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Summary. The boundary layer nature of vigorous thermal convection is 
explored using high resolution numerical solutions to the governing hydro- 
dynamic equations. These solutions are obtained for a series of idealized 
models of the Earth’s mantle in which the viscosity is assumed to be constant. 
A detailed analysis of the local energy balance within the horizontal and 
vertical thermal boundary layers is presented in terms of which a test of the 
fundamental assumptions of boundary layer theory is provided. The results of 
this test have important geophysical consequences since the asymptotic pre- 
dictions of boundary layer theory have been employed extensively in the 
context of thermal history modelling. Although boundary layer theory 
closely predicts the correct power-law behaviour of various quantities it does 
not determine their absolute values accurately. Vertical advection is shown to 
play an important role in the energy balance within horizontal boundary 
layers at all Rayleigh numbers. Horizontal and vertical advection dominate 
the energy balance within vertical plumes while horizontal diffusion plays a 
very minor role. When heating is partially from within the fluid, vertical 
advection into the upper thermal boundary layer can produce significant 
departures in the thermal structure from that found when heating is entirely 
from below. For a free upper boundary this results in a relative flattening of 
the variations of surface topography and heat flow across the convection 
cells. For a constant velocity upper boundary (similar to plate motion) the 
bathymetry flattens but the heat flow does not; this result agrees with marine 
observations. Rigidity of the thermal boundary layer below the upper surface 
is not included explicitly in the model, and it is not known whether the 
inclusion of this feature in future models would significantly alter the topo- 
graphic expression. If not, the observed departure of the oceanic bathymetry 
from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 dependence at old ocean floor ages could be attributed to a 
small amount of internal heating in a mantle-wide convective circulation. 

*hesent address: Department of Geology, University of Toronto, Toronto, Ontario M5S I A l ,  Canada. 
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390 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Introduction 

Convection in the Earth’s mantle is a high Rayleigh number phenomenon. Consequently 
temperature variations within the flow are concentrated in narrow horizontal and vertical 
boundary layers which surround adiabatic interior regions. Since virtually all of the heat 
transfer in vigorous convection is effected through these boundary layers a detailed analysis 
o f  their thermal structure will lead to a better understanding of heat transport within the 
mantle. 

The need for such an analysis is indicated by recent developments both in boundary layer 
theories of mantle convection and in the modelling of planetary thermal histories. In both of 
these areas particularly simple aspects of vigorous convection are exploited in order to 
generate approximate results which can then be applied to more complex geophysical 
problems while avoiding the additional complexities of the non-linear hydrodynamic equa- 
tions themselves. In the former, the fact that temperature variations are concentrated within 
the boundary layers is utilized to predict the actual temperature structure (Roberts 1979; 
Olson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Corcos 1980). In the latter, simple (semi-empirically derived) power-law relation- 
ships between the Rayleigh number and various quantities of interest are used to para- 
meterize the influence of mantle convection upon the internal energy budget of the interior 
(Tozer 1967, 1972, 1974; McKenzie & Weiss 1975; Sharpe & Peltier 1978, 1979; Cassen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et al. 1979; Kaula 1979; Schubert, Cassen & Young 1979; Turcotte, Cooke & Willeman 
1979; Daly 1980; Davies 1980). Both of these simplifying aspects of vigorous convection are 
a consequence of the boundary layer behaviour at high Rayleigh number and our main pur- 
pose in this paper is to provide a detailed and quantitative description of this behaviour. 

There are two approaches which one might take in producing such an analysis: (a) that 
embodied in boundary layer theory, and (b) direct numerical integration of the governing 
field equations. The major advantage of the former approach is its simplicity, in that 
computations of the temperature field are confined to the region of interest while ignoring 
the nearly adiabatic core of the convection cell. The disadvantage, however, is that due to 
the necessary additional simplifying assumptions, boundary layer theory delivers only 
approximate answers to the questions of interest, Furthermore, boundary layer theory 
cannot be applied when the convective circulation is even partly forced by heating from 
within. This is a severe restriction in the context of the geophysical problem since we expect 
that the Earth’s mantle must experience at least some internal heating due to radioactivity 
and this will contribute to the forcing of the circulation. In order to address the geophysically 
relevant issues we are therefore obliged to resort to direct numerical integration of the 
governing equations. 

Because of the high Rayleigh number of mantle convection, the thermal boundary layers 
are thin and a major portion of the numerical integration is involved in obtaining the nearly 
adiabatic passive flow field in the central core of the cells. In order to achieve adequate 
numerical resolution of the boundary layers we have used relatively fine finite-difference 
meshes with a maximum of 96  x 96 intervals. This has resulted in sufficient detail within the 
boundary layers to enable direct comparison with the thermal structure predicted by boun- 
dary layer theory. Converged steady-state solutions were obtained for a range of Rayleigh 
numbers encompassing those believed to be appropriate to the Earth’s mantle. Therefore, 
subject to certain assumptions, the numerical results may be related directly to the geo- 
physical problem. In this paper we examine the validity of these assumptions and, subject 
to  the restrictions which they impose, explore the implications of our calculations for con- 
vection in the Earth’s mantle. 

In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 we briefly review the physical and mathematical structure of the convection 
problem, focusing on the special case of this general problem whch is most relevant to the 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA39 1 

planetary interior. Section 3 concerns a detailed discussion of the boundary layer nature of 
the numerical solutions and in it we obtain an estimate of the value of the Rayleigh number 
above which boundary layer behaviour is first fully revealed. This section also includes a 
detailed assessment of the validity of boundary layer theory for heated from below convec- 
tion in which we particularly stress the importance of the vertical advection of heat in the 
local energy balance within the horizontal boundary layers. Section 3 ends with a discussion 
of the effects of internal heat generation on the thermal structure of the upper boundary 
layer and we demonstrate that these effects are primarily a consequence of vertical advec- 
tion. Section 4 is devoted to the application of our numerical results to the problem of con- 
vection in the Earth's mantle and to an assessment of the difficulties which such application 
entails. In particular the variation of the heat flow and equilibrium topography across the 
upper surface of typical convection cells is related to various geophysical models of mantle 
convection. Our conclusions are summarized in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Mathematical formulation of the convection problem 

The field equations of classical hydrodynamics are expressions for the pointwise conser- 
vation of mass, momentum, and energy which are completed by a suitable thermodynamic 
equation of state. For incompressible fluids, these have the respective forms (e.g. Landau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Lifshitz 1959): 

v - u  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  (1 1 

in which u and p are the velocity and density fields, t is time, p is the pressure field,g the 
assumed constant gravitational acceleration, r the deviatoric stress tensor, Cp the specific 
heat at constant pressure, T the absolute temperature, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK the thermal conductivity, and H the 
rate of heating per unit volume. In the equation of state (4), which has been assumed linear 
and in which the isothermal compressibility has been neglected, the parameterpd =p(T= Td) 
where Td is a reference temperature, and (Y is the coefficient of thermal expansion. If the 
stress-strain relation is Newtonian and the fluid is incompressible and isotropic, then 

where 71 is the dynamic viscosity. In the Earth the diffusivities of momentum and heat are 
such that the Prandtl number Pr = 7) Cp/K is essentially infinite, in which case the inertial 
force on the left side of (2) is completely negligible, 

Throughout this paper we shall be concerned with a model of convection in a horizontal 
layer of fixed depth d subject to free-slip (zero tangential stress) conditions on both upper 
and lower boundaries. The corresponding boundary conditions on the temperature field will 
be formulated in such a way that we may move smoothly from models which are heated 
from below to models which are heated from within. For this reason the condition at the 
upper surface will always be one of constant temperature while at the lower boundary we 
shall impose either a condition of constant temperature or a condition of constant heat flux. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
8
/2

/3
8
9
/6

9
2
3
9
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



392 

All of  the solutions we shalk discuss will pertain to square boxes (i.e. unit aspect ratio cells), 
the vertical boundaries of which are planes of mirror symmetry with respect to the tempera- 
ture and velocity fields. The numerical scheme employed is essentially the same as that in 
McKenzie, Roberts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Weiss (1974) and Jarvis & McKenzie (1980) except that, for finite- 
difference grids consisting of other than 24 x 24 or 48 x 48 mesh points, we have used a new 
direct solver for the Poisson equation (Swarztrauber & Sweet 1975) which is more flexible 
(though less efficient). 

