posture-to-posture. These posture dependent indices 

play a very important in manipulator control applications. Most Jacobian based 

performance indices are local indices as the Jacobian matrix depends on the posture of 

the manipulator at a given point in the workspace, for example, manipulability index, 

condition number, etc.  

 

Global indices are posture independent indices. They represent a global characteristic of 

the manipulator's workspace. Global indices are needed to compare the structure and 

behavior of two manipulators that perform the same task. Unlike local indices, global 

performance indices have a single value for a given manipulator workspace. Some global 

performance indices have been formulated by extending the definition of local indices. 

Local indices can be adapted to global scale by integrating the local measures over the 

region of the configuration space ([7], [8]),  for example, the Global Conditioning Index 

(GCI). Such global indices measure the overall performance of the manipulator in some 

average sense. It is important to note here that, high values of a local performance index 

do not always translate into high values for its global version [9], and the converse is also 

true [10]. 

 

Kline and Blaho [1] have commented that local performance indices are more important 

than global indices because the performance of the manipulator's end-effector at the task 

point(s) is more important than its performance over a trajectory, region or the entire 

workspace. 

 

2.2. Kinematic vs. Dynamic Indices 

 

Kinematic indices are metrics that quantify the kinematic behavior of the manipulator. 

Kinematic performance indices are based on the Jacobian matrix. There is a close 

relationship between the kinematic performance and the manipulator structure ([9], [11]), 

hence, kinematic performance indices are structure-dependent. 



Manipulator Performance Measures                       Page nr. 6 of 39 

 

6 

 

 

In  [12], authors introduced the term kinestatics to mean "the dualistic properties and 

relations between the first order kinematics and statics of a rigid body". The study of 

kinetostatic behavior of manipulators had been the focus of extensive research for the last 

two decades of the last century; during this period many kinematic performance measures 

were defined [13]. 

 

Metrics that evaluate the dynamic performance of the manipulator are classified as 

dynamic performance indices. The dynamic performance of a robotic manipulator 

strongly depends on its inertial characteristics [14]. 

 

There are other indices that are neither kinematic nor dynamic, i.e., they are simple 

indices, such as dexterity index, service angle, etc. 

 

2.3. Intrinsic vs. Extrinsic Indices 

 

Performance indices that are unrelated to the manipulator's task or application are 

intrinsic indices [15]. Intrinsic indices convey the inherent characteristics of the 

manipulator. Intrinsic indices are independent of manipulator task specifications. Metrics 

such as dexterity index, manipulability, and condition number are examples of intrinsic 

indices. 

 

Extrinsic indices measure the ability of the manipulator to perform a specific task. 

Extrinsic performance indices are directly related to the manipulator's task [15], for 

example the robot-task conformance index, power manipulability index, etc. 

 

 

3. Manipulator Workspace as a Performance Index   

 

Early works on quantifying a manipulator's performance were focused on the study of its 

workspace and singularities ([16], [17], [18], [19], [20]), and continues to be a topic of great 

interest to researchers ([9], [21], [22], [23], [24], [25]). Many analytical and numerical methods 

were formulated to determine the workspace of manipulators since the mid 1970's; however, a 

satisfactory, computationally cost effective and generalized method is yet to be formulated [26]. 

The workspace of a manipulator has also been referred to in literature as work-volume or work-

envelope [9].  

 

Determining the workspace boundaries, its singularities, voids, holes, contours of dexterity and 

manipulability are essential for the design and performance analysis of robotic manipulators 

[21]. Depending on the number of degrees of freedom, their relative alignment in the 

manipulator structure, and length of the links, the workspace of a manipulator can either be flat, 

cylindrical or sometimes very complex, consisting of voids and holes, for example a four DoF 

revolute (4R) manipulator [27].  

 

The study of workspace is essential for the optimal placement of the work piece and achieving 

high manipulator dexterity [28]. The workspace is also an important criterion for comparing 
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manipulator structures [9]; it can be thought of as a global measure.  Many researchers have used 

the manipulator workspace as an important performance index ([9], [29]) to optimize 

manipulator structure. 

 

A well conditioned and dexterous workspace is a desirable characteristic for all manipulators.   

As the manipulator's performance is not uniform over its entire workspace, depending on its 

behavior, researchers have classified workspace volumes into different types. Broadly, the 

workspace of a manipulator is classified into two types: the reachable workspace and dexterous 

workspace. Before applying a manipulator to a specific task it is important that the task points 

are encompassed by the reachable workspace of the manipulator, and possibly even the 

dexterous workspace. The following are some of the definitions of workspaces based on the 

manipulator's behavior: 

 

3.1. Reachable Position Workspace: The reachable workspace, as defined by Gupta and 

Roth [17], is the set of points that can be reached by a reference point on a manipulator 

with at least one orientation and does not include singular points where the manipulator 

loses one or more degrees of freedom [9]. 

 

3.2. Dexterous Workspace / Full Orientation Angle Workspace: The fully dexterous 

workspace or the full orientation angle workspace is defined as a space in which a point 

is approached in all directions. For these points, the range of approach angles is 360 

degrees [16]. For any point in the dexterous workspace the manipulator's end-effector 

can be "completely rotated about any (every) axis through that point" [30]. The 

dexterous workspace is a subset of the reachable workspace. 

 

3.3. Orientation Angle Workspace: The orientation angle workspace is the set of angle 

ranges with which the end-effector can reach with a certain orientation for any point in 

the reachable position workspace. 

 

3.4. Partial Orientation Angle Workspace: The partial orientation angle workspace is 

defined as a space in which a point can be approached by a range of angles that is less 

than 360 degrees. 

 

3.5. Operating Volume: The operating volume is the total volume of space that the 

manipulator and its links occupy while reaching every point in the workspace. 

 

3.6. Workspace Index: The Workspace Index (WSI) quantifies the points in the workspace 

that can be attained by the manipulator without exceeding any physical limitations. In 

the discrete form the WSI is given as [10]:                   
where    are the nodes in the objective space and     are the nodes that are feasible. 
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The WSI is a bounded global index that can have values between zero and one. The 

WSI represents the percentage of the objective workspace that is physically reachable 

by the manipulator. 

Joint Performance Indices 

4. Service Angle and Service Sphere  

One of the simplest non-kinematic performance measures is Service Angle [2] or Service Region 

[31]. Introduced by Vinogradov [32], Service Angle/Region is defined as "the range of the 

approach angle of the manipulator around a given point in the workspace" [32]. Yang et al. [18] 

improved upon the concept of Service Angle and proposed the concept of Service Spheres. The 

service sphere is defined as a sphere about a given point in the workspace that "may be used to 

detect all possible penetrations of the end-effector through it" [31]. Figure 1 shows the (a) Serial 

n-degree of freedom manipulator and (b) Service region and service sphere for an n-DoF serial 

manipulator about a point 'p'. Both Service Angle and Service Sphere are local performance 

measures. 

At any given point in the workspace the service sphere can have multiple service regions. To 

determine the dexterity of the manipulator at a point it is essential to know all the service 

regions/angles about that point. In [31] the authors proposed an effective method for determining 

service regions.  

 

Figure 1: (a) Serial n-degree of freedom manipulator; (b) Service sphere and Service region [31]. 

(© [1999] Mechanism and Machine Theory, Elsevier)
1
 

5. Dexterity Index 

Dexterity Index was proposed by Kumar and Waldron [16] as a performance measure. They 

defined dexterous workspace as "the volume within which every point can be reached by the 

manipulator end-effector with any desired orientation" [2]. The dexterity index of a manipulator 

at a point in the workspace can be also defined as "a measure of a manipulator to achieve 

varying orientations at that point." 

                                                 
1
 ( ©[1999] Mechanism and Machine Theory, Elsevier) Reproduced from [31] with permission from Dr. K. A. 

