
To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

MANTIS OS: An Embedded Multithreaded Operating
System for Wireless Micro Sensor Platforms

Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian Shucker,
Charles Gruenwald, Adam Torgerson, Richard Han

University of Colorado at Boulder
Computer Science Department

Boulder, CO, 80309

rhan@cs.colorado.edu

ABSTRACT
TheMANTIS MultimodAl system for NeTworks of In-situ wireless
Sensors provides a new multithreaded cross-platform embedded
operating system for wireless sensor networks. As sensor networks
accommodate increasingly complex tasks such as compression, ag-
gregation and signal processing, preemptive multithreading in the
MANTIS sensor OS (MOS) enables micro sensor nodes to natively
interleave complex tasks with time-sensitive tasks, thereby mitigat-
ing the bounded buffer producer-consumer problem. To achieve
memory efficiency, MOS is implemented in a lightweight RAM foot-
print that fits in less than 500 bytes of memory, including kernel,
scheduler, and network stack. To achieve energy efficiency, the
MOS power-efficient scheduler sleeps the microcontroller after all
active threads have called the MOS sleep() function, reducing cur-
rent consumption to theµA range. A key MOS design feature is flex-
ibility in the form of cross-platform support and testing across PCs,
PDAs, and different micro sensor platforms. Another key MOS de-
sign feature is support for remote management of in-situ sensors
via dynamic reprogramming and remote login.

Keywords: embedded operating system, sensor networks, mul-
tithreaded, lightweight, low power, cross-platform, dynamic repro-
gramming

1. INTRODUCTION
The popularity of wireless sensor networks (WSNs) as an im-

portant new research domain has grown dramatically [1] [2]. WSN
systems typically consist of resource-constrained micro sensor nodes
that self-organize into a multi-hop wireless network. This sensor
network monitors the environment, collects sensed data and re-
lays the data back to a collection point typically residing on the
Internet. WSNs integrate hardware platforms, embedded operat-
ing systems, networked communication, and backend data services
together into a complete system capable of providing novel dis-
tributed in-situ sensing of environmental phenomena. Standard
micro sensor systems include Berkeley’s Mote/TinyOS architec-
ture [3], MetaCricket [30], MIT’s location-aware cricket [31], CU-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Boulder’s MANTIS system [5], Europe’s Smart-Its [33], Eyes [34],
and BTNodes [32] projects.

This paper investigates the practicality of implementing the pop-
ular approach of preemptively time-sliced multithreading on to-
day’s micro sensor nodes, and explores how such a system could be
adapted to the characteristics of WSNs. A thread-driven approach
is attractive in sensor networks for many of the same reasons that it
has been adopted for PDAs, laptops, and servers. In a thread-driven
system, an application programmer need not be concerned about in-
definitely blocking or being indefinitely blocked by other tasks dur-
ing execution, except for shared resources, because the scheduler
will preemptively time-slice between threads, allowing some tasks
to continue execution even though others may be blocked. This au-
tomated time-slicing considerably simplifies programming for an
application developer. This paper demonstrates that the added OS
complexity needed to support preemptive time-slicing is easily ac-
commodated in today’s MICA2 motes, with a kernel memory cost
of the less than 500 bytes, including the scheduler and network
stack. Moreover, the paper shows that multithreading and energy
efficiency are not mutually exclusive, i.e. that a multithreaded sys-
tem can be designed to sleep efficiently when application threads
indicate that there is no useful work to be done.

The finely interleaved concurrency of multithreading is useful
in sensor systems to prevent one long-lived task from blocking
execution of a second time-sensitive task. Sensor networks are
being tasked to perfom increasingly complex duties such as sig-
nal processing and collaborative target tracking, time synchroniza-
tion [43] [45], localization [31], compression/aggregation [37], and
encryption. As we will show later in Section 3, such tasks can be
long-lived enough in a single-threaded run-to-completion system
to prevent time-sensitive processing of other tasks, e.g. process-
ing of radio packets by different layers of the network stack. If the
network stack is blocked from fully processing arriving packets un-
til the long-lived task runs to completion, then the network stack’s
bounded buffers could quickly overflow, especially in sensor nodes
with limited RAM, resulting in lost packets. Multithreading con-
veniently mitigates this classic bounded buffer producer-consumer
problem by interleaving processing of packets by the network stack
thread with execution of multiple long-lived complex tasks, so that
packets are emptied from the buffer before overflow is reached. Our
discussion focuses on a loose interpretation of the bounded buffer
problem in terms of its resource constraints rather than its more
traditional interpretation in the field of synchronization.

The challenges of designing a multithreaded embedded operat-
ing system for WSNs are motivated by the severe resource con-
straints imposed by micro sensor nodes, e.g. their limited run-

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

time memory as well as their limited energy lifetimes. The run-
time RAM available on micro sensor nodes is exceedingly scarce,
e.g. 4 KB for today’s MICA2 motes [9]. While sensor nodes
may diversify towards nano nodes and macro nodes with lesser
and greater capabilities, this current generation of micro sensor
nodes is the standard starting reference that is assumed in this pa-
per. Because of these severe memory constraints, traditional multi-
threaded embedded operating systems such as QNX and VXWorks
occupy too large of a memory footprint to execute on micro sen-
sor nodes [3], with embedded Linux facing the same limitations.
Two embedded real-time embedded operating systems, AVRX [13]
and µCOS [14], have been written for the AVR microcontroller
found on the MICA2 motes. Both achieve preemptive multitasking
in a lightweight RAM footprint of less than 4 KB.µCOS is a li-
censed commercial OS, while AVRX is open source. The MANTIS
open source OS (MOS) differs from these two embedded RTOSs
by being adapted to the additional requirements imposed by sen-
sor networks, e.g. the development of a power-efficient scheduler
to reduce energy consumption and the implementation of advanced
sensor-specific features like remote dynamic reprogramming of mi-
cro sensor nodes.

In addition to memory efficiency, micro sensor nodes also re-
quire energy efficiency in the design of the sensor OS. Micro sen-
sor nodes are often deployed in-situ apart from the electrical power
grid, and therefore rely on battery power or energy harvesting, e.g.
solar cells. Given a set of new AA batteries, the lifetime of such
nodes can be extended to a few months depending upon the extent
to which the duty cycle is lowered [26]. Key new challenges in
the design of a thread-driven sensor OS therefore include achiev-
ing both a lightweight memory footprint as well as energy-efficient
operation.

This paper describes MANTIS OS, a lightweight and energy-
efficient multithreaded operating system for MultimodAl NeTworks
of In-situ micro Sensor nodes. At present, the MOS kernel is able to
achieve multithreaded preemptively scheduled execution with stan-
dard I/O synchronization and a network protocol stack, all for less
than 500 bytes of RAM, not including individual thread stack sizes.
In addition, MANTIS OS is designed to provide cross-platform
support across PC’s, PDAs, as well as diverse micro sensor hard-
ware platforms. For example, MANTIS OS currently supports both
the MICA2 motes as well as the MANTIS nymph. MANTIS OS
also seeks to provide tools to ease deployment and management of
in-situ sensor networks.

In order to achieve cross-platform support, MOS was designed
to leverage the properties of a portable standard programming lan-
guage, in this case the C programming language. MOS enables the
same application code to execute on a variety of platforms, ranging
from PC’s to PDA’s to different micro sensor platforms. As detailed
in our earlier work [5], this enables phased deployment of applica-
tions from an Internet-based environment to a physical deployment,
i.e. application code can be tested first on a virtual sensor node
executing on PC’s and/or PDA’s provided that the same API was
preserved on in-situ micro sensor nodes. For example, the MOS
user-level network stack permits a network layer routing algorithm
to be tested first on virtual sensor nodes on a Linux PC before be-
ing deployed. The emStar system also advocates cross-platform
support though the approach is focused on TinyOS, as explained
later [6].

As added benefits to this cross-platform approach, MOS achieves
code reuse and a low barrier to entry in terms of programming for
sensor networks. For example, a standard stop-and-wait reliable
protocol as well as a standard RC5 security algorithm [10] are both
available as C code, and have been ported into MOS. Also, the stan-

dard programming language and standard threading model ease the
barrier to entry to programming for sensor networks. Since the ker-
nel is also written in C, then kernel development can leverage the
same skills used for application development.

MOS is also designed to provide advanced remote management
capabilities for in-situ sensor networks. Towards this end, the goals
of MOS are to support useful yet sophisticated features, including
dynamic reprogramming of sensor nodes via wireless, remote de-
bugging of sensor nodes, and multimodal prototyping of virtual and
deployed sensor nodes.

In the remainder of the paper, Section 2 describes the MOS ar-
chitecture, including scheduler and network stack, and how MOS
achieves a lightweight implementation. Section 3 provides a dis-
cussion of different sensor OS models and programming paradigms.
Section 4 describes how the multithreaded MOS achieves power
efficiency. Section 5 explains the goals of MOS with respect to in-
situ features. Section 6 summarizes the MANTIS hardware nymph.
Section 7 concludes with future work.

MANTIS OS Architecture

Hardware

MANTIS System API

Kernel/Scheduler

N
et

w
or

k
St

ac
k

MANTIS OS

COMM

T3

C
om

m
an

d
Se

rv
er

T4 T5
User-level

threads

DEV

Figure 1: MANTIS OS architecture compresses a classic mul-
tithreaded layered operating system design into< 500 bytes of
RAM.