For convenience of presentation, all of the hydrodynamic fields have been non- 
dimensionalized through introduction of the characteristic scales 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

where x is the horizontal coordinate, z is the vertical coordinate [0, d ]  measured positively 
upwards, the primed variables are dimensionless, T, is the (constant) temperature of the 
upper surface, v is the kinematic viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ / p ) ,  and the characteristic temperature TI 
depends upon the thermal boundary condition to be applied at the lower surface (z = 0). If 
we impose a constant temperature To at z = 0 then T I  = A T  = (To - Td), whereas if we hold 
the heat flux fixed then To is undetermined and we arbitrarily choose TI = 1°C. Substitution 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) into (1)-(5) yields the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w - u  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

- V p  = - p  k +&TI  V 2 u  (8) 

DT - _  - K' v2 T +  E' 

Dt 
(9) 

where the primes have been dropped. In (7)-(9) k is a unit vector in the positive z-direction, 
and K and E' are the dimensionless thermal diffusivity and heating rate given by 

Here we shall be concerned only with two-dimensional flows confined to the x -z plane and 
can therefore satisfy the solenoidal condition (7) by defining u in terms of a stream function 
\k such that u = (- a\k/az, 0, a\k/ax). The pressure field may be eliminated by taking the 
curl of (8) which yields 

a T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V Z w = -  

ax 
where w is they-component of the dimensionless vorticity o defined by 

a=  w x u .  

Substituting in (1 2 )  for u in terms of \k yields 

V2* = -aW. (13) 

Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) ,  (1 l), and (13) determine the time-dependent temperature and velocity 
fields and contain two dimensionless parameters K '  and E ' .  Two alternate and more useful 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 93 

parameters can be constructed from these which are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  the ratio of internal heat production 
to the total heat flow across the upper surface of the box, and R ,  the Rayleigh number. If F 
is the heat flux into the base of the box then 

Hd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p=F+Hd' (14) 

For a constant temperature lower boundary condition and p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 (the so-called Benard con- 
figuration; Benard 1901) the (Benard) Rayleigh number is defined as (Jeffreys 1926) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gaATd3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RE3 =-- 

K U  

while for the case of constant heat flux through the lower boundary and p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 (as investi- 
gated by Roberts 1967) the (Roberts) Rayleigh number is 

where K =K/pdCp is the dimensional thermal diffusivity. Note that for Benard convection 
K '=R; ' .  

2.1 A P P L I C A T I O N  T O  T H E  E A R T H  

Although the above field equations were derived for incompressible fluids, we wish to apply 
them to the Earth's mantle across which the density increases by 60-70 per cent. Jeffreys 
(1930) showed that the equations for the onset of convection (i.e. infinitesimal motion) 
were the same for compressible fluids as for incompressible fluids if the temperature gradient 
in excess of the local adiabatic gradient was employed in place of the actual gradient, but 
only if the overall variations of density and of the adiabatic gradient are small. Even this 
equivalence breaks down at finite flow velocities because of the greater relative importance 
in compressible fluids of the non-linear terms representing the frictional dissipation of 
kinetic energy into heat (ignored for infinitesimal motions). Jeffreys' conclusion has never- 
theless been widely quoted as authority for the use of Boussinesq's (1903) incompressible 
approximation in studies of mantle convection. Spiegel & Veronis (1960), Mihaljan (1962), 
and Malkus (1 964) have subsequently demonstrated through scale analysis that this 
approximation is justified for finite amplitude convection only when the length scale over 
which the density vanes significantly is much greater than the depth over which convection 
itself extends. For the Earth's mantle this condition requires 

d 
- < 1  
HT 

where HT = Cp/ga is the adiabatic temperature scale height of the mantle (Peltier 1972; 
Hewitt, McKenzie & Weiss 1975). 

For mantle convection Jarvis & McKenzie (1980) estimate values of d/HT = 0.3 for con- 
vection confined to the upper mantle (0-700 km depth) and ~ / H T  = 0.6 for the whole 
mantle (0-2900km). Thus, particularly for the whole mantle, equation (17) is not 
rigorously satisfied and hence use of the Boussinesq approximation cannot be justified by 
scale analysis. However, numerical solutions of the non-linear equations governing the 
temperature and velocity fields in a compressible fluid (Jarvis & McKenzie 1980) do appear 
to provide the required justification. These calculations show that for d/HT = 0.5, the main 
influence of compressibility and viscous dissipation combined is that due to the variation of 
the adiabatic gradient. Thus, assuming that the adiabatic gradient in the mantle is reasonably 
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394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJamis and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Physical parameters for whole mantle models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g =  1 0 m s - ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a =  1.4X10-5K- ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4.9 X 10’ kg 6’ 
d = 2.9 X103km 
Q = 4.9 X l O ”  kg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn - ’  s- ‘  
~ = 2 . 5 X l O - ~ i i i ~ s - ’  (2.5 X cm2 s-’) 
C, = 1.2 X lo3 J kg-’ K-’ 
u =  1.0X10’8m2s- ’  (1 .O X 1 0 2 2  cm2 s”) 

(4.9 g cm-’) 

(4.9 x 1OZZP) 

constant the properties of the circulation should be well represented by solutions of the 
Boussinesq equations (7)-(9). In application of these solutions to the Earth it must then be 
understood that the values of AT and F in (14), (1 5 )  and (16) must be interpreted as values 
in excess of those associated with a constant adiabatic gradient. 

The Rayleigh number appropriate to convection in the Earth’s mantle depends strongly 
upon the depth of the convecting zone. Unfortunately the depth extent of the circulation 
involving plate creation and destruction is a matter of current debate. The two main hypo- 
theses are: (a) that convection is confined to the upper 700 kni of the mantle ( e g  Turcotte 
& Oxburgh 1967, 1972; Richter 1973a; McKenzie et al. 1974; McKenzie & Weiss 1975; 
Parmentier & Turcotte 1978; Richter & McKenzie 1978), and (b) that convection extends 
throughout the mantle from the Earth’s surface to the core-mantle boundary ( e g  Hess 
1962; Peltier 1972; Davies 1977; O’Connell 1977; Sharpe & Peltier 1978, 1979; Elsasser, 
Olson & Marsh 1979:Peltier 1980).Geophysicai and geochemical data are not yet sufficiently 
discriminating, of themselves, to rule out completely either hypothesis and the analysis 
presented here reflects this impasse. We do not argue in favour of either hypothesis, but 
rather consider the implications of scaling simple numerical models to each case. 

For the case of upper mantle convection we shall employ the same values for the physical 
parameters as those adopted by McKenzie et al. (1974) which lead to R R  = 1.4 x lo6 or 
RB = 1 . 2 ~  lo5 (see equation 21). For the case of whole mantle convection we may employ 
the values listed in Table 1 as representative. Allowing for the spherical geometry of the 
Earth we estimate a mean heat flow at mid-mantle depth of about 94 mW m-’, based on an 
oceanic heat flow of 58 mW m-’. A mean mantle viscosity of77 = 5 x lo’’ poise is consistent 
with post-glacial rebound analyses which indicate an upper mantle viscosity of loz2 poise 
(Peltier, Farrell & Clark 1978; Peltier 1981) increasing to values of approximately poise 
through the seismic discontintuity at 670 km depth (Wu & Peltier, in preparation). With 
these values we estimate R ,  = 2.5 x lo7 for the whole mantle. There is considerable uncer- 
tainty in this estimate, however, since heat flow in particular has likely been underestimated. 
A separate estimate OfRB may be obtained by assuming AT = 3000°C in excess of adiabatic, 
which yields RB -- 4 x lo6 = 5 x lo3 R,  where R,  is the critical Rayleigh number (equation 
19). The numerical solutions discussed in the following section encompass the above range 
of estimates of R R and R B. 