Abdel-Malek 
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The orientation of a manipulator at any given point in the workspace can be represented in 

terms of the yaw (α), pitch (β) and roll (γ) angles as: 
 

                                                                                 (1) 

All three of the angles have a range 0 - 2π to provide all possible orientations. The dexterity 
index can be defined as the summation of the dexterity indices about each of the axes [16] given 

by: 

                            (2) 

           (                )    (3) 

where   ,   , and    are X, Y and Z dexterity indices, and  

           Δα, Δβ, and Δγ are the range of possible yaw, pitch and roll angles about a point 

Therefore, points in the workspace with multiple inverse kinematic solutions will have a higher 

dexterity index when compared to points with unique solutions. The manipulator is said to be 

fully dexterous at a given point if the dexterity at that point is equal to unity. Dexterity is a 

desirable characteristic of manipulators whether redundant or not [33]. 
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Figure 2: Shows the distribution of the Dexterity index for a SCARA manipulator [2]. (© [2000] PECR)
2
 

 

The mean dexterity index         of a manipulator over a given region of the workspace or 

trajectory with   points can be defined as [16]: 

            ∑         (4) 

Similarly, an area or point in the workspace can be said to be completely X-dexterous or Y-

dexterous if    or    is equal to unity. In the case of a planar manipulator operating in the XY – 

plane. 

                    (5) 

As seen in the Equ. (3), the dexterity index can vary between a minimum of 0 to a maximum of 

1, and hence, is a dimensionless and bounded metric. Figure 2 shows the distribution of the 

dexterity index for a SCARA manipulator. 

The dexterity index depends on the manipulator structure. For a serial planar manipulator with 

revolute joints, the manipulator has maximum dexterity when the last link in the chain is also the 

shortest link [34]. 

 

6. Joint Range Availability  

Leigeois [35] proposed a simple measure to determine if a joint would reach a stop, known as the 

Joint Range Availability (JRA) index, given as: 

          ∑               (6) 

Where as in [36] authors use the sum of the squares. 

          ∑ (             ) 
     (7) 

Where    is the current joint angle,     is the center of range of travel and        is the maximum 

joint extrusion 

The Joint Range Availability (JRA) index depicts a relation between the joint displacement and 

maximum joint displacement. JRA index tracks the deviation of the joint angles from their mid 

range [37]. This measure is used to study the naturalness or evenness of the joint range 

distribution [1]. 

In  [37] authors presented a normalized form of the joint range availability given as: 

           ∑                         (8) 

                                                 
2
 ( ©[2000] Problems of Engineering, Cybernetics & Robotics (PECR), Bulgarian Academy of Sciences), 

Reproduced from [2] with permission from Dr. Tanio Tanev. 
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where                 are the joint displacement, mid-range displacement, and the displacement at 

joint limit. 

7. Indices for Joint Mid-Range Proximity 

In most serial robotic manipulators the motion of the joint is often limited either due to 

mechanical constraints or space constraints. The motion of the joints is often range bounded as:  

                        (9) 

Few measures have been defined for the avoidance of joint limits and to maintain the joint 

displacement as close to mid-range as possible. These joint range parameters have special 

importance in automated motion control applications where the motion algorithm has to take into 

consideration the fact that the joint's motion is limited to various degrees. 

In ([38], [39]) Baron defined the following objective function to maintain the manipulator joints 

close to the mid-range position: 

                ̅        ̅     (10) 

where   is a positive-definite weighing matrix,   is the current joint position,   ̅ is the mid-

range joint position computed as:  

      ̅                      (11) 

The weighing matrix   is a diagonal matrix that represents allowable deviations from the mid-

range joint position. In [38] Baron applied this formulation to control the motion of arc-welding 

robots. 

Another similar approach is the parameterization of joint angles. Joint angle parameterization is 

often implemented in manipulator optimization and motion algorithms ([31], [40]). 

                      (12) 

where                   and                    

For an n-DOF manipulator its joint position vector                can be represented in 

parameterized forms as               .   is also known as slack variables. 

8. Joint Velocity Measure  

The Joint Velocity Measure (JVM) represents the magnitude of joint velocity by computing the 

displacement to be traveled, given by [37]: 

           ∑                      (13) 

where              are the desired and current joint displacement respectively. 
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9. Manipulator Velocity Ratio 

Velocity ratio is a commonly used criterion in the kinematic performance evaluation of single-

input-single-output (SISO) mechanisms, such as four-bar chains. This concept of velocity ratio 

can be extended to study the kinematic behavior of a robotic manipulator's multiple-input-

multiple-output (MIMO) mechanisms [41].   

In [42], Dubey and Luh proposed Manipulator Velocity Ratio (MVR) as a performance measure 

for kinematic evaluation of manipulators. MVR is defined as the ratio of transformed end-

effector velocity norm to the joint velocity vector norm, given as: 

         √ ̇    ̇  ̇    ̇       (14) 

such that   ̇   √    ̇ and  ̇   √    ̇ 

where    and    are weighing matrices. 

The value of MVR (    depends on the manipulator configuration, the two weighing matrices 

and also the direction of the end-effector velocity vector. MVR is a posture dependent local 

performance metric. 

 

Manipulability Measures 

 

10. The Jacobian Matrix 

The Jacobian matrix an indispensable matrix in understanding the motion of the end-effector, 

hence most kinematic performance measures are based on the Jacobian and its evaluations. Since 

most metrics are based on the Jacobian, and its evaluations such as its determinant, Eigenvalues, 

Singular values, determinant etc., it is important at this point to make a note of the inherent 

limitations of the Jacobian, in order to avoid repetition later in this paper. Most Jacobian-based 

performance indices suffer from a few, very significant limitations, like scale dependence, non-

homogeneity of the Jacobian and unbounded nature of the metric ([2], [11], [43]).  

10.1. Scale Dependency: The manipulability index is scale or units dependent. The 

result of various Jacobian evaluations heavily depends on the choice of the physical units 

used, therefore the manipulability index will have different values for different units 

used to represent the link lengths and joint angles [2]. In [44], authors showed that the 

absolute of the determinant of the Jacobian is not a robust measure of invertibility, 

because the determinant can sometimes have very large values. 

 

10.2. Dimensional dependency: It is simple to calculate the determinant of the 

Jacobian when it is homogeneous, i.e. when the units are the same. But in the case of 

complex manipulator structures consisting of both prismatic and revolute joints, the 

Jacobian becomes non-homogeneous [7] due to the different units used for translating 

and rotating degrees of freedom. In such cases, the evaluation of the Jacobian's 



Manipulator Performance Measures                       Page nr. 13 of 39 

 

13 

 

determinant, its Eigenvalues, singular values, etc. becomes physically inconsistent ([7], 

[45]) and non-commensurable [45]. In [45] the authors claim that the robotics research 

community is largely unaware of the physical inconsistency of the Jacobian.  

 

Hence, performance indices based on the Jacobian are most accurate when the 

manipulator consists of the same type of degrees of freedom either prismatic or revolute, 

but not a combination of both ([7], [12]). Further, even if the joints are the same, 

translational and rotational velocities should not be combined in the same performance 

metric ([46], [47]). The use of a non-homogeneous Jacobian in manipulator control 

applications can be problematic [48].  

 

To resolve the problem of dimensional non-homogeneity of the Jacobian matrix, the 

concept of 'characteristic length' was applied by Angeles ([49], [50], [51]). The 

characteristic length is a normalizing length. The Jacobian's bottom three rows that 

represent the position are divided by the characteristic length to obtain a dimensionless 

homogeneous Jacobian. The singular values of this Jacobian are dimensionless also. The 

characteristic length is derived such that it minimizes the singular values of the 

normalized Jacobian ([49], [52], [53]). The characteristic length that produces the best 

performance measure was called the 'Natural Length' [54]. The method for calculating 

the characteristic length for different types of manipulators can be found in [55]. A 

major drawback of the concept of characteristic length is that it lacks a geometrical 

interpretation [7].  

 

10.3. Frame Dependency: The Jacobian matrix is not invariant with respect to change 

in the reference frame ([56], [57]). Hence measures based on the Jacobian and its 

evaluations, such as singular values, Eigenvalues, etc., with the exception of the 

determinant of the Jacobian [57], are also not invariant to the changes in the reference 

frame. 

Most methods proposed to make the Jacobian invariant to the changes in units, scale, and frame 

involve arbitrary assumptions that make Jacobian evaluations unsuitable for characterizing the 

performance the manipulator. 

11. Manipulability Index 

The manipulability index was proposed as a kinematic performance measure by Yoshikawa [58]. 

The Yoshikawa manipulability index happens to be the most widely accepted and used measure 

for kinematic manipulability [57]. Like most kinematic indices the manipulability index is based 

on the manipulator's Jacobian matrix.  

For a redundant manipulator the manipulability index is defined as the square root of the 

determinant of the product of the Jacobian matrix and its transpose.  