2. LIGHTWEIGHT MANTIS OPERATING
SYSTEM DESIGN

In this section, we describe the architecture of the MANTIS op-
erating system, which adheres to a classical layered multithreaded
design, as shown in Figure 1. Application threads are separated
by the API from the underlying OS. By preserving the API across
platforms, MOS enables cross-platform support. MOS consists of
a lightweight and energy-efficient scheduler, a user-level network
stack, as well as other components such as device drivers.

2.1 Applications and APIs
MANTIS provides a convenient environment for creating WSN

applications. Figure 2 illustrates a simple yet commonly usedsenseand forward
application thread, which is available along with the complete open
source MANTIS software release at http://mantis.cs.colorado.edu/.
This simple application thread, which runs on a micro sensor node
such as the MICA2 mote, reads a sensor value from an analog to
digital converter (ADC) port, toggles the LED, and then transmits
the value of the sensor over the radio - all in about ten lines of code.

All applications begin withstart, which is similar to main(). The
system properly initializes other system-level threads, such as the
network stack, which is just another application thread. Though not

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

#include <inttypes.h>
#include "led.h"
#include "dev.h"
#include "com.h"

void start(void)
{

uint16_t delay;
uint8_t value;
comBuf send_pkt;

value = dev_get(DEV_MICA2_LIGHT);
mos_led_toggle(0);

send_pkt.data[0] = value;
send_pkt.size=1;
com_send(IFACE_RADIO, &send_pkt);

}

Figure 2: Simple sample code of sense-and-forward application
sender.

shown in this example, this sense-and-forward application thread
can spawn new threads by callingthread new, as can all applica-
tions.

The program is compact and requires a fairly shallow learning
curve for C programmers. Early empirical experience with MOS
suggests that application developers can rapidly prototype new ap-
plications in this environment. Applications such as a sensor-enabled
conductor’s wand [11] were prototyped in hours, while applications
such as a frequency-hopping protocol and a port of the RC5 secu-
rity standard were completed in less than two nights.

MANTIS provides a comprehensive set of System APIs for I/O
and system interaction. For a complete list and information on
all the APIs please refer to http://mantis.cs.colorado.edu/. For the
precedingsenseand forward application example, the APIs that
were used in the application can be categorized as:

• Networking: com send, com recv, com ioct, com mode

• On board sensors (ADC): dev write , dev read

• Visual Feedback (LEDs): mos led toggle

• Scheduler: thread new (could have been used, but was not)

The choice of a C language API simplifies cross-platform sup-
port and the development of a multimodal prototyping environ-
ment. The MANTIS System API is preserved across both physical
sensor nodes as well as virtual sensor nodes running on X86 plat-
forms. As a result, the same C code developed for MANTIS sensor
Nymphs with ATMEL microcontrollers [12] can be compiled to
run on X86 PCs with little to no alteration.

2.2 Kernel and Scheduler
The design of the MOS kernel resembles classical, UNIX-style

schedulers. The services provided are a subset of POSIX threads
[15], most notably priority-based thread scheduling with round-
robin semantics within a priority level. Binary (mutex) and count-
ing semaphores are also supported. The goal of the MOS kernel
design is to implement these familiar services in a manner efficient
enough for the resource-constrained environment of a sensor node.

The most limited resource on a MANTIS node is the RAM.
There are two logically distinct sections of RAM: the space for
global variables that is allocated at compile time, and the rest of
RAM that is managed as a heap. When a thread is created, stack

space is allocated by the kernel out of the heap. The space is recov-
ered when the thread exits. In the current implementation, the user
is not encouraged to dynamically allocate heap space, although that
was an API decision and is not an inherent limitation of MOS. This
limitation is imposed because with such limited memory it is im-
portant to have a well planned and coherent memory management
policy.

The kernel’s main global data structure is a thread table, with one
entry per thread. Since the thread table is allocated statically, there
is a fixed maximum number of threads and a fixed level of mem-
ory overhead. The maximum thread count is adjustable at compile
time (the default is 12). Each thread table entry is ten bytes and
contains a current stack pointer, stack boundary information (base
pointer and size), a pointer to the thread’s starting function, the
thread’s priority level, and a next thread pointer for use in linked
lists. Note that pointers on the AVR microcontroller are only two
bytes. A thread’s current context, including saved register values,
is stored on its stack when the thread is suspended. This is signif-
icant, because the context is much larger than a thread table entry,
and it only needs to be stored when the thread is allocated. Thus
the static overhead of the thread table is only 120 bytes.

The kernel also maintains ready-list head and tail pointers for
each priority level (5 by default, for 20 bytes total). Keeping both
pointers allows for fast addition and deletion, which improves per-
formance when manipulating thread lists. This is important be-
cause those manipulations are frequent and always occur with in-
terrupts disabled. There is also a current thread pointer (2 bytes), an
interrupt status byte, and one byte of flags. The total static overhead
for the scheduler is thus 144 bytes.

Semaphores in MOS are 5-byte structures that are declared as
needed by applications; they contain a lock or count byte along
with head and tail list pointers. At any given time, each allocated
thread is a member of exactly one list; either one of the ready lists
or a semaphore list. Semaphore operations move thread pointers
between lists, and the scheduler cycles through the ready lists to
locate the next thread to execute.

The scheduler receives a timer interrupt from the hardware to
trigger context switches; switches may also be triggered by system
calls or semaphore operations. The timer interrupt is the only one
handled by the kernel–other hardware interrupts are sent directly
to the associated device drivers. Upon an interrupt, a device driver
typically posts a semaphore in order to activate a waiting thread,
and this thread handles whatever event caused the interrupt. There
are currently no ’soft’ interrupts supported by the MOS kernel, al-
though the design does not preclude adding them in the future. The
time slice is configurable, and is currently set to about 10 ms.

In addition to driver threads and user threads, there is also an
idle thread created by the kernel at startup. The idle thread has
low priority and runs when all other threads are blocked. The idle
thread is in a position to implement power-aware scheduling, as it
may detect patterns in CPU utilization and adjust kernel parameters
to conserve energy.

2.3 Network Stack and “Comm” Layer
Wireless networking is critical for the correct operation of a net-

work of sensors. Such communication is typically realized as a lay-
ered network stack, not to be confused with the thread stack. The
design of the MANTIS network stack is focused on efficient use
of limited memory, flexibility, and convenience. The stack is im-
plemented as one or more user-level threads, as shown in Figure 1,
following the design of ALPINE [16]. A user-level network stack
enables easy experimentation with the network stack in user space,
and also enables cross-platform prototyping of network stack func-

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

tionality on X86 PCs prior to deployment in WSNs, e.g. a new
data-driven routing protocol can be tested in virtual sensor nodes on
Linux PCs before deployment, as explained in a later section. The
term user space is more aptly applied to manipulation of the net-
work stack on X86 PCs, where there is a clear distinction between
user space and kernel space, rather than on ATMega128 MCU sen-
sor nodes, where there is no such distinction.

Different layers can be flexibly implemented in different threads,
or all layers in the stack can be implemented in one thread. The
tradeoff is between performance and flexibility. The stack is de-
signed to minimize memory buffer allocation through layers. The
data body for a packet is common through all layerswithin a thread.
In this way, the network stack avoids data copies and resembles the
zero copy approach of TinyOS, SMAC [17] and zero copy sockets
[18].

The stack supports layer three and above, i.e. network layer rout-
ing, transport layer, and application layer. MAC protocol support
is performed by the communication layer, also called the “comm”
layer, which is located in a separate lower layer of the OS, distinct
from and below the user-level networking stack.

The MOS comm layer provides a unified interface for communi-
cations device drivers (for interfaces such as serial, USB, or radio
devices). The comm layer is shown in Figure 3. The comm layer
also manages packet buffering and synchronization functions. The
network or application thread interacts with communications de-
vices through four functions:comsend, comrecv, commode, and
com ioctl.

When comsend is called, the sending thread (the network, or
perhaps an application thread) passes a pointer to a packet buffer,
called a comBuf. The comm layer blocks the sending thread and
passes the pointer to the specified device driver. While device
drivers may be implemented as threads, the typical implementation
is in terms of an interupt-driven state machine. This state machine
proceeds to send the packet through the hardware device, and the
sending thread is resumed when the state machine reaches its com-
plete state.

While sending can be synchronous, receiving must happen in
the background even when a network or application thread is not
currently making a comrecv call. Memory for received packets
is thus managed by the comm layer itself, which owns a number
of comBufs. Device drivers may request comBufs, which are then
allocated to that device. Once a comBuf is obtained, the device
driver may fill it with a received packet, as directed by its inter-
rupt state machine. When a packet reception is complete, the de-
vice driver calls comswapbufs, which exchanges the full com-
Buf for an empty one. Full packets are buffered in order by the
comm layer. When a thread calls comrecv, it is blocked until a
full comBuf on the specified device is available, at which time a
pointer to that comBuf is returned. Since the receiving thread now
possesses a buffer that was allocated by the comm layer, it must
call comfree buf when it is finished with the buffer; this advises
the comm layer that the buffer may be reused. The extra call to
free a buffer is more complexity for the receiving thread, but it
allows the comm layer to provide true zero-copy service. Also,
because the comm layer is completely interrupt-driven, the comm
layer achieves zero polling, which is energy efficient.