3 Numerical solutions 

The finite difference calculations discussed here all pertain to steady state single cell solu- 
tions with aspect ratio (width : depth) equal to one. We shall initially consider models with 
no internal heating ( p  = 0) for which the lower boundary is held at constant temperature. 
For this heating configuration the Nusselt number Nu is the ratio of the actual heat flow 
across the layer to that which would be effected in the absence of convection, or 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA395 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 represents the horizontal average. For R B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ R ,  (where R ,  is the critical Rayleigh 
number for the onset of convection), Nu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 ;  for R B  > R,, Nu > 1. With the free-slip, 
constant temperature boundary conditions employed in this case R ,  can be obtained 
analytically as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R ,  = [nz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T / u ) ~ ] ’  (aln)’ (1 9) 

where a is the aspect ratio (Chandrasekhar 1961). For a = 1,  the case with which we are con- 
cerned, R ,  = 779.273. 

Subsequent to our discussion of solutions to the Benard problem we shall consider 
models with a constant heat flux lower boundary condition and 0 Q ,u Q 1. For such models 
the heat flux across the layer is the same regardless of whether or not convection occurs 
while the temperature drop AT becomes a free parameter. In terms of this free parameter we 
may define a new Nusselt number as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Nu’=- A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATcond 

AT 

where AT is the actual temperature difference across the layer and AT,,,d is that which 
would exist in the absence of convection. As for the Benard problem, there is a critical 
Rayleigh number Rd such that for RR Q R:, Nu‘= 1 while for RR > R;,Nu’> 1. The value 
of RL must be determined numerically in this case and for ,u = 0 with an aspect ratio of one 
it is Rk = 586.8 (Jarvis & McKenzie 1980). Comparing solutions with constant heat flux and 
constant temperature lower boundary conditions (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 = 0), McKenzie et a/. (1974) found 
that Nu’ =Nu when 

R R  = 0.231 R;l3. (21) 

From this it follows that the Rayleigh number appropriate to mantle convection expressed 
in terms of one boundary condition may differ from that in terms of the other by more than 
an order of magnitude when the Nusselt numbers are equal. It is therefore important to keep 
clearly in mind which Rayleigh number is relevant in a given context. 

Our discussion of the numerical results will commence with those for the Benard con- 
figuration since boundary layer theory for this case is reasonably well developed. There is 
also a numerical advantage gained in this case because the mean temperature is known in 
advance as T,  + AT/2 and this increases the rate of convergence to the steady state. 

3.1 T H E  B O U N D A R Y  L A Y E R  N A T U R E  O F  H I G H  R A Y L E I G H  N U M B E R  FLOWS 

In Fig. 1 we compare streamlines, isotherms, and vertical profiles of horizontally averaged 
temperature and horizontal velocity at Rayleigh numbers RB = lOR, and R B  = 104R,. 
Although RB differs by three orders of magnitude in the two cases, the 9 contours and hori- 
zontal velocity profiles reveal only small qualitative differences. The isotherm contours and 
mean temperature profiles, however, are radically different. At low RB the cold isotherms 
are advected downwards and the hot isotherms upwards, resulting in the generation of a 
gravitationally stable central zone as indicated by the reversal of the vertical gradient of the 
mean temperature profile. At high RB the isotherms are swept clear of the central zone into 
thin boundary layers which surround the cell. The corresponding mean temperature profile 
clearly shows the steep gradients in the upper and lower thermal boundary layers and the 
isothermal nature of the central core. The mean profile of the horizontal component of 
velocity u ,  on the other hand, reveals no similar boundary layer structure. Due to the high 
value of the Prandtl number, inertial effects are unimportant and velocity boundary layers 
cannot develop in such a viscously dominated flow. The profile has the form of a simple 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA96 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. T. Jarvis and W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T' 

Figure 1. Contours of dimensionless temperature T' and streamfunction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW' and vertical profiles of hori- 
zontally averaged temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T' ) and horizontal component of velocity ( u '  ). (The symbol ( ) indicates 
the horizontal average of the enclosed quantity.) The scale for ( T ' )  is indicated at the bottom of each 
graph while that for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( u '  ) (expressed as a fraction of the maximum value ( u '  is indicated at the top 
of each graph. (a) RB = lOR,; steady-state solution obtained on a 24 X 24 finite-difference grid. 
Contours: T ' ,  0(1/8), 1; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa', 0(2.25XlO-'+) 1 .95X10-3 ; (~ ' )max  =4.42XlO-'. ( b ) R g =  IO"R,;steady- 
state solution obtained on a 96 X96 finite-difference grid. Contours: T',  0 (1/7) 1, W', O(1.88X10-5) 
1.50X10-'; ( u ' ) ~ ~ ~  = 4.16 X10-4. Dimensional values are obtained by multiplying T '  and ( T ' )  by A T  

(obtained from R B  and equation (15), W' by KRB and ( u ' )  by KRB/d. The circulation is clockwise in 
both solutions. 

shear flow through the thermal boundary layers and isothermal core alike with the only edge 
effect being due to the mechanical free-slip condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(au/az = 0) on the upper and lower 
horizontal boundaries. 

Fig. 2 illustrates the transition of the mean temperature field into the boundary layer 
dominated form in more detail as RB is increased from R ,  to 10' R,. Initially, as RB 
increases, the mean temperature profile acquires a reversed temperature gradient which con- 

0.5 < T'> - 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Vertical profiles of horizontally averaged dimensionless temperature ( T' ) for several values of 
RB. Each profile is labelled with the corresponding value of Rg/R,. (a) Low Rayleigh number regime. (b) 
Transition to boundary layer regime. (c) Boundary layer regime. Steady-state solutions obtained on the 
followinggrids: 24X24 fo rRg<20RC;48X48  f o r R g = 5 0 R C ; 8 0 X 8 0 f o r R g =  1O2Rcand5X10'RC; 
96 X 96 f o r R g > 5  X102R,. 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA397 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tinues to increase until zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20 R, (Fig. 2a). For R B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 50 R, the central zone of reversed 
temperature gradient is split by an isothermal region (Fig. 2b), the extent of which increases 
with RB. As the volume occupied by the isothermal region increases, the regions of steepest 
negative temperature gradient and the adjacent regions in which the gradient is reversed are 
forced closer to the horizontal boundaries (Fig. 2c). Gradients in the central zone are 
actually positive (reversed) but are substantially smaller than those associated with the hori- 
zontal thermal boundary layers - for RB > 500 R ,  by two or more orders of magnitude. 
This weak central gradient in the mean field reflects the broadening of the hot and cold 
plumes as they move vertically and does not imply the existence of a positive temperature 
gradient in the core of the two-dimensional cell as we shall see. Values of R B  representative 
of upper mantle and whole mantle convection (ISOR, and 5 x 103R,, respectively, see 
above) both lie well within the regime of Rayleigh numbers for which the thermal boundary 
layers are well developed. 