        √                 (15) 

The Jacobian manipulability can also be expressed as: 

        √                       (16) 
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where    is the Eigenvalue of          matrix and                  

              is the singular value of       matrix 

In case of non-redundant manipulators the Jacobian is a square matrix and the manipulability 

index is equal to the absolute of the determinant of the Jacobian ([2], [11]) 

                       (17) 

In [59], Paul and Stevenson, had also used the absolute of the Jacobian determinant to study the 

performance of spherical wrists. The determinant of the Jacobian being equal to zero is a 

necessary and sufficient condition for the existence of a singularity [60]. At the same time, the 

manipulability index "does not represent a measure of distance from a singularity" [57].  The 

manipulability index is equal to zero if the Jacobian is not full rank [61]. Another disadvantage 

of using the manipulator determinant is that once the Jacobian loses its full rank, it does not 

distinguish between one type of singularity from the other, as both determinants are zero [6].  

There is a debate about whether or not the manipulability is a measure of the degree of ill-

conditioning of the workspace. Authors in [11] state that the manipulability measure defines the 

degree of conditioning of the workspace, but in ([57], [62], [63])  authors have cautioned that, 

even though the determinant diminishes in value in the proximity of a singularity, it cannot be 

considered as a good measure for the degree of ill-conditioning of the manipulator. 

In [64] the authors have showed that the manipulability index is base invariant, that is, it is 

independent of the manipulator's first DoF and depends solely on  the relative positioning of the 

links and geometry of the manipulator structure. It is also independent of the location of the 

operation point ([13], [64]), where the operation point is defined as the point on the end-effector 

up which the Jacobian is based [13]. This is another drawback of the manipubility index as it 

fails to distinguish between a long end-effector and a short one. The manipulability index is 

independent of the task-space coordinates [64].  

The manipulability index is one of the most commonly used performance indices ([43], [57], 

[58], [57]). In [65] authors have argued that the manipulability index is a better indicator of 

dexterity than condition number or minimum singular value. Because the manipulability index 

considers the motion of the end-effector in all directions while the minimum singular value and 

condition number consider motion in only one and two directions. And unlike the condition 

number and minimum singular value, the manipulability index is independent of any changes in 

the reference frame [57].  

The manipulability index is widely used for manipulator synthesis, workspace optimization, task 

planning, motion control etc. The manipulability index helps estimate the overall manipulator 

sensitivity to actuator displacement, which is an important design criteria [47]. Since the 

manipulability index depends on the structure and the posture of the manipulator at a given point, 

it is a local ([11], [66]) and  intrinsic performance measure [15].  

It is important to mention here that Jacobian based performance indices are also extensively used 

to study the performance and behavior of parallel manipulators. For example the Quality Index 

for parallel manipulators that is very similar to the Manipulabilty Index in the case of serial 
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manipulators
3
. In ([67], [68]) authors Lee et al. proposed the Quality Index as a dimensionless 

bounded performance metric for an octahedral manipulator and a modified Quality Index was 

suggested in [69]. 

11.1. Limitations: Few of the significant limitations of the Yoshikawa manipulability 

index are discussed below: 

 

11.1.1. Scale (Units) Dependency: The manipulability index is scale or units dependent. 

The value of the Jacobian determinant depends on the choice of the physical units 

used; therefore, the manipulability index will have different values for different 

units used to represent the link lengths and joint angles, due to this  the actual value 

of the determinant cannot be considered as a measure of the degree of ill-

conditioning of the Jacobian [63] or  a measure of the distance from a singularity 

[57].  In [63], authors cautioned that the absolute of the determinant of the Jacobian 

is not a robust measure of invertibility, because the determinant can sometimes have 

very large values. 

 

11.1.2. Dimensional Dependency:  Due to the non-homogeneity of the Jacobian in case 

of a combination of both translating and rotating joints, the manipulability index 

does not accurately represent the degree of ill-conditioning of the manipulator's 

Jacobian [63].  

 

11.1.3. Unbounded Index: The manipulability index is not a bounded index. Therefore it 

only serves as a relative measure of the degree of conditioning of the manipulator at 

a given point when compared to any other point in the workspace. It is important to 

know the maximum manipulability index in the workspace in order to appreciate the 

value significance of the manipulability at any other point in the workspace. 

 

11.1.4. Order Dependency: The manipulability index has an order dependency as well. 

As each Eigenvalue has the dimension of        , for an n-DoF manipulator, the 

order of the manipulability index is given as [70]:  

                         ⁄             ⁄            (18) 

                                                 
3
 Clarified via correspondences with the author (Dr. Tanio Tanev) 
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Figure 3: Shows the distribution of normalized manipulability from a SCARA manipulator [2]. (© [2000] 

PECR)
4
 

 

11.2. Improvements: Some of the proposed improvements to overcome the limitations 

of the manipulability index are discussed below: 

 

11.2.1. Order independent manipulability: Kim and Khosla [70] solved the problem of 

dimensional dependency of the manipulability index by taking the geometric mean 

of the manipulability index (μ). The dimension independent manipulability (  ) for 

n-link manipulator is given as: 

         √    √           
    (19) 

 

11.2.2. Relative Manipulability: Relative manipulability      was proposed by Kim and 

Khosla [70] to make the manipulability scale and order independent. The relative 

manipulability index is given as: 

                  (20) 

where    is a function with dimensions of           and   is the number of links in 

the manipulator. 

 

11.2.3. Normalized Manipulability Index: The concept of normalized manipulability 

was introduced in order to make the manipulability index a bounded parameter. 

Normalized manipulability is defined as 

                                                 
4
 (©[2000] Problems of Engineering, Cybernetics & Robotics (PECR), Bulgarian Academy of Sciences), 

Reproduced from [2] with permission from Dr. Tanio Tanev. 
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                             (21) 

where    is the manipulability index at a given point and                is the 

maximum manipulability in the entire  workspace. Normalization makes the 

manipulability index invariant to changes in scale, units and reference frame [57]. 

Figure 3 shows the distribution of the normalized manipulability (    index over the 

workspace of a SCARA manipulator. 

 

The biggest advantage of the Yoshikawa manipulability index is that it has an analytical 

expression in terms of the joint angles that makes it easily computable in real time applications. 

The manipulability index is a good measure of kinematic dexterity as it considers the end-

effector motion in all directions, unlike condition number and MSV. The normalized 

manipulability index is recommended measure for studying the workspace of a manipulator, so 

that the value significance can be easily understood. 

 

12. Global Manipulability Index 

The Global Manipulability Index is based on the manipulability index. The global manipulability 

index (GMI) is defined as the integral of a manipulability index over the whole manipulator 

workspace, given as: 

           ⁄        (22) 

where A and B are given as    ∫        and    ∫     

where W is a specific point in the manipulator workspace, μ is the manipulability at that point in 

the workspace, and B is the workspace volume.  A GMI closer to zero demonstrates poor 

handleability. 

13. Dynamic Manipulability 

The concept of a dynamic manipulability measure quantifies the manipulating ability of a robot's 

end-effector with consideration of its arm dynamics. This measure is an extension of the simple 

manipulability index (μ), which is a kinematic performance metric introduced by Yoshikawa 

[58]. Dynamic manipulability index measures the ability of the manipulator to generate 

acceleration based on a joint driving force ([56], [58], [71]). The dynamic manipulability index is 

defined as: 

         √                      (23) 

For a non-redundant manipulator the equation reduces to [71]: 

         |               |     (24) 
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where M is the inertia matrix. 

Like manipulability index, the dynamic manipulability index      is also a posture-dependent 

local performance metric.  

14. Minimum Singular Value 

Using the Singular Value Decomposition (SVD) theorem, the Jacobian matrix can be represented 

as a product of three matrices: 

                  (25) 

where U is a mxm orthogonal matrix; V is a nxn orthogonal matrix; and Σ is a mxn diagonal 
matrix. The diagonal matrix Σ consists of elements      such that:         if      and          
if    .  
         [  

        ]  
 
    (26) 

The elements of    (scalars) are singular values of matrix Σ, such that: 

                         (27) 

Singular values of Jacobian     are defined as the non-negative square roots of non-zero 

Eigenvalues of the square matrices        and       . Extensive work on the calculation of SVD 

and it applications can be found in [72].  

