
Proceedings of The Eleventh International

Workshop on Diff. Geom. 11(2007) 25-31

Mannheim Partner Curves in 3-Space

Fan Wang
Department of Mathematics, Nanjing Agricultural University,
Nanjing 210095, P. R., China
e-mail : wangfan84@eyou.com

Huili Liu
Department of Mathematics, Northeastern University,
Shenyang 110004, P. R., China
e-mail : liuhl@mail.neu.edu.cn

(2000 Mathematics Subject Classification : 53A04, 53B30. )

1 Introduction.

In the study of the fundamental theory and the characterizations of space curves,
the corresponding relations between the curves are the very interesting and impor-
tant problem. The well-known Bertrand curve is characterized as a kind of such
corresponding relation between the two curves. For the Bertrand curve Γ, it shares
the normal lines with another curve Γ1, called Bertrand mate or Bertrand part-
ner curve of Γ. In this paper, we are concerned with another kind of associated
curves, called Mannheim curve and Mannheim mate (partner curve) in history of
differential geometry. In this work, we call them simply as Mannheim pair.

Definition 1. Let E3 be the 3-dimensional Euclidean space with the standard
inner product 〈 , 〉. If there exists a corresponding relationship between the space
curves Γ and Γ1 such that, at the corresponding points of the curves, the princi-
pal normal lines of Γ coincides with the binormal lines of Γ1, then Γ is called a
Mannheim curve, and Γ1 a Mannheim partner curve of Γ. The pair {Γ,Γ1} is said
to be a Mannheim pair.

From the elementary differential geometry we know clearly about the charac-
terizations of Bertrand pair. But there are rather few works on Mannheim pair.
It is just known that a space curve in E3 is a Mannheim curve if and only if its
curvature κ and torsion τ satisfy the formula κ = λ(κ2 + τ2), where λ is a nonzero
constant.

In this paper, we study the Mannheim partner curves in three dimensional
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space.
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Euclidean space E3 and three dimensional Minkowski space E3
1. We will give the

necessary and sufficient conditions for the Mannheim partner curves in Euclidean
space E3 and Minkowski space E3

1, respectively. In [CH], Prof. B. Y. Chen charac-
terizes the curve which satisfies τ

κ = as + b, a 6= 0. Here, our examples will give the
curve which satisfies τ

κ = sinh s.

2 Mannheim partner curves in E3.

Let Γ : x(s) be a Mannheim curve in E3 parameterized by its arc length s and
Γ1 : x1(s1) the Mannheim partner curve of Γ with the arc length parameter s1.
Denote by {α(s), β(s), γ(s)} the Frenet frame field along Γ : x(s), that is, α(s) is
the tangent vector field, β(s) the normal vector field and γ(s) the binormal vector
field of the curve Γ, respectively. The famous Frenet formulas are given by

α̇(s) = κ(s)β(s)
β̇(s) = −κ(s)α(s) + τ(s)γ(s)
γ̇(s) = −τ(s)β(s).

Here and in the following, we use “dot” to denote the derivative with respect to the
arc length parameter of a curve.

Theorem 1. Let Γ : x(s) be a Mannheim curve in E3 with the arc length
parameter s. Then Γ1 : x1(s1) is the Mannheim partner curve of Γ if and only if
the curvature κ1 and the torsion τ1 of Γ1 satisfy the following equation

τ̇1 =
dτ1

ds1
=

κ1

λ
(1 + λ2τ2

1 )

for some nonzero constant λ.

Proof. Suppose that Γ : x(s) is a Mannheim curve. Then by the definition we
can assume that

(2.1) x(s1) = x1(s1) + λ(s1)γ1(s1)

for some function λ(s1). By taking the derivative of (2.1) with respect to s1

and applying the Frenet formulas, we have

(2.2) α
ds

ds1
= α1 + λ̇γ1 − λτ1β1.