The overshoot of the boundary layer temperature profiles beyond the mean temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the cell core is due to horizontal advection out of the plumes near the stagnation points 
while the boundary layer thickness is determined by the pinching effect of transverse advec- 
tion in the same regions. These processes are illustrated in Fig. 3 where we show a series of 
local vertical and horizontal temperature profiles through a cell at R B =  103Rc. The vertical 
temperature profile on the left of Fig. 3(a) through the centre of the hot plume shows that 
as hot material is swept upwards its temperature decreases little until it approaches very 
close to the upper boundary. The depth of the thermal boundary layer is least above the 
rising hot plume and is governed primarily by a balance between the heat conducted down 
the steep temperature gradient and that advected upwards in the plume. The rising plume 
material has higher than average temperatures and as it moves horizontally below the 
constant temperature upper boundary it loses heat through diffusion, both through the 
upper surface and into the underlying central core, thus accounting for the region for 
reversed temperature gradient immediately above the isothermal core. The diffusive cooling 
of the top boundary layer as it moves horizontally leads to an increase of its thickness as it 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TEMPERATURE - HORIZONTAL DISTANCE - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Vertical and horizontal profiles of dimensionless temperature across a convection cell for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R B =  103Rc obtained on a 6 4 x 6 4  finite-difference grid. (a) Vertical profiles along columns of the 
numerical grid as indicated. Column 0 corresponds to the centre of the rising plume (at the left of the 
box), while Column 64 corresponds to the centre of the descending plume (at the right of the box). The 
broken vertical lines indicate the mean temperature of the box of fluid. (b) Horizontal profiles along 
rows of the numerical grid as indicated. Row 1 is one grid-plane above the (constant temperature) bottom 
of the box. Row 63 is one grid-plane below the (constant temperature) top of the box. The broken hori- 
zontal lines indicate the mean temperature of the box of fluid. 
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3 98 

moves towards the stagnation point above the cold descending plume. In Fig. 3(b) the 
horizontal temperature profiles reveal the narrow hot rising plume at the left and the cold 
sinlung plume at the right. The rise in temperature adjacent to the sinking plume and the dip 
in temperature next to the rising plume are due respectively to the entrainment of hot 
material from the rising plume by the cold sinking jet and of cold material from the sinking 
jet by the hot plume. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThls is a peculiar characteristic of steady flow, which arises because of 
the diffusive broadening of the boundary layers. 

In Fig. 4 we have overlaid the vertical and horizontal profiles in a square domain with the 
isothermal portion of each profile positioned at the coordinate along which the profile was 
taken. This presentation is similar to that obtained from the isotherm contours but reveals 
more precisely the local forms of both the boundary layers and plumes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA single isotherm 
for  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT/2 is shown superimposed upon Fig. 4(a) to illustrate the geometric connection 
of the various boundary layers. Fig. 4(b) shows the sensitivity of the boundary layer 
structure when R B  is increased by an order of magnitude to R B  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 104Rc; the boundary 
layer thickness decreases by approximately a factor of 2. The solution shown in Fig. 4(b) 
was obtained at the limits of numerical resolution on the 96 x 96 mesh since the number of 
grid points across the boundary layer ranges from as few as 2 to as many as 6. Fortunately, 
Rayleigh numbers relevant to mantle convection are probably not larger than this (see 
above) and finer meshes may not be required. 

The most fundamental prediction of boundary layer theory, in so far as the modelling of 
planetary thermal history is concerned is the dependence of the heat transfer upon the 
Rayleigh number. For sufficiently large values of RB the prediction is that 

G. T. Jarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeltier 

NU = c ( a )  [ R B / R , ] ~ ’ ~  (22) 

where c(a) is a constant of proportionality whose value depends upon the aspect ratio a. 
Plotting Nu, determined from our  numerical solutions, against RB/R,  (Fig. 5) we find that 
a power-law relationship is obeyed at large R B ,  with an  exponent of 0.313. This agrees with 
boundary layer theory (blt) to within 6 per cent. At sufficiently small values of R B ,  the 
Nusselt number is less than the blt prediction by an amount which decreases with increasing 
R B .  The transition into the power-law regime occurs at RB = 50R,, which is the minimum 
Rayleigh number noted previously for which the mean temperature field adopts its charac- 
teristic boundaIy layer form (see Fig. 2b). This is in accord with the power-law behaviour of 
the boundary layer thickness 6 ,  and mean velocities, U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, at the horizontal and vertical 
boundaries of the cell, which are also plotted in Fig. 5. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Superimposed vertical and horizontal temperature profiles (solid curves) and a single isotherm 
at AT/2  (dashed curve), the mean temperature of the box. The isothermal segment of each profile is 
positioned along the coordinate for which the profile is plotted. Steady solutions shown in(a) R B =  1O’Rc 

and (b) for R B  = 104Rc were both obtained on 96 X 96 finite-difference grids. 
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Mantle convection as a boundary layer phenomenon 399 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

006 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 2 ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5c 102 0' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4  

R g / R C  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 5. Nusset number NU,  dimensionless boundary layer thickness 6 ', mean (dimensionless) horizontal 
velocity at upper surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  and mean (dimensionless) vertical velocity in centre of rising plume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, all 
plotted against the ratio RB/R,. All variables are plotted on  logarithmic scales so that linear trends indi- 
cate power-law dependence on R*/K,. Points indicated by solid circles (a) or  x's (X )  at different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RB/R,  correspond to different numerical solutions. The straight lines are the least-squares best fits to  
points in the range R B / R ~ >  10'. The lines labelled 6 and 6 ;  refer to  the boundary layer thickness 
defined by the depth at which the mean temperature (Td + A T / 2 )  is first reached, and the depth of the 
peak overshoot of temperature above the mean, respectively. Slopes of the straight lines are: Nu, 0.313; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S : ,  -0.278; 6; ,  -0.285; U ,  0.645; W, 0.684. 'The triangles plotted along the Nu curve indicatevaluesof 
Nu computed by Moore & Weiss (1973). Velocities may be redimensionalized by multiplying by 
3.71 cm yr- '  for a whole mantle circulation or by 9.24 cm yr-' for an upper mantle circulation. 

For RB/R,  > 50, the upper and lower boundary layers are isolated by the isothermal core 
of the convection cell and do not interact. Fig. 2(c) shows that in this range the similarity of 
the temperature profiles is striking and extends to the amount by which the boundary layer 
temperatures overshoot that in the cell interior. A formal demonstration of this feature is 
given by Richter & McKenzie (1981)  who have shown that mean temperature profiles (in 
the boundary layer regime) may be closely approximated by the sum of two power series 
involving appropriately scaled depths, the Rayleigh number and coefficients which are 
independent of the Rayleigh number. The following simple scaling argument provides a 
physical understanding of this behaviour. Since RB CY d and Nu Q Rg3 (approximately) an 
increase in d by a factor o f f  produces an increase in RB by a factor of f 3  and in Nu byf. 
From (18) this implies that the near surface temperature gradient remains constant, SO that 
the temperature profile over the new depth is produced by simply adding an isothermal seg- 
ment of length d ( f -  I )  to the central zone. When re-plotted on a dimensionless height scale 
from 0 to 1 the effect is as shown in Fig. 2(c) with the boundary layer thickess 6 varying 
approximately as Ri"3. Fig. 6 illustrates the result of applying this procedure to the profde 
for RB = 50 R,. Figs 6(b) and 6(c) illustrate good agreement between the synthetic profiles 
obtained geometrically through this scaling argument and those computed exactly for 
RB = 103R, and RB = 104Rc respectively. The small discrepancy between synthetic and 
computed profiles is due to the fact that the power-law dependence of the boundary layer 
thickness 6 on RB/R, (deduced from the data plotted in Fig. 5) is only -0.28 rather than 
that anticipated by the simple scaling argument above of - 0.33. Consequently, although the 
synthetic and computed profiles for RB/R, = 10' (not shown) are indistinguishable, as we 
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400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
move further from the reference case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(50R,) the synthetic boundary layers thin more 
rapidly with R B  than those of the exact solutions. Although the synthetic profiles were pro- 
duced by varying d and re-scaling depth they can be scaled back to dimensional profiles with 
any new values of d and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT provided R B  is unchanged. This feature of the temperature 
profiles for high Rayleigh number convection has an important application in thermal 
history modelling since the detailed profiles obtained from numerical calculations could be 
simulated within a parameterization scheme such as that employed by Sharpe & Peltier 
(1 979). 