                             (28) 

The Minimum Singular Value (MSV) as a performance index was introduced by Klein and 

Blaho [1]. The minimum singular value represents the minimum transmission ratio, the 

maximum force transmission, and maximum accuracy [70]. MSV represents the direction in 

which it is most difficult for the manipulator's end-effector to move, ignoring all other directions 

[65]. Klien [73] and Yoshikawa [71] have interpreted MSV as an upper bound for the velocity 

with which the manipulator can move in all directions. Another interpretation of MSV is the 

minimum change in end-effector velocity produced due to a unit change in joint velocity [73]. 

MSV varies more radically near singularities than the other singular values ([1], [2], [6]). MSV 

can be seen as an efficient indicator of whether the determinant is close to zero [63], in other 

words, the MSV is better indicator of closeness to singularities than the manipulability index or 

the condition number.  Figure 4 depicts the MSV distribution for the SCARA manipulator 

workspace. As seen in the figure MSV varies more drastically as the manipulator approaches 

singular positions when compared to the manipulability index in Figure 3. 
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Figure 4: Shows the distribution of MSV for a SCARA manipulator [2]. (© [2000] PECR)
5
 

Eigenvalues of the Jacobian and performance indices based on these eigenvalues are not 

meaningful due to the non-homogeneity of the very Jacobian that they are derived from [57]. The 

MSV also suffers from frame dependency [57], and unlike the manipulability index depends on 

the location of the operation point. In [45], authors demonstrated that the SVD of a Jacobian  

matrix combining different physical units is invalid and physically inconsistent.  Gosselin tried to 

overcome this limitation by proposing the formulation and use of a homogeneous Jacobian [62].  

Yoshikawa also proposed geometric mean (see section 10.2.2) and harmonic mean of singular 

values as additional measures for manipulator dexterity ([55], [74]). 

15. Relative Minimum Singular Value 

To non-dimensionalize the minimum singular value, the relative minimum singular value was 

introduced in [70]. The relative minimum singular value is given as: 

                    (29) 

where    is a non-dimensionalizing function with the exact same dimensions as the singular 

values. 

16. Condition Number 

Salisbury and Craig introduced the condition number as a kinematic performance measure [43].  

The condition number is a measure of the degree of independence of the columns of the 

manipulator's Jacobian matrix. The condition number of a Jacobian of full rank is defined as the 

ratio of the maximum and minimum singular values of the Jacobian 

                                                 
5
 ( ©[2000] Problems of Engineering, Cybernetics & Robotics (PECR), Bulgarian Academy of Sciences), 

Reproduced from [2] with permission from Dr. Tanio Tanev. 
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                      (30) 

The computation of the above formulation of condition number is not simple [49] since singular 

values depend on the Eigenvalues that do not have an easy analytical expression. A 

computationally simpler form for calculating the condition number for a homogeneous Jacobian 

is given as: 

                                                                ‖ ‖‖   ‖     (31) 

where is the matrix norm. Using Frobenius norm the equation can be written as: 

            √                      (32) 

where tr is the trace and matrix   is given as: 

                     (33) 

where n is the of the  dimension of the square matrix and I is the identity matrix 

It has been proven by numerical analysts that the condition number is better measure of the 

degree of ill-conditioning of the manipulator than the manipulability index. A condition number 

close to unity means a well conditioned Jacobian at that point; this happens when the Jacobian 

has similar singular values. Manipulator configurations for which the condition number is unity 

are known as Isotropic configurations [62].  

When the Jacobian loses its full rank, the minimum singular value      is equal to zero and the 

condition number becomes infinity. In other words, the condition number is a measure of 

kinematic isotropy of the Jacobian ([70], [75], [76]). Asada and Granitio [41] showed that 

isotropic configurations can be achieved by minimizing the condition number. 

The condition number does not have an upper bound.          
The condition number is a good measure of the manipulator's distance singularity and kinematic 

accuracy ([13], [62], [70]).  Unlike the minimum singular value (MSV), the conditioning number 

only considers two directions of motion for the end-effector, the most difficult and the most 

easiest direction of motion,  ignoring the rest [65].  The condition number is also a good measure 

of invertibility of the Jacobian matrix [77]. Yoshikawa [71],  interpreted the condition number as 

a measure of directional uniformity of the velocity ellipsoid. The condition number has also been 

interpreted as a measure of the accuracy with which the manipulator can generate output forces 

from input torques, and workspace velocity from joint velocity ([6], [66]). However, the 

condition number is not completely devoid of the drawbacks of the manipulability index since 

the determinant of the Jacobian is still a component of the condition index [9]. 

There is a difference of opinion in the research community regarding the claim that the condition 

number is also a measure of force and velocity error amplification. Salisbury and Craig utilized 

the condition number as measure of force amplification [43], but Chiu, in his work [75], has 
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questioned this interpretation of the condition number. Also, at singular points in the workspace 

the condition number index "fails and yields uncontrollable values" [9], because at singular 

points      is equal to zero.  

 

The condition number is a local kinematic conditioning index due to the posture-dependence of 

the Jacobian matrix. The condition number is not invariant to scaling of the manipulator 

dimensions [62] and also suffers from frame dependency [57]. Unlike the manipulability index 

the condition number depends on the location of the operation point, and does not have a clear 

analytical expression as a function of the joint angles. Like all other performance indices based 

on the Eigenvalues of the Jacobian, the condition number also suffers from the limitations of 

non-homogeneity of the Jacobian [57].   

To address the problem of scaling, authors in [47] propose two distinct metrics, maximum joint 

rotation sensitivity and maximum point-displacement sensitivity. In [62], Gosselin suggested two 

new dexterity indices based on the condition number to overcome the problem of scaling. He 

defined the two indices, one based on a redundant formulation of velocity equations (  ), and the 

second based on a minimum number of parameters (   ). They are given as follows: 

     
                        }     (34) 

where    and      are the newly defined Jacobian matrices invariant to scaling of the manipulator. 

17. Local Conditioning Index  

As the condition number does not have an upper bound, the reciprocal of the condition number, 

known as the Local Conditioning Index (LCI) is more commonly used. To avoid computational 

problems due to the condition number (κ) becoming infinity when the Jacobian is not full rank, 

the reciprocal of LCI is used. LCI is bounded between zero and unity. 

            ⁄        (35) 

The reciprocal condition number is a local performance metric that is both bounded,            and scale independent. Figure 5 show the distribution of the local conditioning index for a 

SCARA manipulator. 
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Figure 5: Shows the distribution of reciprocal of the LCI for a SCARA manipulator [2]. (© [2000] 

PECR)
6
 

 

18. Kinematic Conditioning Index 

The Kinematic Conditioning Index (KCI) is another posture-independent performance measure 

based on the condition number proposed by Angeles and Lopez [76]. The kinematic conditioning 

index is defined as: 

                                  (36) 

where      is the minimum of the condition number the entire manipulator workspace. 

As discussed above, the computation of the condition number is very computationally intensive 

and finding the minimum condition number for the entire workspace can be even more 

cumbersome [49]. It is therefore recommended to use the norm representation for calculating the 

condition number. 

KCI is a global index that demonstrates the worst possible performance of the manipulator. The 

kinematic conditioning index is upper-bound at 100%. A manipulator with a KCI of 100%  is an 

isotropic manipulator ([10], [49]) i.e., all the singular values of the Jacobian are similar at the 

condition of minimum singular value. 

19. Global Conditioning Index 

The Global Conditioning Index (GCI) is based on the condition number but unlike the 

conditioning number is not a local metric. The GCI proposed by Gosselin and Angeles [8], 

                                                 
6
  ( ©[2000] Problems of Engineering, Cybernetics & Robotics (PECR), Bulgarian Academy of Sciences), 

Reproduced from [2] with permission from Dr. Tanio Tanev. 
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demonstrates the distribution of the conditioning number over the entire workspace. The Global 

Conditioning Index (η) is given as: 

                       (37) 

where A and B in the Cartesian space are given as 

   ∫ (  )     

   ∫     

where W is a specific point in the manipulator workspace, κ is the condition number at that point 
in the workspace, and B is the workspace volume. In joint same A and B can be represented in 

joint space as: 

   ∫ |(   )  |              

   ∫                

where R is the workspace of the manipulator in the joint space and Δ is the determinant of the 
Jacobian matrix. 