Besides send and receive functions, the comm layer provides
mode and ioctl calls. The mode call is used to power up or power
down the device when needed. The meaning of the ioctl call is
device-specific.

The MAC layer protocol is located within the device driver for
the radio, which is housed in the comm layer. The MAC layer
is responsible for controlling such aspects as network duty cycle,

wherein the radio is adaptively slept to save on energy consump-
tion, and transmit power control. The MAC layer flexibly supports
multi-frequency radio communication over 30 channels, enabling
research into MAC protocol design, security and reliability. A flex-
ible range of packet sizes is supported, with a maximum of 64
bytes. An early version of the MAC protocol supported random
backoff, while the current version of the MAC supports TDMA for
star topologies. MOS will support CSMA in the near future, by
adopting and augmenting SMAC and/or BMAC.

The lower layers of the network stack, including MAC and phys-
ical layers, occupy about 64 bytes of RAM total to support three
communication interfaces, namely the radio, serial link, and loop-
back interfaces. Additional RAM buffers must be allocated to store
packet data. Thus comm buffs are allocated at 64 bytes per buffer,
with an added three bytes of overhead per buffer. Currently, five
such buffers are allocated, though the plan is to allocate more buffers
from all RAM. Since these buffers will be passed directly to appli-
cations, then there are zero copies. An additional small amount of
space is consumed by low-level configuration parameters for the
CC1000 radio. Modules for a broadcast flooding routing protocol
and a simple stop and wait protocol are provided in MOS as default
examples for developing protocols at the network and application
layers. Network layer broadcast flooding adds an additional thirty
bytes of RAM. The size of the user-level network stack will depend
on the complexity of the protocol(s) the user desires for implemen-
tation. Overall, the network stack consumes less than 200 bytes of
RAM.

Synchronous Device Drivers

RF UART LO

Receive buffer pool

buffer pool
Global

UART

RF

Temp Light StorageLoopbackUARTRadio

Application provided with uniform interface to communication layer and device drivers

send, recv, ioctl, select, mode read, write, ioctl, mode

Allocated Buffers

com interfaces
for the individual

Figure 3: The MOS communication COMM layer (left) is de-
signed for asynchronous I/O with the radio, serial, ... and
achieves zero copy operation and zero polling. The device DEV
layer (right) is designed for synchronous I/O, e.g. sensor read-
ings.

2.4 Device Drivers
MANTIS adopts the traditional logical/physical partitioning with

respect to device driver design for the hardware. The ‘device layer,
or “dev” layer shown in Figure 3 houses drivers for synchronous
I/O, e.g. sensors, external storage, etc. Drivers for asynchronous
communication, e.g. radio or serial, are housed in the comm layer.
Several POSIX-style system callsdev read(), devwrite(), devmode(),
and devioctl() are implemented for each device in a simple device
layer. A single static table is used to store function pointers for
each device’s implementation of the device layer model. Devices
are specified by their index into this table rather than using a file
descriptor, to save on code size and memory usage. Since the ta-
ble is static, there is some lost overhead if it is not full. Each de-
vice has only 4 functions to implement, and a mutex, so this over-
head is minimal. After the initialization of the device, a call to
dev register() is made, to place the device’s function pointers into
the call table, and initialize the mutex associated with the device.
This driver scheme has been implemented for EEPROM, several

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

assorted sensors, and is planned for accessing flash storage. We
foresee drivers for each possible device easily conforming to this
model.

The devmode() call is provided to interface with the power man-
agement system. Devices can currently be in a state of on, off, or
idle. If users know they will not be using the device for a period of
time, they may set it to off or idle, depending on their needs, for a
savings on power consumption. Before accessing the device again,
its mode must be set back to on.

The devioctl() call is a generic function, taking device-specific
variable arguments. A device such as an EEPROM can use this
function to set the memory address where devread() and devwrite()
access the hardware. As more drivers are written, device-specific
routines that do not fit into the normal device model will be ac-
cessed through this interface.

2.5 Summary
Together, the code size of the kernel, scheduler, and network

stack occupies less than 500 bytes of RAM and about 14 KB of
flash. This permits sufficient space for multiple application threads
to execute in the ATMega128’s 4 KB of RAM, as well as sufficient
storage in the ATMega128’s 128 KB of flash storage.

Event-Driven vs. Multi-threaded OS

Event 1

C
on

su
m

er

Consumer
must wait

Pr
od

uc
er

Prod

Run-to-Completion Time-sliced Multi-threading

Event 2

C
PU

 T
im

e

Event 1 Event 2

Prod

Prod

Cons

Cons

Cons

Task 1 Task 2 Thread 1 Thread 2

Consumer
proceeds

Figure 4: A Bounded Buffer Producer/Consumer Application
avoids buffer overflow in a preemptively time-sliced system of
interleaved threads (right), because the consumer can execute
and empty the buffer earlier. A single-threaded event-driven
run-to-completion system (left) can overflow the buffer when a
consumer task is forced to wait for a long-lived task to finish,
e.g. producer or other complex task.

3. DISCUSSION: THREADS AND EVENTS
This section discusses first the benefits and then the costs of

preemptively time-sliced multithreading in sensor systems. The
following discussion refers to Figure 4, which depicts two execu-
tion models for sensor systems: an event-driven run-to-completion
single-threaded approach on the left; and a preemptively time-sliced
multithreaded model on the right. The literature contains a variety
of examples of thread-driven and event-driven systems, as well as
comparisons between the two models [55, 56, 57, 58, 59, 3]. A
recent paper suggests that thread-driven systems can achieve the
high performance of event-based systems for concurrency inten-
sive applications, with appropriate modifications to the threading
packages [55].

TinyOS is a standard embedded OS for sensor networks based

on an event-driven design philosophy. The simplicity of the sys-
tem is tailored for event-driven sensor I/O. Tasks run to completion
with respect to other tasks but may be interrupted by events. Only
one stack is needed because only one task is running, so that there
are no context switches. TinyOS also assumes a modularized pro-
gramming language nesC, an extension of C. It is a static language
in which all run-time memory usage is preallocated. Besides its
modularized fashion, nesC also analyzes the code and handles con-
currency inside the language instead of at the user level. The de-
signers of TinyOS also believe that an event-based approach is able
to create an energy-efficient system since there is neither blocking
nor polling in an event system. Unused CPU cycles can be spent
in the sleep state as opposed to actively looking for an interesting
event. TinyOS provides an event-driven paradigm that meets the
requirements of simple tasks characteristic of today’s sensor nodes.

The MANTIS multithreaded OS seeks to provide a pathway to
evolve sensor systems to support increasingly complex tasks, while
at the same time meeting the resource constraints of energy and
memory typical of sensor networks. Time-sliced multithreading
offers automatic preemption, which has the advantage that a single
segment of application code cannot block the execution of other
tasks. This is important in sensor systems, since blocking certain
time-critical tasks from executing, such as network packet process-
ing, can result in overflow of network buffers when tasks are suffi-
ciently long-lived and a sensor node’s RAM buffers are sufficiently
small.

To illustrate the bounded buffer producer-consumer problem as
it applies to sensor networks, Figure 4 depicts two tasks, namely
a producer and a consumer. Such pairs of tasks are common, and
typically share a buffer between them, not shown. As the producer
generates data, the producer places this data in the bounded buffer
between the two tasks. The consumer empties the buffer whenever
it has a chance to execute. If the consumer is unable to execute for
some time while the producer continues to add data to the buffer,
then the buffer will eventually overflow.

For sensor networks, a typical consumer would be a network
stack that needs to process incoming packets and route these pack-
ets to/from the radio. In a typical sensor network topology, a sensor
node relays data from several children nodes to a parent node that
is closer to the ultimate destination, namely the base station. An ar-
riving radio packet typically causes an interrupt that can preempt an
executing task. A small interrupt handler then transfers the packet
to a buffer for complete processing at some later time by another
task such as the network stack. Thus, multiple downstream nodes
act as producers of sensor data whose packets are received and de-
posited into the relay node’s buffer, awaiting further processing by
the relay’s network stack.

As sensor nodes are called upon to perform increasingly complex
tasks, the likelihood increases that a long-lived task in a run-to-
completion system can block processing by the network stack con-
sumer, resulting in lost packets due to buffer overflow. Such tasks
could include aggregation via standard compression algorithms,
standard encryption/decryption, and standard signal processing tech-
niques. Though today’s aggregators typically do little more than
summarize multiple sensor values by calculating an average, it is
not unreasonable to expect aggregation to employ more sophis-
ticated yet memory-efficient compression algorithms in the near
future. For example, we have ported a lightweight compression
algorithm that uses arithmetic coding to the MICA2 motes. This
compression code executes in the 4 KB of RAM provided by the
ATMEL chip. Other researchers have ported the LZ77 compres-
sion algorithm to the MICA2 [48]. Similarly, though today’s sensor
nodes employ scalar values to trigger actions such as routing, e.g.

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

temperature> T degrees, future behavior may well be triggered by
simple frequency analysis of the sensor data, e.g. the sensor data
has a strong tone at 1 kHz. Thus, we have also ported a standard
64-point FFT algorithm based on integer arithmetic for fast exe-
cution on the MICA2 motes. Other researchers have implemented
a much slower floating point FFT on the MICA2 [48]. In previ-
ous work, we have implemented both RC5 and AES encryption on
MICA motes [29], but present improved implementations in this
paper. The resulting execution times are summarized in Table 1.