The success of boundary layer theory in closely predicting the correct power law depen- 
dence of Nu upon RB/R, is well demonstrated by Figs 5 and 6. Recent blt analyses by 
Roberts (1979) and Olson & Corcos (1980) can also account for the overshoot of the 
boundary layer temperature profile beyond the temperature of the isothermal core. How- 
ever, blt does not appear to determine the constants of proportionality very accurately. 
Roberts (1979) compared his predictions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(a) from blt with values derived from the 
Galerkin analysis of Straus (1972) and from the finite-difference solutions of Moore & Weiss 
(1973). Roberts’ values disagree with the numerically derived values by 40 per cent at a = 1 
and show a much stronger dependence upon a than that obtained from the exact numerical 
solutions. In this connection it should be noted that mean values of c(a = 1) obtained by 
the two different numerical models agree to within 1 per cent of one another, with a range 
of less than 4 per cent among the individual estimates. It would therefore appear that the 
Nusselt number, and hence the temperatures within the boundary layer, cannot be 
accurately determined by boundary layer theory alone. Since this limitation may be a conse- 
quence of some error in the initial assumptions of blt we will proceed to directly assess the 
validity of these assumptions by checking them against the numerical solutions. In particular 
we shall examine the nature of the local energy balance within the upper thermal boundary 
layer. This analysis will prove to be of particular interest when we attempt to apply the 
model solutions to the Earth’s mantle. 

Such a study will only be meaningful, however, if our model solutions closely approxi- 
mate the true solutions and consequently we shall first examine the reliability of our 
numerical computations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. T. Jarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

3.2 A C C U R A C Y  O F  T H E  N U M E R I C A L  S O L U T I O N S  

The accuracy of stable solutions to the difference equations, which are consistent with the 
original differential equations, is governed by the rate at which these solutions converge to 

2’ t IT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -  
~ --- 

I ‘  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- 

I ,: 
1 lo? 

I -- 
lo4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR~ 

I 

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
<,l > I 

Figure 6 .  Construction of synthetic temperature profiles. (a) An isothermal segment of length d(f- 1) is 
spliced into the centre of a reference profile at R B  = 50R,. The resulting profile corresponds to that for 
R B  = 50f’Rc. Examples of synthetic profiles (-), rescaled to a dimensionless height of 1, are com- 
pared with computed model profiles (----) for (b) R B  = 10’Rc, i t .  f ’  = 20, and (c) R B  = 104Rc, i.e. 
f’ = 200. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
8
/2

/3
8
9
/6

9
2
3
9
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx - + F E 7 x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI $? '-Ti &qX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Of0 

92 lo3 5~ lo3 

-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/ d  4'2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 80 I00 20 4C 60 80 I00 

NZ - N Z  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Convergence of the numerical solutions. qmax (curve 1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANu (curve 2), expressed as a 
percentage of their respective values at  highest resolution, plotted against N,  the number of intervals 
across the numerical grid (in either direction). Examples are shown for four different values of R B  as indi- 
cated at the lower right of each graph. The vertical dashed line on each graph indicates the minimum 
number of intervals considered acceptable by the criterion, suggested by Moore & Weiss (1973), that at  
least three intervals span each boundary layer. 

constant values as the spacing of the numerical grid is reduced. Since the velocity field is 
much smoother than the temperature field we can expect convergence to be more rapid for, 
say, the maximum value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, q,,, , than for the Nusselt number. Fig. 7 illustrates the con- 
vergence of these two parameters, for several models, as the number of intervals N,  across 
the grid (in each direction) is increased. Because values in the limit N, -+m are unknown, 
individual values have been plotted as a percentage of those obtained at highest resolution. 
The upper curve (labelled 1) in each graph represents the convergence of qmax while the 
lower curve (2) represents that of Nu. Thus, the accuracy of the computed heat transport 
would be greatly over-estimated if based upon percentage changes of qmaX from one grid 
spacing to the next. Since we are concerned with heat transport within the boundary layers 
an appropriate measure of convergence is provided by the lower curve in these graphs. 

For comparative purposes the vertical dashed lines indicate the number of intervals 
required (at each Rayleigh number) to satisfy the condition imposed by Moore & Weiss 
(1973) that at least three intervals span each boundary layer. Fig. 7 illustrates that this 
condition roughly corresponds to an accuracy of 2 per cent in q,,, and 5 per cent in Nu. 

As our solutions have all been obtained on considerably finer meshes we expect that these 
figures will be at least halved in most cases. 

A final point worth noting here is that constancy of the Nusselt number as a function of 
height (in a model solution) does not imply convergence although it does indicate steady- 
state conditions. For example, for steady solutions with R B  = IO'R, and R B  = 103R,,  at 
lowest resolution the Nusselt number was constant with height to within 0.04 per cent and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.05 per cent respectively although the actual values were less than those at highest reso- 
lution by 4 and 3 per cent respectively. 

3.3 L O C A L  E N E R G Y  B A L A N C E  W I T H I N  T H E  H O R I Z O N T A L  B O U N D A R Y  L A Y E R S  

A basic assumption made in most boundary layer theories of convection is that the 
horizontal velocity u is a constant function of x (the horizontal coordinate) within the hori- 
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402 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. T. Jarvis and W. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeltier 

I -  

3 !  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb:  

Figure 8. (a) Horizontal velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' at the upper surface of model convection cells for various values of 
R B/R, (as labelled) ekpressed as a ratio of their respective maximum values u k a y  (b) A small portion of 
t h e  finite-difference grid indicating the volume element bounded by the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Grid points are indi- 
cated by circlcs and x's. The four faces o f  S are individually labelled as 1, 2. 3 and 4.  Conductive fluxes 
across each face arc computed in terms of temperature at the grid points labelled X. Advective fluxes are 
computed in terms of temperature at the points labelled with open circles and streamfunction at  the 
points labelled with solid circles. C0,VDj is the conducted flux across the i th  face; ADi is the advected 
f lux across the ith face. 

zontal boundary layers. In Fig. 8(a) u(x) at the upper surface is plotted as a function of  
RB/R, .  Relatively constant velocities, at high Rayleigh numbers, are confined to a central 
zone covering about 50 per cent of the cell. Although the extent of  this zone increases with 
R B ,  the dependence is very weak. Since the maximum value of R B / R ,  appropriate to  mantle 
convection is less than lo4, plate-like surface motions (i.e. au/ax = 0) could not be produced 
in  a constant viscosity mantle. 

The importance of  &/ax # 0 can be appreciated by considering the steady-state tempera- 
ture equation. In the absence of internal heat sources 

aT aT a2T  a2T 

ax az ax2 az2 
(23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU -- -k W --= K __ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt K -, 

where u and w are the horizontal and vertical components of the velocity vector u. At the 
upper surface w = 0, and from continuity (equation 1 j aw/az = - &/ax; hence if &/ax = 0 
i n  the boundary layer, then w = 0 and the second term in (23). which represents the rate of 
temperature change due to  vertical advection, vanishes. With the additional assumption that 
3' T,lax2 Q a2 T/az2 in horizontal boundary layers, the equation governing heat transfer in 
the thermal boundary layer becomes 

aT a2T 

% = "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.. 
However, when &/ax # 0 ,  w f O  and although u % w we have aT/ax Q aT/az and, therefore. 
it is not clear that ignoring vertical advection is justified. Nevertheless, at high Rayleigh 
numbers we can expect vertical advection to  be unimportant in the central zone where 

To examine the relative importance of conduction and advection in the horizontal and 
vertical directions we integrate equation (23) over a volume 6 u  with square cross-section of 
dimension 2h (where h is the mesh spacing of the finite-difference grid) centred on a grid- 
point  within the thermal boundary layer (Fig. 8bj. This yields 

aupx = 0. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
8
/2

/3
8
9
/6

9
2
3
9
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA403 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is a unit outward pointing normal to the bounding surface S.  Here we have made use 
of the continuity equation to equate u .V T with V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Tu and then applied Gauss' theorem to 
both sides of (25). If we label the top, left, bottom and right faces of the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS as I ,  2 , 3 ,  
and 4 respectively, the equation (26) can be approximated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2h C (ADj+CONDj)=O 

i =  1 

where the subscript i indicates a quantity at the mid-point of the i th  face of S and ADi= 
(u.n)iTi is the advected, and COND, = - K ( V T  .n)i the conducted, flux of temperature 
outwards across the i th  face (see Fig. 8b). 