Given the difficulties in computing the integral, a simpler discrete formulation is given as [10]: 

            ∑              (38) 

where      are the manipulator workspace nodes, and   is the condition number. 

GCI is a bounded global index that assumes values between zero and one.  As the GCI 

approaches zero the manipulator is said to have a bad GCI and as it approaches unity the 

workspace is said to have good GCI.  

Measures of Manipulator Isotropy 

20. Isotropic Index 

Kim and Khosla [70] proposed a measure to quantify the isotropy of the manipulator ellipsoid. 

The Isotropic Index (Δ) is defined as the ratio of the geometric mean to the arithmetic mean of 
the Eigenvalues. 
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                 (39) 

where is   the arithmetic mean of the Eigenvalues and   is the order independent manipulability 

index. 

Δ is upper bound at one. A larger isotropic index means a more isotropic ellipsoid. When all the 
Eigenvalues are the same the Isotropic Index is one, and the manipulator ellipsoid is completely 

isotropic. The Isotropic Index is a local performance metric. 

21. Layout Conditioning Index 

In [13], authors defined another measure for manipulator conditioning based on the measure of 

isotropy discussed above (also see [70]) called the Layout Conditioning Index. The layout 

conditioning index was proposed to help optimize the manipulator design for a given task, by 

minimizing the index. For a given manipulator in a given layout ( ), the Layout Conditioning 

Index is defined as: 

         √       ̅     ̅           ̅     ̅      (40) 

where   ̅ is the normalized m x m Jacobian matrix given by: 

       ̅    [      ]   [                           ] (41) 

where    is layout length is a normalizing length defined as the rms value of all distances of the 

axes from the layout center.  For detailed definitions and determination of manipulator layout, 

layout center and layout length, please refer to [13]. The layout conditioning index is a 

transformation invariant metric that is independent of the choice of operation point on the 

manipulator end-effector. 

22. Inertia Matrix as a Measure of Manipulator Isotropy 

Asada [78] introduced the concept of Generalized Inertia Ellipsoid (GIE) to study the mass 

properties and dynamic behavior of the manipulator arm. The Generalized Inertia Matrix is 

defined as the Hessian matrix of its kinetic energy with respect to its generalized speeds. 

                 ̇      (42) 

where K is the kinetic energy of the manipulator 

            is the n dimensional vector generalized co-ordinates 

           ̇ is the n dimensional vector generalized speeds 

The manipulator is said to be dynamically isotropic when the general inertia matrix can take the 

form: 
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                     (43) 

where      is the     identity matrix 

GIE is a posture-dependent and therefore is not a global measure of the dynamic isotropy of the 

manipulator [53]. When the manipulator is in an isotropic posture the non-linear forces are 

minimal [79]. 

23. Global Isotropy Index 

The Global Isotropy Index (GII) proposed by Stocco [80], is defined as the ratio of the minimum 

to the maximum singular values for the entire workspace.  

                        (44) 

Unlike the condition number, in this case      and      reflect the minimum and maximum 

singular values for the entire workspace. GII is a measure of the manipulator's worst 

performance.  

24. Dynamic Conditioning Index 

Ma and Angeles ([53], [81]) proposed the concept of Dynamic Conditioning Index (DCI) as a 

measure of the degree of isotropy of the moment of inertia of the manipulator.   DCI is defined as 

"the Frobenius norm between the generalized inertia matrix and an isotropic matrix" [53]. The 

Dynamic Conditioning Index can be analytically represented as: 

                     (45) 

where w is a diagonal weighting matrix.  

d is the upper triangular vector of the difference matrix. d is a 
        dimensional vector of the 

form 

                                             (46) 

The matrix D is the difference between the generalized inertia matrix and it's nearest isotropic 

matrix.  

                      (47)   is the generalized inertia n x n matrix,      is the     identity matrix 

The DCI is a local (posture-dependent) dynamic performance measure that represents how far 

the manipulator is from a dynamically isotropic posture. To ensure the best dynamic 

performance, the manipulator's trajectory should be such that the associated generalized inertia 

matrix is close to isotropy. 

Manipulator Redundancy Indices 

25. Degree of Redundancy 
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Redundancy is the ability of a manipulator to reconfigure itself with the end-effector remaining 

in a fixed position [82]. The simplest measure of a manipulator's redundancy is the Degree of 

Redundancy (DoR). It is defined as the number of degrees of freedom (DoF) of the manipulator 

less the minimum dimensions required to perform the task [83].  The degree of redundancy (   is 

equal to the number of degrees of manipulator freedom     less the rank of the workspace    , 

given as [6]: 

                (48) 

For example the DoR for a three-DoF planar manipulator is 1.  However, DoR is not a good 

measure of a manipulator's redundancy because the manipulator might have redundancy in some 

postures and lose it redundancy in other postures. In other words, the redundancy is a posture-

dependent characteristic of the manipulator, and therefore to give a manipulator workspace a 

global value for the degree of redundancy is inaccurate as well as misleading. 

26. Redundancy Index 

In  [82], Chen et al. defined Redundancy Index (RI) as the normalized distance between the joint 

rate solution point and the hyper plane constraint boundaries specified in the joint-rate space. 

Redundancy Index is given as: 

                                  (49) 

where       are the distances between the joint rate solution and the two hyper planes constraint 

boundaries. For the calculation of distances       please see  [82]. 

27. Relative Manipulability Index 

Even though redundancy may seem wasteful, it is now an established fact that redundant 

manipulators have several advantages over their non-redundant counterparts. Redundant 

manipulators offer great potential for singularity avoidance, high dexterity, obstacle avoidance, 

torque minimization, and importantly, fault tolerance [84].  

In [84], authors Roberts and Maciejewski proposed a local measure for quantifying the fault 

tolerance in redundant manipulators. Using the Yoshikawa manipulability measure (μ) and the 
basis, the authors investigated the reduced performance of the manipulator under fault 

conditions.   

The Jacobian matrix for n-DoF manipulator can be expressed as: 

                                     (50) 

Under fault conditions, in which the     joint is locked, the reduced Jacobian determines the 

behavior of the manipulator. The reduced Jacobian is expressed as: 

                                    (51) 

Roberts and Maciejewski defined the     relative manipulability index to be the ratio of the 

manipulability of the reduced Jacobian to the manipulability of the original Jacobian.  
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             (   )                                (52) 

 

Figure 6: Contour of the minimum reduced manipulability index  (   ) a RRR planar manipulator. The 

bold lines show configurations that optimal value for the minimum relative manipulability index [84]. (© 

[1996] IEEE)
7
 

The relative manipulability index      determines if the manipulator with become singular in a 

given posture if the     joint fails. The relative manipulability index is a local and bounded index 

that assumes values between zero and unity. If     , it means that the manipulator is fault 

intolerant with respect to the     link and a failure of this link will make the manipulator singular.       , demonstrates fault tolerance, that is, the failure of the     will not result in any loss of 

manipulability. The authors suggested that manipulators can be optimized for fault tolerance by 

maximizing the minimum value of the relative manipulability index (   . Figure 6 depicts the 

optimal postures for a RRR planar manipulator that can tolerate a fault in the first link. 

28. Minor Measure 

Chang [85] introduced the minor measure based on the concept of aspect. Borrel and Liegeois 

[86] proposed that the manipulator workspace can be divided into volumes corresponding to 

different classes of configurations called aspects. The minor measure is given as: 

             |∏       |  ⁄
    (53) 

where    are minors of rank   of the Jacobian 

                  a combination of m taken out of n 

                                                 
7
 ( ©[1996] IEEE) Reproduced from [74] with the permission of Dr. Rodney G. Roberts. 
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The absolute product of all the minors represents the distance from a kinematic singularity. The 

number of minors of rank m determines the number of distinct combinations of m linearly 

independent column vectors [33].  

In case of a planar redundant manipulator there is an increase in the number of m rank minors at 

the rate of     as the degrees of freedom increases. This causes a computation burden in 

calculating the minor measure.  