Table 1: Execution times for various complex tasks on MICA-2
Complex Task Execution Time

Arithmetic Coding: Compression 321 ms
Arithmetic Coding: Decompression 504 ms
64-point FFT (integer) 56 ms
512-point FFT (floating point) 30 sec [48]
RC5 encryption (12 rounds) 2 ms/32 bytes
AES encryption (no pre-computed table)28 ms/32 bytes

We found that that a standard compression task such as arith-
metic coding is relatively long-lived. Arithmetic compression of
128 samples of data took 321 ms, while arithmetic decompression
of 128 samples took 504 ms. Arithmetic coding was chosen for
its near-optimal compression efficiency. An alternative would be
Huffman coding, which would sacrifice compression for a speed
improvement of about a factor of two [19]. Also, the 64-point in-
teger FFT required 56 ms to execute. We expect that 128-point
and 256-point FFTs will require hundreds of milliseconds to run to
completion. AES, in low memory mode, required 28 ms to com-
plete encryption on just 32 bytes of data.

Any task that is sufficiently long-lived during its run to com-
pletion is a candidate for causing buffer overflow, and lost pack-
ets. Suppose there are 200 bytes of RAM devoted to the network
stack’s buffer. Suppose also that packets arrive from four down-
stream neighbors at the rate of 5 packets/sec, with each packet of
size 30 bytes. In this case, sensor data arrives at a rate of 600
bytes/sec. If any of the above complex tasks takes more than a
few hundred milliseconds to run to completion, then the bounded
buffer will overflow. In contrast, in a multithreaded system, a net-
work stack consumer thread will be given its time slice despite the
presence of long-lived threads and thus be able to process its traffic
and limit the loss of data.

To address this bounded buffer problem, a programmer in a run-
to-completion system is therefore burdened with several difficult
and time-consuming tasks. First, the programmer must decompose
their code into sufficiently small execution modules. In some cases,
e.g. arithmetic compression, correct partitioning of the code may
require a semantic understanding of the algorithm, which is a stiff
requirement for a programmer who only wishes to port the code to
a micro sensor platform. For example, the decomposition of LZ77
compression code into TinyOS modules required detailed seman-
tic awareness [48]. Second, understanding when the code modules
are “sufficiently” small to avoid blocking other tasks depends both
upon the other tasks that will be executing as well as their applica-
tion tolerances, neither of which are known a priori by the program-
mer. The designer may be forced to choose the finest granularity to
avoid the pitfalls of run-to-completion. The least difficult option of
porting code as one monolithic module runs the risk of the run-to-
completion bounded buffer problem. Third, the programmer must
invest significant time to make sure to relinquish control properly
in each module. For example, the programmer must ensure that

each module avoids busy-wait polling and/or infinite loops in order
to avoid indefinitely blocking other tasks.

In contrast, programmers in MOS do not have to alter their pro-
gramming practices to accommodate the above concerns. A pro-
gram can be written without having to physically partition the thread
of execution, though the programmer is free to generate multiple
threads ifdesired. In addition, since there is a vast body of code
already written for threaded operating systems, a programmer can
port code to MOS with relative ease without requiring a deep se-
mantic understanding of the coded algorithm. A programmer can
also write a long-lived task without explicitly ensuring that the pro-
gram does not block or hinder other processes.

Support for multithreading in MOS comes at the cost of context
switching overhead and additional stack memory for each thread.
First, our claim is that the context switching overhead is only a
moderate issue in WSNs. Each context switch incurs only about
60 microseconds of overhead (about 120 instructions, or approxi-
mately 400 clock cycles), since 30 registers need to be reset. In
comparison, the default time slice is much larger at 10 ms. This is
less than 1 percent of the microcontroller’s cycles. Since WSNs are
largely focused on I/O, e.g. sensor data acquisition and packet for-
warding, and not with the computational performance of compute-
bound threads, then the modest slowdown in pure computational
speed should not affect the primary function of micro sensor nodes.

The second cost of multithreading is memory allocated for each
thread’s stack, though this can be mitigated with intelligent stack
analysis. The default thread stack size in MOS is 128 bytes. Since
4 KB of RAM are available in the MICA2 motes, and the kernel
occupies less than 500 bytes, then there is considerable space left
to parameterize MOS to support up to a double digit number of
user threads. For the early Rene motes with only 512 bytes to-
tal of RAM, it would be infeasible to fit both the MOS kernel and
user threads into such a constrained space. Since current and fu-
ture sensor nodes are likely to contain at least the MICA2’s present
capacity of 4 KB RAM, then MOS demonstrates that there is suffi-
cient memory to fully support both the OS and multithreaded appli-
cations. However, the degree of multithreading remains an issue,
because of the possibility of stack overflow. If insufficient space
is allocated, then the thread’s stack can overflow. To mitigate this
issue, we are currently developing stack analysis tools that accu-
rately forecast the stack needs of each thread, and allocate sufficient
memory to avoid stack overflow.

The programming paradigm of MOS is based on a standard pro-
gramming language C. This enables a shallow learning curve, cross-
platform support, and code reuse. While nesC is an extension of C,
additional investment is required to understand how to program us-
ing nesC modules.

Over time, the two types of sensor systems may very well con-
verge and/or coexist. In the future, we could envision a sensor
system that combines the best of both the thread-driven system’s
flexibility as well as the event driven system’s efficiency. A thread-
driven model provides a general solution for synchronous code,
preemption syntax and priority mechanisms. Yet events are well-
adapted to many sensing applications as well. By analogy, ar-
guments between the adaptability and reconfigurability of micro-
kernels and the performance of monolithic kernels resulted in the
development of modular kernels that combined the advantages of
both. Moreover, as sensor networks diversify, some micro sensor
nodes may run event-driven code and communicate with others that
execute via multithreading, e.g. aggregator or application-specific
nodes.

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

void start(void){

Packet data;
uint8_t i, size;

mos_enable_power_mgt();

while(1){
size = flooding_recv((char *)&data, 0x02);
if(size < 1)

mos_led_toggle(0);
else{

for(i=0; i<size; i++)
mos_uart_send(0, ((char *)&data)[i]);
mos_led_toggle(2);

}

mos_thread_sleep(32);
}

}

Figure 5: MOS provides application threads with a
sleep(PERIOD) function. If all threads call sleep(), then the
OS shuts down the microcontroller until the first sleep deadline
expires.

4. POWER MANAGEMENT
A challenge in the design of energy-efficient thread-driven sys-

tems is sleeping the scheduler when there are no more threads that
need to be scheduled, i.e. all threads are either blocked on I/O,
blocked for other reasons or have no useful work to perform. In this
section, we describe how MANTIS OS achieves energy efficiency
via a sleep() function that is designed to resemble the semantics of
the UNIX sleep() function, i.e. taking a parameter for the duration
of the sleep, but differs in the behavior of the OS after all appli-
cation threads have called sleep. This sleep() function enables a
threaded system to shut down when there is no meaningful work to
do, thereby avoiding energy-consuming busy-wait polling.

A typical wireless node will last only a few days on two AA
batteries when used for continuous monitoring. Two AA batteries
at 3000 milliampere per hour (mAhr) will last approximately 5 days
at 25 mA of power consumption (3000mAhr/25mA = 120 hr or 5
days). The most effective technique for extending the lifetime of
in-situ sensor nodes is a low duty cycle that sleeps the node most
of the time. Traditional power management techniques for laptops
transition between idle and active modes of operation, which is the
approach explored in this work. Additional low power methods
such as throttling the performance of a processor or turning off only
parts of a processor [52], as well as varying the voltage in real-time
embedded systems [54] are not pursued in this work.

If sensor nodes are to sleep with a low duty cycle, then the value
of the duty cycle must be determined, as well as its periodicity.
These important parameters controlling energy efficiency should
be both application-specific and adaptive. If a sensor node employs
only one sensor, e.g. to monitor temperature once per second, then
the period is simply set to one second. However, most sensor nodes
have the capability to monitor more than one sensing domain si-
multaneously, e.g. both temperature and relative humidity [26].
Given multimodal sensing, the low duty cycle behavior becomes
more complex. If the temperature sensor is monitored every three
seconds, and humidity is monitored every seven seconds, then we
desire a sensor OS capable of integrating such staggered and offset
application-specific sleep periods. Moreover, we desire that a sen-
sor OS be responsive to changing environmental conditions within
the sensing zone. For example, at run time, an application that is
tracking an event may wish to change its sampling frequency or pe-

Table 2: Power Consumption for MOS in sleep mode and
awake mode on MICA-2

Power

sleep 20µA
sense and forward (awake) 20 mA
1.0% Duty Cycle for a 300 sec Cycle66 mAsec
0.5% Duty Cycle for a 300 sec Cycle36 mAsec

riodicity in response to sensed data, e.g. motion of an animal. The
sensor OS should provide energy-efficient mechanisms for adapt-
ing to run-time changes in sampling frequencies and duty cycles
for each application.