In Figs 9(a) and (b) we have plotted the horizontal variations of the eight individual flux 
components appearing in equation (27),  evaluated along a row of volume elements centred 
one grid-plane below the upper surface, for a high Rayleigh number flow. Since face 1 of S 
is, in this case, the upper surface of the convection cell, for each volume element AD1 = 0 
and 

4 

CONDI = - C (ADj + CONDi) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  2 

The horizontal advective fluxes (AD2 and AD4) have the largest magnitudes at all x, but are 
of opposite sign. Vertical advection (AD3) is most important near the plumes. The hori- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X '  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
X '  - 

1 , 
X -  

Figure 9. Contributions of the flux components to the local energy balance plotted as a function of 
(dimensionless) horizontal distance x '  within the upper thermal boundary layer, for R B  = lo3 R,. These 
graphs correspond to  a depth one grid-plane below the upper surface. Solution obtained on a 96 X 96 
finite difference grid. (a) Dimensionless advective fluxes ADi, i = 1, 2, 3 , 4 ,  across the four faces of S (see 
text and Fig. 8b). (b) Dimensionless conductive fluxes CONDj, i = 1, 2, 3, 4 across the four faces of s. 
(c) Net horizontal and veitical, advective and conductive, fluxes outwards across S. AADH = A D ,  +AD, ,  
AADv = A D ,  + A D , ,  A C O N D ~  = COND, + COND,, A C O N D ~  = COND, + COND,. Ordinate scales 
indicate the relative magnitudes of the various flux components. Dimensional units may be obtained by 
multiplying by cRgKaT/d,  where c = 3.072 X 
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zontal conductive fluxes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(COND, and COND4) are negligible compared to vertical conduc- 
tive fluxes, but comparable to each other and of opposite sign. Since the energy balance is 
determined by the sum of the flux components, in Fig. 9(c) we have plotted 

G. T. Jarvis and W. R. Peltier 

AADH =ADZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ AD4 

A A D v  = AD1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt AD3 

ACONDH = COND2 i- COND4 

ACONDv = COND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 t COND 3 ,  

where AADH is the net flux out of the volume element due to horizontal advection, AADv 
is the net outward flux due to vertical advection, and so forth. Away from the plumes it is 
generally assumed that horizontal advection balances vertical diffusion or, in our notation, 
that 

AADH = - ACONDv (30) 

and that AADv and ACONDH are negligible. Fig. 9(c) confirms that ACONDH - 0. How- 
ever, throughout much of the central zone vertical advection ( A A D v )  is comparable to or 
greater than vertical conduction. Except in the near vicinity of the mid-point of the cell, 
where w = 0, the correct energetic balance is 

AADH t AADv = - ACONDv . (31) 

Close to the mid-point of the convection cell, where horizontal velocity gradients are 
small, the temperature on face 2 of S is higher than that on face 4 and horizontal advection 
produces a net influx of heat (AADH < 0). This influx is balanced primarily by a net vertical 
conductive out-flow across S (ACOND, > 0). To the left of centre the magnitude of AADH 
is reduced because the horizontal velocity on face zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 of S is less than that on face 4. However, 
vertical advection in this region supplements the influx of heat across S by an amount which 
is greater than the decrease in I AADH I (see Fig. 9c). Further left, in spite of larger hori- 
zontal temperature gradients, horizontal velocity gradients become sufficiently steep that 
horizontal advection produces a net outflow of heat (AADH > 0). Above the upwelling 
plume, vertical advection produces a relatively large net influx of heat which is balanced 
by a net vertical conductive and horizontal advective flux out of each volume element. 
To the right of centre horizontal velocity gradients are negative which tends to offset the 
effects of a diminishing horizontal temperature gradient. Thus, horizontal advection produces 
a greater influx of heat than predicted by boundary layer theory, but this is more than 
compensated for by a net outflow due to vertical advection (AADv > 0). Close to the 
sinking plume vertical diffusion becomes negligible (ACONDv -+ 0) and the balance is 
primarily between vertical and horizontal advection. (Above the centre of the sinking 
plume horizontal diffusion, although small, becomes comparable to the advective fluxes.) 
The overall effect at the surface is to produce a surface heat flow which is greater than that 
predicted by boundary layer theory to the left of centre and less than predicted to the right. 
However, since the thermal effects of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau/ax # 0 and w # 0 contribute in opposite senses, 
the departure from boundary layer predictions is not large at high Rayleigh numbers (see 
Fig. 12 for example). 

This discussion has concerned the energy balance one grid-plane below the surface at 

main qualitative difference between these graphs is that the influence of the plumes recedes 
substantially towards the edges at high Rayleigh numbers. Nevertheless, vertical advection 
remains comparable to the other terms in the local energy balance, except near the mid- 
point of the cell, at all Rayleigh numbers. 

R B  = 103Rc. Fig. 10 shows plots similarto Fig. 9(c) forRB = 1O2Rc andRB = lo4&. The 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA405 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,001 1 

O1- 

- .OO1 t - ,002 

Figure 10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASame as Fig. 9(c) but for (a) R B  = 102Rc and (b) R B  = 104Rc. Dimensional units are obtained 
by multiplying by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc R f i A  T/d where c = 3.072 X lo- '  for (a), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = 3.072 X lo- '  for (b). The scaling 
used here allows direct comparison of relative magnitudes for Figs 9-1 1 if the same physical parameters 
are assumed for all cases. 

I -  - __ 
006 

004 

- 0 0 2  

- 004 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA006 

x- 

Figure 11.  Same as Fig. 10(a) except for depths o f  (a) six grid-planes below the upper surface, (b) 11 
grid-planes below the upper surface, and (c) 16 grid-planes below the upper surface. The depths of these 
planes relative to the mean temperature variation and boundary layer thickness 6 (same as 6 in Fig. 5) are 
shown in (d). Each grid plane is indicated by a solid circle. Depths corresponding to Figs 10(a), 1 l(a-c) 
are also indicated. 

The changing character of the energy balance with depth is shown in Figs 1 l(a)-(c) for 
a model with RB/Rc = 10'. Fig. 1 l(d) indicates the relative depths in the thermal boundary 
layer corresponding to Figs 1 l(a)-(c) which are plotted for depths 6, 11 and 16 grid-planes 
below the upper surface. In the upper portion of the boundary layer (Fig. 1 la) the general 
character of the energy balance remains similar to that at the surface, except that the edge 
effects of the plumes migrate inwards. This is due to the increase in vertical velocity with 
depth within the thermal boundary layer. At a depth centred on the peak of the mean 
temperature profile through the boundary layer (Fig. 1 lb)  vertical diffusion plays a minor 
role in the local balance, and horizontal advection does not produce a net influx of heat 
until close to the mid-point of the cell. Below the depth of peak temperatures (Fig. 1 lc) the 
balance is primarily between horizontal and vertical advection. From a Lagrangian frame of 
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reference (moving with a fluid parcel) this implies that the temperature of the fluid is no, 
changing as it moves through this portion of the grid. (In fact, a slight diffusive warming 
does occur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ACONDv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0) in the central region due to the curvature of the temperature 
profile.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJawis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4 S U R F A C E  H E A T  FLOW 