To overcome this burden, Chung et al. [33] proposed the effective minor measure. They defined 

the effective minor as "second order minors composed of adjacent columns of the Jacobian 

matrix" [33]. The number of effective minors for a n-DoF manipulator is n-1. The effective 

minor measure is defined as: 

                       ∏                 (54) 

where         is the effective minor composed of     and       column vectors of the Jacobian 

Manipulator Task Based Performance Indices 

29. Task Dependent Performance Index 

Often manipulator tasks require exerting a determined amount of force along a specified 

direction, for example in pick and place tasks. In order to quantify the manipulator's ability to 

perform such tasks, Chiu [32] proposed the Task Dependent Performance Index. The Task 

Dependent Performance Index is defined as the weighted sum of the squares of the deviation 

between the actual and desired force transmission ratios. This can be interpreted as the difference 

between the velocity and task ellipsoid. 

         ∑   (              )        (55) 

where           are the unit task direction vectors 

                    are the force transmission ratios along     
             is a weighting factor that indicate the relative importance of the task along     
Since this performance measure is related to the task specification it is an extrinsic performance 

index. 

30. Robot Task-Conformance Index 

Cloutier et al [15] defined a new task conformance index based for four ellipsoids – the robot 

ellipsoid   , task ellipsoid   , largest contained ellipsoid   , and the smallest containing ellipsoid   , as seen in Figure 7. 
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Figure 7: Basics of conformance index: robot     , task     , largest contained     , and the smallest 

containing       ellipsoids [15].  (© [1994] Robotics & Autonomous Systems, ELSEVIER)
8
 

The task conformance index is defined as the ratio of volumes of the task ellipsoid and the 

smallest containing ellipsoid or the ratio of the largest contained ellipsoid and the robot ellipsoid. 

                         (56) 

In its simplest form the task-referenced conformance index in the diagonalized space       
 is 

given as: 

             √∏            (57) 

where    are the Eigenvalues for the smallest containing ellipsoid    

The task conformance index is a well bounded [0, 1] extrinsic index. The index is also well 

defined in and outside singularities and is independent of any dimensional dependencies due to a 

mix of translational and rotational units. This index can used as an optimization critierion to help 

the designer in modeling the manipulator and deciding its optimal placement with respect to the 

task space. 

 

Other Performance Indices 

31. Product of the Manipulability Index and Condition Number 

Both the manipulability and condition number, despite their limitation, are widely accepted and 

used local performance measures. To overcome their combined limitations, Kucuk et al. [9] 

                                                 
8
  ( ©[1994] Robotics & Autonomous Systems, ELSEVIER) Reproduced from [14]  
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proposed a new performance index (ρ) that is simply a product of the manipulability index (μ) 
and the condition number (κ) 

                  (58) 

The aim of this new index was to make it independent of the drawbacks of the determinant of the 

Jacobian. For a non-redundant manipulator the above equation can be formulated as: 

                        √           √    (59) 

where   is the numerator value of the product of the Jacobian matrix and its transpose with the 

inverse Jacobian matrix and its transpose.   being the square root of   is always positive. This performance index completely eliminates 

the dependency on the determinant of the Jacobian [9]. The authors extended this local parameter 

to the global scale by integrating it over the entire workspace. 

32. The Level and Distribution Index 

Puglisi et al [10] noted that sometimes GCI may overrate the performance of a manipulator by 

ignoring small regions of poor manipulator performance, which may sometimes be unacceptable 

in practice.  

In order to study the degree of uniformity in the manipulator's performance on a global scale, 

Moreno
9
 [4] proposed the ratio of level and distribution as a new performance metric to quantify 

the distribution of GCI over a manipulator's workspace, called the Level and Distribution Index 

(   ), it  is given as:  

                             (60) 

where η is the Global Conditioning Index,     is the standard deviation of the condition number 

over the workspace, and   is the ponderation fraction. 

33. Harmonic Mean Manipulability Index 

Hashimoto noted that even though a singular value approaches zero, there is no noticeable 

decrease in the manipulability if the other singular values increase in value [65]. Hashimoto 

proposed the Harmonic Mean Manipulability Index (HMMI) that is given as [87]: 

            √                   (61) 

where    is the trace.  

High values of HMMI are representative of high manipulator dexterity. In the neighborhood of 

any singular point, the HMMI becomes zero. HMMI is a posture-dependent local index. 

                                                 
9
 Clarified via correspondences with the author (Dr. Hector A. Moreno) 



Manipulator Performance Measures                       Page nr. 31 of 39 

 

31 

 

 

 

34. Stochastic Manipulability Index 

Hashimoto proposed another performance measure based on the stochastic model for the 

movement of the manipulator arm in a specific direction known as the Stochastic Manipulability 

index     . The Stochastic Manipulability Index is given as [87]: 

        {  
  (  ∬         ̇         ̇     )  ⁄                     (   )    (62) 

Where   is the degrees of freedom of the manipulator,        is the probability density function 

of the manipulator arm corresponding to motion in the direction range    , and   ̇ is the velocity 

vector. 

If the probability density function        is not known, assuming uniform probability in all 

directions of manipulator motion, the above formulation for the stochastic manipulability 

function can be reduced and expressed in terms of the Harmonic Mean Manipulability Index 

(HMMI) as: 

        {  
  (     [       ])  ⁄   √                             (   )    (63) 

where t  is the number of degrees of freedom of the task space 

35. Configuration Index 

For an n-DoF planar manipulator with large redundancy that can be decomposed into   sub-arms, 

the Jacobian matrix is given as: 

                                  (64) 

Chung et al [88] introduced a new dexterity measure called the configuration index. The 

configuration index ( ) is given as: 

       ∏               (65) 

where        {                                                             

The authors claim that the configuration index can help determine if a manipulator is suitable for 

a given task or not and help improve its manipulability [88]. An optimal manipulator 

performance can be attained by maximizing the configuration index [88]. 
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36. Structural Length Index 

The Structural Length Index is a global index that is defined as the ratio of the sum of the length 

of the links to the cube root of the reachable workspace volume. The Structural Length Index (Q) 

is represented as: 

         √  ⁄       (66) 

where   is the volume of the reachable workspace and   is the length sum of the manipulator 

given by: 

        ∑                   (67) 

where      is the link length 

                is the link offset 

37. Distortion Density 

In [66], authors Park and Brockett proposed the distortion density to quantify the amount of 

distortion that is produced due to the forward kinematic mapping          i.e. the mapping 

of the joint space   into the manipulator workspace  . 

The distortion index is given as: 

                             (68) 

where matrices   and   are Riemannian metrics on   and  , and   is the manipulator Jacobian 

matrix. 

The distortion index is invariant to base-coordinate changes but depends on changes in the end-

effector coordinates [13]. The distortion density being a function of the Jacobian matrix is a 

posture dependent local performance measure. A global integration of the distortion density over 

the entire manipulator workspace gives an indication of the degree of distortion or 'non-flat' 

nature of the manipulator workspace  [66]. 

38. Unified Approach for Defining Performance Measures 

Doel and Pai  ([5], [83], [89]) proposed a unified framework based on differential geometry for 

the defining local manipulator performance measures. They showed that both existing and new 

performance measures could be defined based on this unified framework. 

The performance metrics were defined in this new framework as the distance metric tensor 

between two manipulator configurations in the configuration space. This distance metric tensor, 

calculated using differential geometry, is interpreted as a performance measure.  

The distance tensor can be interpreted as a kinematic or dynamic performance measure 

depending on the choice of the metric of configuration space ([5],  [89]).  The authors showed 

that using the Euclidean metric in the configuration space leads to kinematic measures, while 

using an inertia matrix as the metric tensor yields dynamic measures. In [5] the authors defined 
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the existing performance measures based on this unified approach and defined two new metrics – 

non-linearity measure and redundancy measure [89]. 

39. Future Recommendations 

Advancements in designing, simulation, and manufacturing, have made it possible to produce 

highly dexterous and task optimized robotic manipulators. Performance parameters play an 

important part in both formalizing design specifications and task planning of these manipulators. 

With such advancements and manipulators being applied to a wide range of tasks, from simple 

material handling to highly critical and complex tasks like tele-robotic surgery, more and more 

performance measures are being proposed to study and quantify their behavior and performance.  

In summary, it can be safely concluded that any performance indices defined in the future should 

be devoid of few of the very commonly noticed limitations. From this exercise of surveying the 

literature and discussing the merits and demerits of performance indices, the following 

inferences can be drawn that can help researchers in formulating and defining new performance 

metrics: 

1. The performance metric should be independent of any dependencies of scale, dimensions, 

coordinates (frame) or order. 

2. Combining both position and orientation terms in a single scalar measure makes it 

physically inconsistent [7]. 