Since γ1 is coincident with β in direction, we get

λ̇(s1) = 0.

This means that λ is a nonzero constant. Thus we have

(2.3) α
ds

ds1
= α1 − λτ1β1.
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On the other hand, we have

(2.4) α = α1 cos θ + β1 sin θ,

where θ is the angle between α and α1 at the corresponding points of Γ and Γ1. By
taking the derivative of this equation with respect to s1, we obtain

κβ
ds

ds1
= −(κ1 + θ̇) sin θα1 + (κ1 + θ̇) cos θβ1 + τ1 sin θγ1.

From this equation and the fact that the direction of β is coincident with γ1, we get{
(κ1 + θ̇) sin θ = 0
(κ1 + θ̇) cos θ = 0.

Therefore we have

(2.5) θ̇ = −κ1.

From (2.3), (2.4) and notice that α1 is orthogonal to β1, we find that

ds

ds1
=

1
cos θ

= − λτ1

sin θ
.

Then we have
λτ1 = − tan θ.

By taking the derivative of this equation and applying (2.5), we get

λτ̇1 = κ1(1 + λ2τ2
1 ),

that is
τ̇1 =

κ1

λ
(1 + λ2τ2

1 ).

Conversely, if the curvature κ1 and torsion τ1 of the curve Γ1 satisfy

τ̇1 =
κ1

λ
(1 + λ2τ2

1 )

for some nonzero constant λ, then define a curve Γ by

(2.6) x(s1) = x1(s1) + λγ1(s1)

and we will prove that Γ is a Mannheim curve and Γ1 is the partner curve of Γ.
By taking the derivative of (2.6) with respect to s1 twice, we get

(2.7) α
ds

ds1
= α1 − λτ1β1,

(2.8) κβ

(
ds

ds1

)2

+ α
d2s

ds2
1

= λκ1τ1α1 + (κ1 − λτ̇1)β1 − λτ2
1 γ1,
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respectively. Taking the cross product of (2.7) with (2.8) and noticing that

κ1 − λτ̇1 + λ2κ1τ
2
1 = 0,

we have

(2.9) κγ

(
ds

ds1

)3

= λ2τ3
1 α1 + λτ2

1 β1.

By taking the cross product of (2.9) with (2.7), we obtain also

κβ

(
ds

ds1

)4

= −λτ2
1 (1 + λ2τ2

1 )γ1.

This means that the principal normal direction β of Γ : x(s) coincides with the
binormal direction γ1 of Γ1 : x1(s1). Hence Γ : x(s) is a Mannheim curve and
Γ1 : x1(s1) is its Mannheim partner curve. 2

Remark 1. By a simple parameter transformation, the condition

τ̇1 =
κ1

λ
(1 + λ2τ2

1 )

can be written as
τ1 =

1
λ

tan(
∫

κ1ds1 + c0).

Therefore, for each Mannheim curve, there is an unique Mannheim partner curve.

We have the following Examples (Helices as Mannheim partner curves).

Proposition 1. Let Γ : x(s) be a Mannheim curve in E3 with the arc length
parameter s and Γ1 : x1(s1) the Mannheim partner curve of Γ with the arc length
parameter s1. If Γ : x(s) is a generalized helix, then Γ1 : x1(s1) is a straight line.

Proof. Let α, β, γ be the tangent, principal normal and binormal vector field of
the curve Γ : x(s), respectively. From the properties of generalized helices and the
definition of Mannheim curves, we have

γ1 · p = β · p = 0

for some constant vector p. Then it is easy to obtain that τ1 = κ1 ≡ 0. 2

Proposition 2. If a generalized helix is the Mannheim partner curve of some
curve Γ : x(s) in E3, then the ratio of torsion and curvature of the curve Γ : x(s) is

τ

κ
=

c2

2
ec1s − 1

2c2
e−c1s
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for some nonzero constant c1 and c2 and s is the arc length parameter of Γ. In
particular, if we put c1 = c2 = 1, we have

τ

κ
=

es − e−s

2
= sinh s.