In their initial boundary layer theory of mantle convection, Turcotte & Oxburgh (1967) 
only considered the major temperature drop across the boundary layer and ignored the over- 
shoot of the temperature profile beyond the mean value of the central core. This theory 
predicts surface heat flow FUm-”’. Figs l l ( b )  and (c) show that the departure of the 
actual temperature profile from that used by Turcotte & Oxburgh should have little influence 
on their result. Vertical advection within the boundary layer, however, could be expected to 
influence this result. In Fig. 12(a) we have plotted the surface heat flow F,, computed at 
the upper surface of a convection model with R B  = 5 x 103Rc and compared this with a 
curve proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx - ~ ’ ~  and constrained to fit the computed curve at the point indicated 
by the small arrow. The surface heat flow was computed by identifying F, with COND1 in 
equation (28) and evaluating (28) over a box of dimension h centred one-half a grid-plane 
below the upper surface, interpolating T and \Ir where necessary. A Rayleigh number 
R B  = 5 x 103Rc corresponds to our estimate of the maximum value appropriate to convec- 
tion in the Earth’s mantle (see discussion above). As anticipated from the discussion of Fig. 
9(c) the computed heat flow falls below the reference curve to the right of centre and above 
to the left. The discrepancy to  the left of centre is reduced by the fact that the reference 
curve approaches infinity as x + 0, whereas the computed flux remains finite, thus necessi- 

* -  

- -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  

Figure 12. Model predictions for R B  = 5 X 103Rc dimensionalized using the physical parameters listed in 
Table 1. (a) Variation of surface heat flux across the upper surface of the convection cell (-) compared 
to a reference curve proportional to x-”* (----) which is constrained to have the same value as the model 
prediction at the point indicated by the small arrow. L is the horizontal dimension of the cell. (b) Bathy- 
metric variation across the top of the convection cell, measured in km relative to the mid-point L/2. The 
three curves labelled A, B and C result from equation (32) when compensation is assumed to occur at 
the depths indicated in (c) as A, B, C respectively. The dashed curve varies linearly with x’” and is con- 
strained to fit curve B at the points indicated by the small arrows. (c) Mean vertical temperature profile. 
Depths A, B and C indicate values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, (equation 32) used in (b). (d) Variation of horizontal surface 
velocity across the top of the convection cell. 
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Mantle convection as a boundaly layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA407 

tating a second cross-over. Away from the edges, the overall trend of the computed curve 
does not deviate substantially from an x - ~ ’ ~  behaviour. Thus boundary layer theory provides 
a reasonable prediction of the power-law dependence of F,  on x ,  particularly to the left of 
centre. 

3.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS U R F A C E  T O P O C K A P H Y  

Integrating the temperature structure in the thermal boundary layer and assuming isostatic 
compensation below. boundary layer theory predicts that the surface topography should 
vary as x ~ ’ ~ .  If we assume the upper surface of the convection cell to be overlain with sea- 
water, the increase in the water depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( x ) ,  relative to that at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0, is predicted to be 

Dl(X)  =- (yPrn j-o=’ [ T(0 ,z  *) - T(x,  z *)] dz * (32) 
P m - P w  

(Oxburgh & Turcotte 1978), where pm is the mean mantle density, pw is the density of 
sea-water, z* is the depth measured downwards and z1 is the assumed depth of isostatic 
compensation. Using equation (32), we have computed D ( x )  from the numerical model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R B  = 5 x 103R,. The resulting bathymetry profiles shown in Fig. 12(b) are for three 
different values of zl. The solid curves labelled A, B, and C result when compensation is 
assumed to occur at the depths indicated in Fig. 12(c) by the arrows labelled A, B, and C 
respectively. When plotted relative to the depth at the mid-point the three curves overlie 
each other in the central region suggesting that compensation has occurred by depth A, the 
base of the thermal boundary layer. The dashed line in Fig. 12(b) varies linearly with xl” 
and is constrained to fit curve B at the points indicated by the two arrows. Away from the 
edges the agreement is quite satisfactory. 

The expression for D , ( x )  given by (32) breaks down close to the edges of the box due to 
the explicit assumption of isostasy and the implicit assumption in the derivation of (32) that 
T(0, z*)  = T ( x ,  z*)  for z* > z1 (below the thermal boundary layer) for all x ;  at all depths in 
the hot rising plume T >  T,., the temperature of the isothermal central core of the convec- 
tion cell, and in the cold sinking plume T <  T,. Hence, the deeper we choose z 1  the greater 
the computed density deficit above the rising plume and the greater the density excess above 
the sinking plume. Nevertheless, by depth A ,  just below the stagnation point of the rising 
plume, the accumulated density deficit is not sufficient to cause significant departure from 
the reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1’2 curve. Therefore, whenever equation (32) is used we will take z 1  to be at 
the base of the thermal boundary layer. 

Application of equation (32) is restricted to high Rayleigh number convection cells for 
which the boundary layer approximations can be justified. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn alternative expression for 
D ( x ) ,  which is free of this restriction, can be derived from a balance of the dynamic forces 
due to the fluid motion at the upper surface (McKenzie et al. 1974; McKenzie 1977). 
Assuming mechanical equilibrium at the upper surface, the normal stress must vanish. For 
small perturbations of the upper surface from horizontal, this requires 

aw 
-P(J=Pl -2pv-  

az 
(33) 

where Po is the hydrostatic pressure which would occur in the absence of motion, P1 is the 
dynamic pressure due to fluid motions and w is the vertical component of velocity. Since 
Po=pgd(l - z / d )  and w = Wjax, if the equilibrium surface is at z = d  + [, then from (33) 
we have 
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408 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P l ( x ,  d )  is obtained by integrating the horizontal component of the momentum equation 
(see McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1974) so that (34) becomes 

G. T. Jarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t ( X )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= El + Ez -t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(36) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is vorticity, C is an arbitrary constant, represents the first term on the right side 
of (35) and Ez the second. If the convection cell is overlain with water of densjty pw then $ 
is amplified by a factor of p / ( p  - p,) and the increase in water depth across the cell is there- 
fore 

D z ( x )  is derived from a consideration of the dynamics of fluid flow, whereas D l ( x )  

derives from a consideration of the resulting thermal structure. Unlike equation (3!2), 
equation (37) is exact at all x ,  for any Rayleigh number. It does not break down in the 
vicinity of the plumes and does not require any assumptions about isostasy and the corre- 
sponding depth of compensation. We can thus use D z ( x )  to assess the validity of the 
assumptions involved in deriving Dl(x) .  

The variations of [ and of the separate contributions to E (given on the right side of 36) 
across the upper surface of a convection cell are shown in Figs 13(a) and (b) for RB = 50 R ,  
and R B  = 104R, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt1 is the contribution due to non-hydrostatic pressures while 
t2  is that due to deflection of the streamlines. At low Rayleigh numbers EZ is smaller than, 
but  comparable to, El  across most of the upper surface (Fig. 13a). However, at high 
Rayleigh numbers, EZ is confined to the vicinity of the plumes and is essentially zero across 
the central portion of the cell. Consequently, at high Rayleigh numbers t = t l ,  except near 
the plumes (Fig. 13b). In the limit = E l  we can show that within the context of boundary 
layer theory equation (37) reduces to a form very similar to (32). 

Since t2  does not vanish at x = 0 we can write 

I 

E 

x -  X’ - x -- 

Figure 13. Topography $(in km) and components I ,  and $* (see equation 36) produced at the upper 
surface of convection cells when: (a) R B  = 50R, and (b) R B  = 104Rc. (c) Comparison o f  bathymetric 
variation D ,  (x) predicted by (32) and D , ( x )  computed from (37) when R B  = 5 X103. The dashed line 
varies linearly with x”’. Dimensional values were obtained using values of physical parameters appro- 
priate to whole mantle convection. For upper mantle convection the ordinate scales should be multi- 
plied by 2.06 in (a) and (b) and by 2.25 in (c). 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEz0 represents ( p / p  - p w )  lz(x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0), a constant. (This equation does not apply in the 
vicinity of the two plumes.) 