3. The metric should be well bounded i.e., it should have well defined upper and lower 

bounds so that the value significance of the metric is easily understood. 

4. The performance measure should have an analytical expression, preferably as a function 

of the joint angles, so that the value of the metric can easily be calculated in real-time 

applications. 

5. The performance measure should be well defined and computable in and outside 

singularities. 

 

40. Note 

There are many other performance indices that are not mentioned in this paper, for example the 

Average Service Coefficient (ASC) [90], Dexterity Effective Coefficient (DEC) [90], 

Acceleration Radius [91], etc. due to the their very limited use and in the interest of the length of 

this paper. Also, indices dealing with the performance of parallel manipulators have been 

omitted from the discussion, since in most cases they are modified adaptations of the serial 

version.  

41. Conclusion 

 

Although numerous performance metrics have been proposed till date, there is a lack of 

consensus in the robotics community on any of them due to their inherent limitations of scale, 

dimensions, order, and bounds. These dependencies limit the use of the indices in manipulator 

design and optimization applications. This work discusses, with proper bibliographic references, 

a wide range of performance metrics that have been defined to quantify the performance 

characteristics of robotic manipulators, with a focus on understanding their scope, characteristic 

and application.  This work has also discussed some of the modifications made to overcome a 
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few of the limitations. A unified approach for defining new performance parameters has been 

reviewed based on which both existing and new performance indices can be defined. Finally, 

based on the study, a few recommendations have been proposed to aid researchers in defining 

new performance indices. 
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experiences and insight gained from the volume of published work by other researchers who have 

worked with these parameters. From a literature survey point of view, the authors have discussed 

some of the important performance metrics with an emphasis on highlighting their pros and cons, 

leaving the choice of the metric to the reader. In some cases there have been conflicting opinions 

about the physical interpretation of a given metric, in such cases both sides of the interpretation 

have been properly cited. 

It can be seen from the literature survey that many researchers have made minor modifications to 

existing metrics to overcome some of their limitations and make them more adaptable to their 

application; and in most cases, authors have provided their comments regarding the usefulness of 

the metric, except in few cases where there is not much published literature about the parameter to 

make an informed comment or suggestion. 

Comment  2.2: To revise the paper, the authors are advised to re-organize the paper by a clear 

logic frame since in the present form the indices are simply listed from 3 to 37. 

Response: The paper has been reorganized to reflect a clear logical structure. Also the "Section 1.4 – Paper Organization" explains the new paper organization. 

Comment 2.3: The figures are not clear. 
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Response: Since this a literature survey paper, all of the figures are from already published work in 

form of .PDF files and we have done our best to use as high quality images and figures. We even 

emailed the authors to see if they could send us high resolution files of the images but most did not 

seem to have them. 

Comment 2.4: Label the equations for further reference. 

Response:  All the equations have been labeled. 

Comment 2.5:  In section 4, the first paragraph, the descriptions for Fig. 1 and what shows in Fig.1 

are inconsistent. 

Response: This figure labeling error has been corrected. 

Comment 2.6: .Definitions or descriptions of some symbols are missing or inconsistent, e.g., in 

section 6.2.5, m_i and µ_i, and in the last paragraph of section 11, J' and J"? 

Response: All symbols have been properly described. The equations in Section 6.2.5 has been 

corrected and symbols correctly described.  

Comment 2.7: The symbols in the paper should be consistent. One symbol for one physical 

quantity. There are many symbols with different fonts but representing the same physical quantity, 

e.g., page 21, tr in the equation and tr in the last line. It should be consistent to use tr in elsewhere 

to represent trace of matrix, in page 23, the subscript of identity matrix I, nxn is used for n times n. 

The authors are suggested to carefully check those mistakes. 

Response: The paper has been revised such that one symbol is used for a single physical quantity. 

The used of "tr" (trace of a matrix) is made consistent throughout the paper. The dimensions of the 

Identity matrix (I) have also been corrected. 

Comment 2.8: The authors are suggested to ignore some measures with minor importance, e.g., 

28-30, the joint related indices. 

Response: Even though the 4 indices seen very simple and minor, they are widely used in control 

and trajectory planning applications due to their simplicity and ease of calculation.  

Reviewer #3 Comments:  

Comment 3.1: What I did not like is that the authors restrict themselves to descriptions of the 

existing indices, while avoiding to pass any judgment on their usefulness. In my mind, a survey 

should incorporate some critical thoughts by the surveyor on the surveyed area. Such thoughts only 

help the reader understanding what is important and what is not within this long enumeration of 

performance indices. Here, in most instances, we are only presented with the work of previous 

researchers, not with the opinion of the authors. To me, this answers more to the definition of a 

glossary than a survey. 

 

Response: In most cases authors have provided their opinion regarding the usefulness of the 

metrics and its limitations. However, in some cases there not much literature available other than 

the very paper in which the parameters in which the metrics were first proposed. In such cases it is 

difficult to provide an accurate opinion in the absence of independent verification by other 

researchers in this literature survey. 



 

Comment 3.2: I do not understand why the condition-number-based indices should not be in the 

category of the Jacobian-based indices. The condition number is that of the Jacobian matrix, no?  

 

Response: The condition number is indeed a Jacobian based metric. The paper has been re-

organized. 

 

Comment 3.3:  At the end of Section 2.2, it is written that the dexterity index and the service angle 

are not kinematic indices. Why is that? These indices are computed from the possible motions of 

the manipulator, and therefore, are they not kinematic indices?  

 

Response: The statement has been removed from Section 2.2 

 

Comment 3.4:  Subsections 19 to 23 are included in a section called \Measures of Manipulator 

Isotropy", which is distinct from the condition number. What is the condition number if not a 

measure of the manipulator isotropy? Why are they not in the same category?  

 

Response: Even though the condition number is a measure of manipulator isotropy, it is also a 

measure of the manipulator's dexterity hence it was previously listed along with the manipulability 

index and minimum singular value. However, the paper has been reorganized with a clear logic 

frame. 

 

Comment 3.5:  In a review like this containing a large number of indices, their classification is of 

primary importance. Right now, I cannot make any sense of the structure of the body of the paper. 

 

Response: A broad classification of manipulator performance indices is present in section 1.2. The 

paper however is not organized according to this classification as each metric will belong to the 

three categories. For example, the manipulability index is a local, kinematic, and intrinsic 

performance metric.  

 

This revised manuscript follows a mathematical derivation approach to discuss the few most 

widely used parameters – manipulability index, minimum singular value, and condition number. 

The rest of the parameters are grouped according to the kinematic property they quantify. 

 

Comment 3.6:  In the second paragraph of section 1.1, the authors cite previous reviews of the 

performance indices available for robotic manipulators. I believe they should cite this other review 

[1], which is very important, in my opinion. 

 

Response: The suggested paper has been incorporated in the list of previous surveys. 

 

Comment 3.7:  In section 3.2, it is written that \...the manipulator arm can be completely rotated..." 

I believe it is not the whole manipulator arm, but rather the end effector of the manipulator that can 

be completely rotated. 

 

Response: The statement has been corrected and now reads, "For any point in the dexterous 

workspace the manipulator's end-effector can be completely rotated about any (every) axis through 

that point" 

 



Comment 3.8:  In the first and second paragraphs of section 6, I do not see how the definition of 

manipulability, which is rather vague, is connected to Yoshikawa's index. If the connection is not 

clear, then why try to make one? 

 

Response: The broad definitions of manipulability have been removed from the paragraph. 

 

Comment 3.9:  In the third paragraph of section 6, it is written that "For a redundant manipulator, 

the Jacobian does not have the full rank...". Do the authors mean that the Jacobian is not square? 

This does not mean that it does not have its full rank, which is a completely different thing. 

 

Response: The statement has been corrected and now reads as follows: "For a redundant 

manipulator the manipulability index is defined as the square root of the determinant of the 

product of the Jacobian matrix and its transpose." 

 

Comment 3.10:  How come none of the equations are numbered? They will have to be prior to 

acceptance of the paper, unless it is not a requirement of this journal. 

 

Response: All equations have been numbered. 

 

Comment 3.11:  The text following the definition of the manipulability index seems to be 

incomplete. 

 

Response: The broad definitions of manipulability have been deleted. 