In addition, the behavior of compute-bound applications such as
aggregation is far different than data-driven I/O-bound tasks such
as periodic temperature and humidity sensing. An aggregation ap-
plication may wish to delay sleeping of a sensor node until its com-
putation is complete, regardless of the various sensing periodici-
ties. A sensor OS should therefore be flexible enough to accommo-
date compute-bound application behavior in addition to data-driven
sensing applications with varying periodicities and duty cycles.

These examples illustrate that a sensor OS should provide application-
specific mechanisms that enable diverse applications to indicate
when and how often they wish to sleep, in order to achieve power
efficiency. The sensor OS should combine these application-specific
natures and emerge with a scheduling timetable that meets applica-
tion needs while also achieving energy efficiency. The OS sched-
uler should determine when it is safe for the system to sleep. In
addition, the sensor OS should adapt to changing conditions, so
that applications at run time can change their sleep times, patterns
and periodicities.

As an initial step towards building sleep-oriented capabilities,
we have implemented a sleep() function as shown in Figure 5, sim-
ilar to the UNIX sleep() function. First, the application thread
must enable power-save mode, which is accomplished by the call
mosenablepowermgt(). All threads should enable power-save
mode, though by default this option is not turned on and must be ex-
plicitly activated. This was chosen to maintain compatibility with
the UNIX sleep()’s behavior. Next, the application thread may call
mosthreadsleep(PERIOD), with a parameter PERIOD specifying
the duration to sleep. This was chosen to mimic the behavior of
UNIX sleep(). However, MOS adds the capability that, if all appli-
cation threads call sleep, then the system truly sleeps most of the
time. For example, if there is one application thread, then the sys-
tem will periodically wake up according to the PERIOD specified
by that thread. If there are multiple application threads each call-
ing sleep(), and each specifying a different sleep duration, then the
scheduler will keep track of when the earliest deadline expires and
wake the system; otherwise, the system will sleep.

Table 2 lists the current consumed by a sense and forward ap-
plication thread on a MICA2 mote running MOS for different duty
cycles. While actively executing the application code, the MICA2
mote running sense and forward consumed 20 mA. However, while
the application thread slept, the power consumption was only 20
µA. This confirmed that MOS was correctly sleeping the micro-
controller and was also able to periodically wake the thread to exe-
cute its code. Thus MOS is able to achieve energy efficiency while
maintaining a threaded scheduling capability.

Figure 6 illustrates the energy-efficient MOS scheduler. The
ready Queue of the MOS scheduler consists of five priorities, high
to low: Kernel, Sleep, High, Normal and Idle. The scheduler se-

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

0: Kernel

1: Sleep

2: High

3: Normal

4: Idle

Prioritized Ready Queue

Task_1-R Task_2-R

Task_4-R

Task_5-R Task_N-R

Task-3-R

Select Task for Execution By
Priority Highest to Lowest Order

Highest Priority

Lowest Priority

Task_(m)-RUNNING

Return Task (m) to Ready
Queue After Time Slice Expires

And Schedule Next Task (*)Run to Completion

mos_thread_suspend() mos_thread_sleep()

Task_Idle
?

Yes
POWER SLEEP

Schedule Next Task (*)

DONE

Sleep
Timer

(Timer_0)
Interrupt

No

Task_(m)-
SLEEPING

Return Task (m) to Ready
Queue After Sleep Time Expires

And Schedule Next Task (*)

Task_(m)-
SUSPENED

Return Task (m) to Ready
Queue After Thread Resumes
And Schedule Next Task (*)

Task_Idle-R

Conceptual Diagram
MOS Scheduler

R: Ready

Ordered Sleep Queue
[shortest to longest sleep time]

Figure 6: Energy-efficient MOS scheduler.

lects the highest priority ready task and either executes it to com-
pletion or puts it in the ready queue if its time slice expired. The
scheduler uses 16-bit Timer1 for for multi threading and time slic-
ing. When no threads are ready for execution, then the system
sleeps automatically instead of spinning at a 100in the idle loop.
The depth of sleep varies as follows. If the system is suspended on
I/O, then the system enters the ATMEL’s moderate idle sleep mode.
Otherwise, if all application threads have called sleep(), then the
system enters the deep power-save sleep mode. A separate sleep
queue maintains an ordered list of threads that have called sleep(),
and is ordered by sleep times, low to high. When the sleep time of
the thread in the front of the queue expires, the queue is shortened
and sleep times are readjusted. Timer/Counter0 is used to imple-
ment the sleep timer because it allows clocking from an external 32
kHz Watch Crystal independent of the internal CPU clock, which is
necessary to wake the processor from deep sleep. Thesleepprior-
ity in the ready queue enables newly woken threads to have higher
priority so that they can be serviced first after wake up.

MOS also achieves energy efficiency by implementing the comm
layer so that it is completely interrupt-driven. There is zero polling
in the comm layer.

5. ADVANCED FEATURES OF MANTIS OS
Sensor networks impose additional unique demands on the de-

sign of operating systems beyond resource constraints. Sensor net-
working application developers need to be able to prototype and
test applications prior to distribution and physical deployment in
the field. Also, during deployment, in-situ sensor nodes need to
be capable of being both dynamically reprogrammed and remotely
debugged. In the next sections, MANTIS identifies and imple-
ments each of these three key advanced features for expert users
of general-purpose sensor systems.

5.1 Bridging the Internet and Sensor Network
with Multimodal Prototyping

The MANTIS prototyping environment provides a framework
for prototyping diverse applications and bridging these applications
between the Internet and the deployed sensor network. A key re-
quirement of sensor systems is the need to provide a prototyping
environment to test sensor networking applications prior to deploy-
ment. Postponing testing of an application until after its deploy-
ment across a distributed sensor network can incur severe conse-
quences. As a result, a prototyping environment is an especially
helpful tool for sensor network application developers.

The MANTIS prototyping environment extends beyond simu-
lation to provide a larger framework for development of network
management and visualization applications asvirtual nodeswithin
a MANTIS sensor network. First, MANTIS has the desirable prop-

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

erty of enabling an application developer to test execution of the
same C code on both virtual sensor nodes and later on in-situ phys-
ical sensor nodes. Second, MANTIS seamlessly integrates the vir-
tual environment with the real deployment network, such that both
virtual and physical nodes can coexist and communicate with each
other in the prototyping environment, as shown in Figure 7. Seam-
less integration enables phased deployment and testing of an ap-
plication, i.e. application code could first be evaluated on an all-
virtual network, then be deployed without modification to a hy-
brid network of both virtual and a few physical nodes, followed by
full deployment on an all-physical network. The combination of
all-virtual, hybrid, and all-physical modes of testing form amulti-
modalprototyping environment. Third, MANTIS permits a virtual
node to leverage other APIs outside of the MANTIS API, e.g. a
virtual node with the MANTIS API could be realized as a UNIX X
windows application that communicates with other renderering or
database APIs to build visualization and network management ap-
plications, respectively. This virtual node, a.k.a. UNIX application,
would incorporate the MANTIS system API as a simple means of
becoming just another node within the MANTIS network of virtual
and physical nodes. For example, our “cortex” visualization appli-
cation connects to two API’s: the MANTIS API in order to behave
as a virtual sensor node and receive sensor data streams; and a sec-
ond graphical API in order to render sensor data. This flexibility is
illustrated in Figure 7.

Gateway

Web Visualization
Application

Heterogeneous Physical
Wireless Sensor Network

Virtual Sensor Network
on Internet

USB/
Serial

USB/
Serial

Gateway

PDA

Basestation
mote

Basestation
mote

mote b

mote a

service nymph

Figure 7: Virtual MOS sensor nodes on the Internet are seam-
lessly connected with real MOS sensor nodes by preserving a
common cross-platform API across X86 PCs and ATMEL mi-
cro sensor nodes.

MANTIS achieves a multimodal prototyping environment by pre-
serving a common C API across all platforms. This approach re-
sembles WINE [20], but eliminates the problems of hidden system
calls, since all such calls are publicly known in MANTIS. Due to
the wide availability and support by the GNU tool chain for mul-
tiple platforms, it is possible to build MOS, with minor modifi-
cations, as an application that runs on the X86 platform over both
Linux and Windows. We call this user space application running on
an X86 platform XMOS. For example, Figure 8 illustrates XMOS
utilizing a POSIX shim layer to translate between MANTIS’ uni-
form API and the underlying UNIX operating system. In this way,
MOS applications can be realized as both virtual sensor nodes on
X86 platforms as well as live applications on ATMEL sensor nodes
(AMOS). This enables MANTIS to support multimodal networks,
consisting of XMOS nodes and AMOS nodes seamlessly interact-
ing with each other. The same C source code runs transparently

over both XMOS and AMOS platforms, enabling phased deploy-
ment from XMOS to AMOS. Figure 7 shows the structure of the
network, with the two networks connected to each other via a serial
RS232 link. Thus, a comsend() system call on the AMOS nodes
causes the data to be transmitted over the radio. The bridge nodes
on either side of the bridging serial link would additionally send the
data over the serial link using the comsend(..) call. A comsend()
call on the XMOS nodes causes the data to be transmitted over the
IP network instead.

Posix Shim

Hardware

MANTIS System API

T3 T4 T5 User-level
threads

UNIX

POSIX Shim Layer

N
et

w
or

k
St

ac
k

C
om

m
an

d
Se

rv
er

Figure 8: x86 MANTIS OS (XMOS) architecture uses the
POSIX shim layer to translate to/from underlying OS.