Proof. Let α, β, γ be the tangent, principal normal and binormal vector field of
the curve Γ : x(s), respectively. From the properties of generalized helices and the
definition of Mannheim curves, we have

β · p = cos θ0

for some constant vector p and some constant angle θ0. From Proposition 1 we
know that cos q0 6= 0 and

τ

κ
6= constant. By taking the derivative of this equation

with respect to s twice, we get

−κα · p + τγ · p = 0,

−κ̇α · p + τ̇ γ · p = (κ2 + τ2) cos θ0.

By a direct calculation and using κ = λ(κ2 + τ2), we obtain

α · p =
τ

λκ
d(τ/κ)

ds

cos θ0,

γ · p =
1

λ
d(τ/κ)

ds

cos θ0.

Taking the derivative, we have

κ =
1
λ

1 −
τ

d2(τ/κ)
ds2

κ

(
d(τ/κ)

ds

)2

 ,

τ =

d2(τ/κ)
ds2

λ

(
d(τ/κ)

ds

)2 ,

respectively. From these equations, we find that

τ

κ
=

d2(τ/κ)
ds2(

d(τ/κ)
ds

)2

− τ

κ

d2(τ/κ)
ds2

.
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Let τ/κ = y(s), then we get the following differential equation

(1 + y2)
d2y

ds2
− y

(
dy

ds

)2

= 0.

Solving this equation, we obtain that

y(s) = c0

or
y(s) =

c2

2
ec1s − 1

2c2
e−c1s

for some nonzero constants c0, c1 and c2. Thus, the proposition is proved. 2

Remark 2. It is well known that a twisted curve in E3 is a generalized helix
if and only if the ratio τ/κ is a nonzero constant (see [CA]). It is also known that
a twisted curve is congruent to a rectifying curve if and only if the ratio τ/κ is a
nonconstant linear function of the arc length parameter (see [CH]). The proposition
2 provides some characterizations of the curves whose “slope” τ/κ is hyperbolic sine
function in arc length s, i.e., τ/κ = sinh s.

3 Mannheim partner curves in E3
1.

Let E3
1 be the 3-dimensional Minkowski space with the indefinite inner product

〈·, ·〉 = dx2
1 + dx2

2 − dx2
3

in terms of natural coordinates (x1, x2, x3). A vector α 6= 0 in E3
1 is called space-

like, timelike or lightlike, if 〈α, α〉 > 0, 〈α, α〉 < 0 or 〈α, α〉 = 0, respectively. In
this section, we extend the main result of Mannheim partner curves in E3 to the
Minkowski 3-space E3

1. By a similar calculation, we obtain the following theorem.

Theorem 2. Let Γ : x(s) be a curve in E3
1 and α, β, γ be tangent, principal

normal and binormal vector field of Γ : x(s), respectively. Then

(i) in case that α and β are spacelike vectors, γ is timelike vector, we have the
following Frenet formulas

α̇ = κβ; β̇ = −κα + τγ; γ̇ = τβ.

The necessary and sufficient condition for Mannheim partner curves is

τ̇ = −κ

λ
(1 + λ2τ2).

(ii) in case that α and γ are spacelike vectors, β is timelike vector, the corresponding
Frenet formulas are

α̇ = κβ; β̇ = κα + τγ; γ̇ = τβ.
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The necessary and sufficient condition for Mannheim partner curves is

τ̇ =
κ

λ
(λ2τ2 − 1).

(iii) in case that α is timelike vector, β and γ are spacelike vectors, the correspond-
ing Frenet formulas are

α̇ = κβ; β̇ = κα + τγ; γ̇ = −τβ.

The necessary and sufficient condition for Mannheim partner curves is

τ̇ =
κ

λ
(1 − λ2τ2).

Where λ is a nonzero constant.
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