 

Comment 3.12:  In the paragraph following Figure 3, why do the authors write that the 

determinant vanishes in the proximity of a singularity"? By definition, the determinant vanishes 

exactly where a singularity occurs, not in its proximity, which is a completely different concept. 

 

Response: The word 'vanishes' has been replaced with 'diminishes'. The corrected statement now 

reads as: "even though the determinant diminishes in value in the proximity of a singularity, it 

cannot be considered as a good measure for the degree of ill-conditioning of the manipulator or a 

measure of distance from a singularity."  

Comment 3.13:  In the second paragraph of page 11, the authors write \It is also independent of 

the location of the operation point ([12], [40]), where the operation point is defined as the point on 

the end-effector up which the Jacobian is based [12]." Is this a desirable characteristic of the 

performance index or not? Why not give your opinion? In clear, I believe that this characteristic 

implies that a large end-effector is as easy to manipulate than a small one. Taking the human arm as 

an example, it seems much more difficult to write one's name with a one-meter stick than with a 

regular pencil. Therefore, I believe that the manipulability index fails to capture an important 

characteristic of the theoretical concept of manipulability. 

 

Response: The suggested change has been incorporated in the paper, the paragraph now reads as 

follows. "In [49] the authors have showed that the manipulability index is base invariant, that is, it 

is independent of the manipulator's first DoF and depends solely on  the relative positioning of the 

links and geometry of the manipulator structure. It is also independent of the location of the 

operation point ([13], [49]), where the operation point is defined as the point on the end-effector 

up which the Jacobian is based [13]. This is another drawback of the manipubility index as it fails to 

distinguish between a long end-effector and a short one. The manipulability index is also 

independent of the task-space coordinates [49]" 



 

Comment 3.14:  I have difficulty understanding why unit dependency (6.1.1) is a limitation of the 

manipulability. In my mind, it is only normal that an index should change value when the 

measurement units are changed. I would see a problem if the value of the index did not change 

when we change the units of its input data. Would the authors prefer to have a dimensionless 

performance index? 

 

Response: The value of the manipulability index cannot be converted from one unit into another, it 

has to be recalculated with the converted measurement units. 

 

Comment 3.15:  In section 6.2.1, the concept of characteristic length is presented as if it were 

related to the manipulability index, which I believe is not the case. If I remember correctly, this 

concept was defined for the computation of the condition number, not the manipulability. 

 

Response: The paragraph has been corrected to show that the concept of characteristic length was 

"applied" dimensionally homogenize the Jacobian. 

 

Comment 3.16:  At the end of section 9, it is mentioned that Yoshikawa also proposed a geometric 

mean of the singular values as an index. Isn't that the same index as the one presented in section 

6.2.2? It is imperative that the authors avoid repeating the same indices; there are already enough 

different indices out there! 

 

Response: The statement was made in the context of the discussion on singular values Section 9 

(now Section 13). The statement only makes a point on the importance of the singular values, the 

parameter though has not been discussed again. The statement has been changed and reference has 

been provided. It now reads as:  

 

"Yoshikawa also proposed geometric mean (see section 10.2.2) and harmonic mean of singular 

values as additional measures for manipulator dexterity ([1], [2])." 

Comment 3.17:  On p. 17, the condition number computed from the Frobenius norm could just be 

given on a single line as: 

Besides, I personally have the opinion that it does not make sense to compute the condition number 

from the Frobenius norm. The condition number is de_ned based on the assumption that the matrix 

norm is a p-norm, i.e., that it bounds the ratio of the norms of its output and input vectors. The 

Frobenius norm is not a p-norm and does not bound the ratio of the output and input vectors. 

Therefore, in my mind, it is not applicable to the condition number. 

 

Response: The equation has been shortened as suggested. In [3] page 204, authors have 

recommended using Forbenius norm for the calculation of the condition number. 

 

3. J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and 

Algorithms. 2 ed2003: Springer. 

 

Comment 3.18:  At the end of section 11, when the authors discuss the problem of scaling, I believe 

it would be worth citing this recent paper [2], which is related to that topic. 

 

Response: The recommended paper has been incorporated into the section 11 (now section 15). 

 



Comment 3.19:  At the end of section 14, the authors give an extra formula for the computation of η because of \the difficulties in computing the integral". What is difficult in computing an integral? 

Of course, the process might be long because you have to evaluate the integrand several times, but 

this is the same problem with the extra formula given by the authors. Really, I don't see what 

additional information the sum provides. To me, it is just a rather naive way of computing the 

integral, as several well established methods are readily-available to perform numerical 

integration. 

 

Response: The section provides the alternative ways used by different researcher for computing η. 
The formulation though very rudimentary is useful when calculating η for a very limited region of 
the workspace, for example a set of task points or a trajectory. 

 



Reviewer #1 Comments: 

Two reviewers have criticized the lack of critical judgment from their part on the presented 

performance indices, however. Despite these criticisms, Patel and Sobh have decided to stick to a 

"neutral" approach to the topic. As a result, their text still looks like a "robotic" compilation of all 

the available indices. Among these many performance indices, a large part has not been cited by 

anyone else, which casts doubt on their pertinence. 

 

This literature survey helps the researcher in making an informed decision regarding the choice of 

the metric to be used based on the experiences and insight gained from the volume of published 

work by other researchers who have worked with these parameters. From a literature survey point 

of view, the authors have discussed some of the important performance metrics with an emphasis 

on highlighting their pros and cons, leaving the choice of the metric to the reader.  

 

It can be seen from the literature survey that many researchers have made minor modifications to 

existing metrics to overcome some of their limitations and make them more adaptable to their 

application; and in most cases, authors have provided their critical comments and suggestions 

regarding the usefulness of the metric. Except in few cases where there is not much published 

literature or citations about the parameter, as rightly pointed out by the reviewer, to make an 

informed comment or suggestion. But, it was important to include such parameters in the paper in 

order to cover the depth and breadth of this research area in this literature survey. 

 

Reviewer #2 Comments: 

Since there is no separate review response, it is time-consuming to find the modifications in the 

revision manuscript. The modification is minor. Also the manuscript presents a meaningful work 

for robotics research and it can more or less be served as a bibliography for performance indices of 

robotic manipulators, more improvements are needed. 

The review response to the initial review could not be submitted because we were as to re-submit 

the manuscript as a 'new' paper submission and not as a modified manuscript.  

Comment 1: The figures are not clear. Although the figures are directly copied from literatures, 

their quality should be improved for readability. The figures in the present form should not be 

published. Otherwise, readability and quality of the journal will be degraded. 

Response: Since this a literature survey paper, all of the figures used are from already published 

work in form of .PDF files and we have done our best to use as high quality images and figures. We 

even emailed the authors to see if they could send us high resolution files of the images but most 

did not seem to have an original softcopy any longer. Few authors did reply with high resolution 

images that we requested and we have updated those figures in this revised manuscript. We have 

improved the quality of the rest of the images that we were unable to get from the respective 

authors. 

Comment 2: Although lots of indices are listed in the manuscript, some indices are just presented 

without any explanation or comment, such as the "20. Layout Conditioning Index", which makes 
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readers still unknown about what the index, is used for and how it measures the manipulators' 

performance. As a review, the author should give his own comments or understandings on each 

index, and give a brief explanation of it, at least the author should tell readers the value of each 

index stand for, such as the larger the better. This can make sure that the readers have a 

preliminary understanding of each index. 

Response: The dicussion has been elaborated to include it's use and applications. 

Comment 3: In section 10, the third paragraph, for the discussion whether or not the 

manipulability is a measure of the degree of ill-conditioning of the workspace, at least the author 

should give his own opinion. And there is a same problem in the second paragraph of page 18. 

Response: The authors clearly state in the paper that the manipulability index is not a measure for 

the degree of ill-conditioning of the manipulator. But, since this is a literature review paper it was 

important to highlight conflicting interpretations of the metric my means of proper citations. 

The second paragraph of page 18 has been changed 

Comment 4: In section 17.Kinematic Conditioning Index, the author defines the KCI= 1/(κ_min)×100∈(0,100] 

But in the last paragraph of section 17, the authors say "The kinematic conditioning index is upper-

bound at 100%", which is scale inconsistent with the definition. The reviewer guesses that KCI 

should be defined as: KCI= 1/(κ_min)×100%∈(0,100%] 

Response: The equation has been corrected as suggested. 