The structural implications of the above multimodal prototyp-
ing environment afford great flexibility to application developers.
First, XMOS nodes need not be identical and indeed heterogeneous
applications can be supported simultaneously. For example, some
XMOS nodes can be written as base stations, while others may per-
form aggregation duties for directed diffusion [21], and still others
may coexist to perform multicast routing [22]. Second, XMOS
nodes are not confined to a single PC, and can be distributed across
any number of PCs, maintaining communication via IP packets.
This eases the ability of the prototyping environment to scale to
large numbers of XMOS virtual nodes. Third, an arbitrary number
of bridging links can connect XMOS and AMOS environments,
and need not be limited to serial links either. Fourth, virtual nodes
must support but are not limited to the MANTIS API. As a result,
a virtual node realized as a UNIX application could be integrated
into the MANTIS sensor network on one side and speak with a
rendering API, database API, X windows API, or socket API on
another side. Thus, the sensor network can be accessed from any
virtual node, easing development of applications for visualization,
network management, and gateway translation to other networks.
The gateway function is especially critical to translate sensor packet
data to/from IP networks. Fifth, since the network stack is im-
plemented as user-level thread(s) above the common API, then an
added bonus is that the XMOS environment can be used to proto-
type OS functionality in the form of networking routing and reli-
ability functions. XMOS is not confined to prototyping user pro-
grams only. Finally, provided that hardware translation is correct,
the XMOS architecture offers the potential to feed real sensor data
into virtual nodes to drive prototype evaluation.

A variety of other sensor networking simulators possess some
but not all of the features of the MANTIS multimodal prototyping
environment. TOSSIM is a simulator for TinyOS [23], and enables
the same code to run in PC simulation as on real sensor nodes,
enabling debugging and verification on PCs prior to deployment.

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

However, the simulator has to run on one machine and with the
same application instance inside. TOSSF extends TOSSIM to en-
able heterogeneous applications, but they’re still confined to one PC
[24]. Sensorsim is an extension to ns2 and provides a simulation
framework that models the sensor nodes and also provides a hybrid
simulation combining the real and virtual network [25]. However,
the sensor network applications are required to be re-implemented
for the target platform, resulting in two completely different code
bases that must be maintained.

emStar is a framework for developing applications for wireless
sensor networks that shares many of the principles of the MOS sys-
tem. emStar combines pure simulation, hybrid mode and real dis-
tributed deployments [7]. Just as in MOS, the same code can be
reused in the simulation environment and the real platform, whose
targets include the iPAQ and Crossbow Stargate platforms. Just as
in MOS, a POSIX compatible programming interface is provided.
TinyOS is supported by the emStar framework.

The MANTIS multimodal framework does have some limita-
tions. By choosing to preserve a high-level API across platforms
rather than low-level instructions as in a virtual machine, each XMOS
node does not perfectly model the performance of a sensor node.
Our tradeoff has been for improved flexibility rather than precise
emulation. Also, not all OS functionality can be tested in the above
architecture. While the network stack and remote shell via the com-
mand server can be tested, as well as user programs, other func-
tionality such as the kernel’s scheduler are at present beyond the
cross-platform testing capabilities of XMOS.

5.2 Dynamic Reprogramming
Dynamic reprogramming or retasking is an especially useful fea-

ture for sensor networks. Research has found that sensor nodes
should be remotely reconfigurable over a wireless multi-hop net-
work after being deployed in the field [26]. Since sensor networks
may be deployed in inaccessible areas and may scale to thousands
of nodes [27], this simplifies management of the sensor network,
i.e. so that biologists need not go into the field again to reprogram
sensors and change parameters such as the sensor’s sampling rate
and trigger threshold or algorithms such as sensor calibration or
time synchronization.

The goal of MOS is to achieve dynamic reprogramming on sev-
eral granularities: reflashing of the entire OS; reprogramming of a
single thread; and changing of variables within a thread. Another
feature that is especially useful for sensor systems is the ability to
remotely debug a running thread. MOS provides a remote shell that
enables a user to login and inspect the sensor node’s memory, e.g.
the thread table of an executing thread.

To overcome the difficulty of reprogramming the network, MOS
includes two reprogramming modes. The simpler programming
mode is similar to that used in many other systems and involves di-
rect communication with a specific MANTIS node. On a Nymph,
this would be accomplished via the serial port: The user simply
connects the node to a PC and opens the MANTIS shell. Upon re-
set, MOS enters a boot loader that checks for communication from
the shell. At this point, the node will accept a new code image,
which is downloaded from the PC over the direct communication
line. From the shell, the user also has the ability to inspect and mod-
ify the node’s memory directly (peek and poke), as well as spawn
threads and retrieve debugging information including thread status,
stack fill, and other such statistics from the operating system. The
boot loader transfers control to the MOS kernel on command from
the shell, or at startup if the shell is not present.

The more advanced programming mode is used when a node is
already deployed, and does not require direct access to the node.

The spectrum of dynamic reprogramming of in-situ sensor net-
works ranges from fine grained reprogramming (modifying con-
stants like sampling rate) to complete reprogramming of the sensor
nodes. At the present time, MOS can support remote login and
changing of variables/parameters.

Support for dynamic reprogramming of the entire OS is in progress.
The dynamic reprogramming capability is actually implemented as
a system call library, which is built into the MOS kernel. Any ap-
plication may write a new code image through calls to this library;
the code image is stored into external storage (flash or EEPROM)
as it is written. The application then calls a commit function that
writes out a control block for the MOS boot loader, which causes
it to install the new code on reset. A software reset completes the
reprogramming process. Using the reprogramming library, the in-
tent is for an application–such as the MANTIS command server–
to download a patch using any communications method it desires
(typically the regular network stack), apply the patch to the existing
code image, and run the updated code. Thus, the entire code image,
with the exception of the locked boot loader section, may be repro-
grammed over an arbitrary network while the node is deployed.

Reflashing parts of the OS, e.g. one thread, is a difficult research
challenge that will be addressed after dynamic reprogramming of
the full OS image has been completed.

Current solutions for dynamic reprogramming [28] are virtual
machine (VM) -based where the VM resides over the underlying
sensor operating system and processes the incoming code capsules.
A special stack-based instruction set is used to reprogram the sen-
sor nodes, reducing the amount of data that is transmitted over the
network. In contrast to the VM based approach, MOS allows bi-
nary updates to reprogram a node. The developer does not need
to learn a new stack-based instruction set; instead, the existing de-
ployed application only needs to be modified and recompiled, then
a binary patch may be transmitted to the micro sensor node.

5.3 Remote Shell, Cortex Application and Com-
mand Server

Existing solutions for monitoring sensor networks consider topol-
ogy extraction [36] and computing summaries of network proper-
ties for energy efficient monitoring of sensor networks [37]. In ad-
dition to these mechanisms, the user may wish to manage the nodes
in the network in other ways. To provide this flexibility, MOS in-
cludes the MANTIS Command Server (MCS). From any device in
the network equipped with a terminal (a laptop PC, for example),
the user may invoke the command server client (also referred to as
the shell) and log in to a node. This node may be either a physical
node (e.g. on a Nymph or Mica board) or it may be a virtual node
running as a process on a PC.

The MCS itself is implemented as an application thread. It lis-
tens on the serial and radio for commands either sent to the kernel
or to an application. The user may view the list of functions sup-
ported by the MCS, inspect and modify the node’s memory, change
configuration settings, run or kill programs, view the thread table
or restart the node. Additionally user applications can register their
own functions to be called when a specific command is entered
from the shell. After this function is called, the user application
can receive parameters for their function. This allows user appli-
cations to remain dormant until a command is issued. The shell is
a powerful debugging tool, since it allows the user to examine and
modify the state of any node, without requiring physical access to
the node.

The remote shell is part of a visualization application called the
“cortex” that runs on a remote laptop. Figure 9 illustrates an ex-
ample of the cortex visualization GUI that renders and plots sensor

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

Figure 9: Screenshot of the cortex visualization application for
rendering sensor data, part of the MANTIS release.

data in real time, maintaining multiple sliding window histories.
This application is included as part of the MANTIS release. The
cortex can be used not only to receive sensor data, but also to ini-
tiate commands to the sensor network. In this demo application,
clicking on the LED’s will light the LED on all sensor nodes. More
advanced commands are sent via the remote shell interface, not
shown in this screenshot. The cortex application is an example of
an XMOS virtual sensor node. More precisely, a server application
acts as an XMOS virtual sensor node, receiving sensor data packets
from the real sensor network. The visualization GUI then connects
to the server. This concept of connecting Internet applications as
part of the virtual sensor network in order to receive data is illus-
trated in Figure 7.

6. MANTIS HARDWARE
The MANTIS hardware nymph’s design was inspired by the Berke-

ley MICA and MICA2 Mote architecture [3]. To help lower our de-
velopment costs, shorten our development cycle, and enhance our
research goals, we designed the MANTIS hardware nymph sen-
sor node, adhering to the same themes of ease of use, flexibility,
and adaptation to sensor networks that characterized our software
design. The learning curve for novice users is lowered by em-
ploying a single-board design, as shown in Figure 10, altogether
incorporating a low power Atmel Atmega128(L) microcontroller
(MCU) [12], analog sensor and digital ports, a low power Chip-
con CC1000 multi-channel RF radio [38], EEPROM, power ADC
sensor, and serial ports on a quad-layer3.67 ∗ 3.3 cm Printed Cir-
cuit Board (PCB). For the common user, the single-board design
eliminates the need for a separate sensor board or separate pro-
gramming board, which reduces volume and cost. The pins for the
serial interface are directly accessible on the nymph in a standard
DIP package, enabling direct connection of each nymph to a laptop
via a serial cable, as shown in the figure. Direct serial accessibil-
ity combined with dynamic reprogramming over wireless largely
eliminate the need for a programming board for the common user.
Nymphs are versatile in that any node can serve as a base station
or as a leaf. In addition, three sensor interfaces are built into each
nymph and are directly accessible to the user via wire-wrappable
DIP pins, eliminating the need for the sensor board in the common
case. A standard three-wire interface similar to the popular Lego
Mindstorms was selected, enabling a novice to quickly prototype
from a large selection of inexpensive resistive sensors. Also, GPS

capability has been added to each nymph in the form of a connector
that fits the Trimble Lassen SQ GPS chip shown to the right of the
nymph in Figure 10. Again, the goal is to simplify deployment of
GPS-enabled applications for beginning users. If the GPS chip is
not needed, then the connector is simply vacant. Finally, the nymph
includes an AC/DC option. This is useful for prototyping in the lab
and avoids excessive consumption of batteries. An AC/DC adapter
from Radioshack is satisfactory. A simple 3-way switch toggles
between the AC/DC option, OFF and the battery option. We envi-
sion that the power option will be useful in future deployments of
indoor sensor networks, where power outlets are readily available
for exploitation.

Figure 10: MANTIS nymph micro sensor node.

To support advanced research, the nymph includes several in-
terfaces that allow expert users to extend its capability. First, the
nymph exports a standard sized JTAG DIP interface for expert users
that need to burn the bootloader into the Atmel’s flash. For exam-
ple, researchers experimenting with dynamic reprogramming may
need to reset the fuses on the flash. For the novice user, we envision
that the bootloader will be preinstalled by the manufacturer or an
expert user with access to a JTAG programming device. In diffi-
cult debugging situations, the JTAG interface can also be used for
line by line, in-system debugging using GDB. Second, the nymph
includes a 20-pin connector with standard DIP interface for wire-
wrapping or development of advanced add-on boards with mating
connector. This connector has direct access to the MCUs external
interrupt pins,I2C bus, data lines, timers, and pulse width modu-
lation (PWM) pins. Some potential add-on boards would beI2C
expanders that use the interrupt andI2C pins to add touch pads for
example. The data lines may be used to add liquid crystal displays,
while the PWM pins may be used for controlling motors, timers
for time sensitive applications, or simply as more pins for general
digital I/O. Third, the MANTIS nymph supports multiple antenna
options, including the addition of an antenna amplifier, via another
connector. This connector acts more like a jumper enabling and
disabling the built in low-range low power capabilities and replac-
ing them by add-on circuitry. The add-on circuitry implements a
30dB low-noise power amplifier that is a 24-pin chip plus its ad-
ditional support circuitry and properly matched 915 MHz antenna.
The addition of the amplifier increases the communication range
of the MANTIS Nymph to up to 2km at the cost of up to half a
Watt additional power consumption. For those reasons we provide
the connector as an option and not a requirement. One final impor-
tant advanced feature is the addition of a single channelI2C 16-bit
ADC. This ADC enables monitoring of the battery voltage level.

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

Power consumption numbers for the nymph are given in previ-
ous work [5]. GPS was found to consume significant power and
will require careful power management to limit its impact on bat-
tery lifetime. Comparable recent hardware technology with GPS
capability includes the MICA2 Motes [39] and the GPS-enabled
GNOMES [40].

7. FUTURE WORK
The MANTIS system is still very much a work in progress. Low

power management continues to be a challenge, though sleeping
the scheduler has largely eliminated the wasteful busy waiting or
polling of normal threaded systems. A follow-on approach would
incorporate dynamic hints from within the application with apower hint
call to modify the applications requirements dynamically. Prior
work on power-efficient scheduling and systems should be lever-
aged [49],[50]. Additional complications will result from inte-
grating components such as the Atmel and CC1000 with multiple
low power modes. At present, MOS exports setting these modes
through the API, but applications have not yet been developed to
exploit these low power features. We are further interested in push-
ing the power-efficient scheduler into user space to further stream-
line the kernel, similar to the micro-kernel architecture [51].

There is still some work to be done in demonstrating reliability
for code updates over the network, optimizing the size of updates,
and ensuring the security and authenticity of updates. Even after
those issues are addressed, we have only solved the problem of
reprogramming a single node remotely. While one could certainly
iterate through all nodes in a network in order to reprogram them
all, that would be inefficient and perhaps infeasible if the network
were large. The broader problem of remotely reprogramming a
network, as opposed to a node, will be addressed in future work.

We also intend to integrate security into dynamic reprogram-
ming, so that downloaded code can be authenticated, decrypted,
and checked for tampering. At present, we have implemented an
RC5-based CBC mode block cipher encryption/decryption library.
This library also provides functions for sending encrypted pack-
ets and generating message authentication codes to protect the in-
tegrity of packets. The API is:

mos secsend to(uint16 t addr, uint8t port, char* data, char dataLen,
uint8 t proto, rc5keyinfo *rc5key);mos secrecv(Packet* pkt, uint8t
port, uint8t proto, rc5keyinfo *rc5key);

The overhead of this security library is very small, about 110
bytes of RAM. The encrypted packet transmission function adds
about6% delay compared to non-encrypted packet transmission.

As MANTIS matures, we see several directions to evolve the de-
vice interface. For example, with the addition of timers, the devices
will gain the ability to set a read interval for multi-byte reads. More
specifically, if the user were trying to obtain light samples from a
sensor board, currently they are only able to read one byte at a time.
With the addition of timers, users will be able to set the read inter-
val through a devioctl() call, and their devread() call, called with
a multi-byte size, will fill in the buffer of that length, one byte at a
time, for each interval. As this operation will block, this provides
an ideal method for filling in a radio packet with sensor values over
a period of time, and sending only full radio packets as enough data
are received.

An area that has not yet been addressed is simulating the wire-
less channel within the multimodal prototyping environment. One
challenge is the difficulty of simulating wireless communication
channels, especially indoor communication. Another challenge is
building a structure that enables medium contention among multi-
ple virtual nodes.

The MANTIS project was awarded an NSF SENSORS 2003

grant to study the role of sensor networks in fighting forest fires
Stay tuned to the MANTIS Web site http://mantis.cs.colorado.edu

8. CONCLUSION
The MANTIS sensor system achieves a lightweight classically

structured multithreaded operating system in a memory footprint
of less than five hundred bytes, including scheduler and network
stack. The MANTIS OS achieves energy efficiency by implement-
ing a sleep function. Its power-efficient scheduler recognizes when
all threads are sleeping and then sleeps the microcontroller for a
duration deduced from each thread’s sleep time. MOS supports a
simple C API that enables cross-platform support, reuse of a large
installed code base, and a low barrier to entry in terms of program-
ming for sensor networks. MOS also supports advanced sensor OS
features such as multimodal prototyping, dynamic reprogramming,
and remote shells. The MANTIS nymph offers a single-board GPS-
enabled solution that is also extensible.

9. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A

Survey on Sensor Networks”, IEEE Communications
Magazine, August 2002

[2] J. Kumagi, “The Secret Life of Birds”, IEEE Spectrum, April
2004, vol. 41, issue 4, pp. 42-49.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister
”System Architecture Directions for Networked Sensors”.
Proceedings of Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), November 2000.

[4] R. Min, M. Bhardwaj, S. Cho et al, ”An Architecture for a
Power-Aware Distributed Microsensor Node”, in IEEE
Workshop on Signal Proc. Systems, pp. 581590, Oct 2000.

[5] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B.
Shucker, J. Deng, R. Han, “MANTIS: System Support for
MultimodAl NeTworks of In-situ Sensors”, 2nd ACM
International Workshop on Wireless Sensor Networks and
Applications (WSNA) 2003, pp. 50-59.

[6] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D.
Ganesan, L. Girod, B. Greenstein, T. Schoellhammer, T.
Stathopoulos, and D. Estrin: “EmStar: An Environment for
Developing Wireless Embedded Systems Software”, CENS
Technical Report 0009, March 24, 2003.

[7] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan,
D. Estrin, ”EmStar: a Software Environment for Developing
and Deploying Wireless Sensor Networks”, to appear in the
Proceedings of USENIX 04.

[8] F. Martin, B. Mikhak, and B. Silverman, ”MetaCricket: A
Designer’s Kit For Making Computational Devices,” IBM
Systems Journal, vol. 39, nos. 3 and 4, 2000.

[9] Crossbow motes, http://www.xbow.com.
[10] R. L. Rivest. “The RC5 Encryption Algorithm”,Proceedings

of the 1994 Leuven Workshop on Fast Software Encryption,
pages 86-96

[11] J. Carlson, R. Han, S. Lao, C. Narayan, S. Sanghani, ”Rapid
Prototyping Of Mobile Input Devices Using Wireless Sensor
Nodes”, 5th IEEE Workshop On Mobile Computing Systems
and Applications (WMCSA) 2003.

[12] Atmel AVR 8-bit RISC processor,
http://www.atmel.com/products/AVR

[13] AVRX Real-Time Multitasking Kernel for the Atmel AVR
series of micro controllers,
http://www.barello.net/avrx/index.htm.

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

[14] J. Labrosse, MicroC/OS-II: The Real-Time Kernel, 2nd
edition, CMP Books, November 1998.

[15] Portable Operating System Interface(POSIX) - Part 1:
System Application Programming Interface (API)[C
Language] ISO/IEC 9945-1:1996, IEEE

[16] D. Ely, S. Savage, and D. Wetherall: “Alpine: A User-level
Infrastructure For Network Protocol Development”. In Proc.
3rd USENIX Symposium on Internet Technologies and
Systems, pages 171-183, March 2001.

[17] Wei Ye, John Heidemann and Deborah Estrin, ”An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks”, In Proceedings INFOCOM, New York, NY, USA,
June, 2002.

[18] H. K. Jerry Chu, ”Zero-Copy TCP in Solaris”, Proceedings
of the USENIX 1996 Annual Technical Conference, San
Diego, California, January 1996.

[19] A. Bookstein and S. T. Klein. ” Is Huffman coding dead?”.
Computing, 50:279– 296, 1993.

[20] WINE, http://www.winehq.com/.
[21] C. Intanagonwiwat , R. Govindan , D. Estrin, ”Directed

Diffusion,” ACM MobiCom 2000, pp. 56-67
[22] A. Sheth, B. Shucker, R. Han, ”VLM2: A Very Lightweight

Mobile Multicast System for Wireless Sensor Networks”,
IEEE Wireless Communications and Networking Conference
(WCNC) 2003, New Orleans, Louisiana.

[23] P. Levis and N. Lee. “Simulating Tinyos Networks”.
http://www.cs.berkeley.edu/ pal/research/tossim.html.

[24] L. F. Perrone and D. M. Nicol: A Scalable Simulator for
TinyOS Applications, Winter Simulation Conference, 2002.

[25] S. Park, A. Savvides, M. B. Srivastava, ”SensorSim: A
Simulation Framework for Sensor Networks”, In the
Proceedings of MSWiM 2000, Boston, MA, August 11, 2000.

[26] A. Mainwaring, J. Polastre, R. Szewczyk D. Culler, J.
Anderson,”Wireless Sensor Networks for Habitat
Monitoring”, First ACM Workshop on Wireless Sensor
Networks and Applications (WSNA) 2002, pp. 88-97.

[27] S. Tilak, N.B. Abu-Ghazaleh, W. Heinzelman, “A Taxonomy
of Wireless Micro-sensor Network Models”, ACM
SIGMOBILE Mobile Computing and Communications
Review, Vol. 6 Ch. 2 pages 28-36. 2002.

[28] P. Levis, D. Culler “Mate: a Virtual Machine for Tiny
Networked Sensors”, ASPLOS, Oct. 2002.

[29] J. Deng, R. Han, S. Mishra, ”A Performance Evaluation of
Intrusion-Tolerant Routing in Wireless Sensor Networks,”
IEEE 2nd International Workshop on Information Processing
in Sensor Networks (IPSN ’03), 2003, Palo Alto, California,
pp. 349-364.

[30] F. Martin, B. Mikhak, and B. Silverman: MetaCricket: A
designer’s kit for making computational devices, IBM
Systems Journal, vol. 39, nos. 3 & 4, 2000.

[31] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The
Cricket Location-Support System”, Proc. of the Sixth Annual
ACM International Conference on Mobile Computing and
Networking (MOBICOM), August 2000.

[32] M. Leopold, M. B. Dydensborg and P. Bonnet. “Bluetooth
and Sensor Networks: A Reality Check”. 1st ACM conference
on Sensor Systems,(Sensys’03) LA, CA, November 2003

[33] The Smart-Its project, http://www.smart-its.org/.
[34] The Eyes project, http://eyes.eu.org/.
[35] J. D. Case, M. Fedor, M. L. Schostall, and C. Davin. RFC

1157: Simple network management protocol (SNMP). RFC,

IETF, May 1990
[36] B. Deb, S. Bhatnagar, B. Nath “A Topology Discovery

Algorithm for Sensor Networks with Applications to Network
Management”, DCS Technical Report DCS-TR-441, Rutgers
University May 2001

[37] J. Zhao, R. Govindan, D. Estrin “Computing Aggregates for
Monitoring Wireless Sensor Networks”, First IEEE
International Workshop on Sensor Network Protocols and
Applications, Anchorage, AK. May 2003

[38] Single chip ultra low power RF transceiver
http://www.chipcon.com/files/CC1000DataSheet2 1.pdf,
2001

[39] Crossbow, http://www.xbow.com/.
[40] E. Welsh, W. Fish, P. Frantz, ”GNOMES: A Testbed for

Low-Power Heterogeneous Wireless Sensor Networks,” IEEE
International Symposium on Circuits and Systems (ISCAS),
Bangkok, Thailand, 2003.

[41] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D.
Rubenstein. ”Energy-efficient Computing For Wildlife
Tracking: Design Tradeoffs and Early Experiences With
Zebranet”, In ASPLOS, San Jose, CA, October 2002.

[42] J. Elson, D. Estrin “Time Synchronization for Wireless
Sensor Networks”, International Parallel and Distributed
Processing Symposium (IPDPS), Workshop on Wireless and
Mobile Computing, April 2001

[43] J. Elson, L. Girod, D. Estrin “Fine-Grained Network Time
Synchronization using Reference Broadcasts”, In OSDI 2002,
Boston, MA. December 2002.

[44] J. Elson, K. Rmer, “Wireless Sensor Networks: A New
Regime for Time Synchronization”, in proceedings of the
First Workshop on Hot Topics In Networks (HotNets-I),
Princeton, New Jersey. October 28-29 2002

[45] H. Dai, R. Han, ”TSync : A Lightweight Bidirectional Time
Synchronization Service for Wireless Sensor Networks”,
ACM SIGMOBILE Mobile Computing and Communications
Review, Special Issue on Wireless PAN and Sensor Networks,
vol. 8, no. 1, January 2004, pp. 125-139.

[46] S. Ganeriwal, R. Kumar, S. Adlakha, M. Srivastava,
”Network-wide Time Synchronization in Sensor Networks,”
Technical report, UCLA, Dept of Electrical Engineering,
2002.

[47] Simple Network Time Protocol, (SNTP) version 4. IETF
RFC 2030

[48] Ning Xu, “Implementation of Data Compression and FFT on
TinyOS”, Embedded Networks Laboratory, Computer Science
Dept. USC. Los Angeles,
http://enl.usc.edu/ ningxu/papers/lzfft.pdf.

[49] D. Grunwald, C. B. Morrey III, P. Levis, M. Neufeld, K.
Farkas, “Policies for Dynamic Clock Scheduling”, Operating
Systems Design and Implementation 2000.

[50] W. Hamburgen, D. Wallach, M. Viredaz, L. Brakmo, C.
Waldspurger, J. Bartlett, T. Mann, K. Farkas, ”Itsy: Stretching
the Bounds of Mobile Computing,” IEEE Computer, vol. 34,
no. 4, April 2001, pp. 28-36.

[51] D.R. Engler, M. Frans Kaashoek, and J. O’Toole Jr.,
”Exokernel: An Operating System Architecture for
Application-level Resource Management”, Symposium on
Operating Systems Principles (SOSP), December 1995, pp.
251-266.

[52] D. Albonesi, R. Balasubramonian, S. Dropsho, S.
Dwarkadas, E. Friedman, M. Huang, V. Kursun, G. Magklis,

To appear, ACMKluwer Mobile Networks & Applications (MONET) Journal, Special Issue on Wireless Sensor Networks, August 2005

M. Scott, G. Semeraro, P. Bose, A. Buyuktosunoglu, P. Cook,
S. Shuster, ”Dynamically Tuning Processor resources with
Adaptive processing”, IEEE Computer, December 2003, pp.
49-58.

[53] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, T.
Weller, ”Energy Management for Commercial Servers”, IEEE
Computer, December 2003, pp. 39-48.

[54] J. Luo and N.K. Jha, ”Battery-Aware Static Scheduling for
Distributed Real Time Embedded Systems”, Proc. 38th Design
Automation Conference, ACM Press, 2001, pp. 444-449.

[55] R. von Behren, J. Condit, and E. Brewer ”Why Events Are A
Bad Idea (for High-concurrency Servers)” 9th Workshop on
Hot Topics in Operating Systems (HotOS IX) 2003.

[56] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur ”Cooperative Task Management Without Manual
Stack Management”, In Proceedings of the 2002 Usenix ATC,
June 2002.

[57] H. C. Lauer and R. M. Needham. ”On the Duality of
Operating System Structures”, In Second International
Symposium on Operating Systems, IR1A, October 1978.

[58] J. K. Ousterhout. ”Why Threads Are A Bad Idea (for most
purposes)”,Presentation given at the 1996 Usenix Annual
Technical Conference, January 1996.

[59] J. Larus and M. Parkes, ”Using Cohort Scheduling to
Enhance Server Performance” Technical Report
MSR-TR-2001-39, Microsoft Research, March 2001.