Within the thermal boundary layer the momentum equation may be written as 

az 
= VZoz ~ 

ax az2 

ga aT -- 

and hence 

- d z t -  - 

where d - z1 is the depth below which aT/ax = 0. Substituting (40) into (38) gives 

[ T(0, z*) - T(x, z*)] dz* t A-El 
(P  - PW) 1 

(39) 

where z* is measured vertically downwards from the upper surface and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA-El = [gl(0) - 
(XI1 / z  = d  - z ,  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar equation was used by Schubert et al. (1978), and Yuen, Tovish & 

Schubert (1978). Identifying p with pm , equation (41) may be written as 

+D3(x) +- l zo  (42) 

where D3(x) = [ p / ( p  - p,)] A-E1 represents the departure from horizontal of the level of 
constant vertical stress at a mean depth z1  below the upper surface. In boundary layer theory 
it is assumed that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo and Tare  constant in the central core of the convection cell. Hence, 
from eqations (40)-(42) we have D3(x) = 0, in which case equation (42) predicts that the 
variation of Dl(x)  equals that of D2(x) in the central region. It is therefore instructive to 
compare the bathymetry as computed by equations (32) and (37) for a high Rayleigh 
number convection model. In Fig. 13(c), Dl(x) and D2(x) are plotted for a model with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R B  = 5 x lo3&. The reference xl/' curve fit to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD z ( x )  illustrates an approximate xl/' depen- 
dence of Dz(x) in the central region. Although Dl(x) also varies as xl" (Fig. 12b) the 
absolute depths are significantly different along the two curves and DZ(x) -D1 (x) is not 
constant. The coefficients of the reference curves fit to Dl(x) andDz(x) differ by a factor 
of about two, which implies that D3(x) is comparable to Dl(x), rather than vanishingly 
small as required by boundary layer theory. Thus in the derivation of equation (32) the 
assumption of isostatic compensation below the boundary layer (i.e. D3(x) = 0) introduces 
an error of about 100 per cent. Therefore the conclusion of the analysis in this section is 
similar to that reached previously for the Nusselt number: boundary layer theory predicts 
the correct power-law dependence of bathymetry on distance but not the absolute values. 

3.6 L O C A L  E N E R G Y  B A L A N C E  W I T H I N  T H E  V E R T I C A L  P L U M E S  

In this section we briefly examine the thermal structure of a rising vertical plume. The 
characteristic shape of the plume, as defined by the location of the mean temperature iso- 
therm, is shown in Fig. 14(a) for R B  = 103R,. The vertical arrow indicates the direction of 
the flow and the centre line of the plume. The tad of the arrow indicates the height at which 
the plume is narrowest. The horizontal component of velocity, towards the plume axis in the 
lower half of the cell, constrains the plume to be relatively narrow in this region. Moving 
upwards from the base of the arrow, the plume broadens diffusively as horizontal velocities 
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410 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJarvis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X' - / C i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. Characteristics of the rising plume when R B  = 1 0 3 R c .  (a) Shapc of plume as defined by the 
isotherm (Td + A T/2 ) ,  that  is the mean temperature contour. Direction of flow is upwards. Depth of the 
stagnation point thermal boundary layer is indicated by the horizontal bar above the arrow on  the plume 
axis. Steady solution obtained on a 96 X 96 finite-difference grid. (b) Contributions of the dimensionless 
flux cornponen'ts to the local energy balance plotted as a function of vertical distance along the centre- 
plane of the rising plume. (Az is the vertical grid spacing. Notation as in Fig. 9.) (c) Superimposed 
isotherms (heavy solid curves a?d streamlines (light dotted curves). (d) Horizontal variation of mean 
dimensionless vertical velocity JjJ (solid line) and vertical variation of mean dimensionless horizontal 
velocity ( u )  (dashed line). (erepresents the vertical average of a quantity.) 

initially decrease and then change sign. In the uppermost regions diverging horizontal flow 
sweeps the isotherms horizontally. The horizontal bar on the plume axis (above the arrow) 
indicates the depth of the thermal boundary layer above the diverging flow. Below the arrow 
in Fig. 14(a) the plume width increases with depth, in spite of larger horizontal velocities. 
This is a consequence of the higher central temperatures of the plume near the bottom of 
the cell (see Fig. 3a, for example). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An examination of the local energy balance within the plume, in the manner described in 
Section 3.3 for the horizontal boundary layers, has revealed that the energetic balance may 
be expressed as 

AADv + AADH 0; 

that is, vertical advection is balanced primarily by horizontal advection (Fig. 14b). Hori- 
zontal conduction plays a very minor role in the central 15-20 per cent of the plume and is 
negligible elsewhere. This result invalidates the assumption, that vertical advection is 
balanced by horizontal conduction, which was employed in the boundary layer theory of 
Turcotte & Oxburgh (1967) and Oxburgh & Turcotte (1978). 

The recent approach to boundary layer theory taken by Roberts (1977, 1979) and Olson 
& Corcos (1980) avoids this assumption. In these studies it is assumed that advection along 
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streamlines is balanced by diffusion across streamlines. This assumption is only rigorously 
true when streamlines and isotherms are parallel. Fig. 14(c) shows that this is a reasonable 
approximation except at the stagnation points below the sinking plume and above the 
rising plume. In these zones isotherms and streamlines are almost orthogonal. Since these are 
the regions where conduction of heat into and out of the convecting fluid is largest, the 
boundary layer theory prediction of the temperature profile through the upper thermal 
boundary layer may be unreliable at the axis of the rising plume. Errors introduced in this 
manner are advected downstream so that, although the variation of temperature throughout 
the boundary layer may be accurately predicted, the temperatures themselves may not be 
quantitatively correct. This may account for the 40 per cent discrepancy between the values 
of NU/R~’ ’~  predicted by the boundary layer theory of Roberts (1979) and numerical calcu- 
lations of Straus (1972) and Moore and Weiss (1973). In this regard it would be useful to 
compare local temperature profiles generated by boundary layer theory and direct numerical 
integration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a final point in this discussion we illustrate the effects of the torque produced by the 
buoyancy forces in the plumes in terms of the mean vertical and horizontal velocity profiles 
(Fig. 14d). Whereas the vertical gradient of horizontal velocity varies little across the depth 
of the cell the horizontal gradient of vertical velocity increase noticeably towards the 
plumes. 

3.7 E F F E C T S  O F  I N T E R N A L  H E A T I N G  

We will now turn to investigate the effects of partial internal heating on the thermal structure 
of the upper boundary layer. This is of particular relevance to the geophysical problem since 
radiogenic elements are believed to be distributed throughout the mantle and are commonly 
assumed to be the agency which is most important in driving the mantle circulation. Since 
the actual distribution of the radioactive elements in the mantle is not known, we will con- 
sider only the simple case in which the heat sources are uniformly distributed. 

The degree of internal heating in the model is determined by the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  defined in 
equation (14), which expresses the total rate of heat generation within the box of fluid as a 
fraction of the total heat flux across the upper surface of the box. Thus, when p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, heating 
is entirely from below, and when p = 1 heating is entirely from within. In order to prescribe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I-( we must apply a constant heat flux boundary condition at the lower surface and use the 
Rayleigh number R R  defined in equation (16) to characterize the model solutions. 

When p = 0, for a given R R  the main features at the upper surface will be the same as for 
the &nard convection models examined above but with a value of RB determined by 
relation (21). When 1.1 > 0, buoyancy is generated throughout the fluid and all fluid elements 
attempt to circulate through the upper boundary layer in order to deliver their heat to the 
surface. Boundary layer theory cannot be employed to address problems concerning the 
properties of such a flow because heat transfer is not confined to boundary layers. 
Numerical solutions, however, can be used to determine the departure of such flows from 
the boundary layer behaviour of heated-from-below convection. 

Upwelling of hot material from the interior of internally heated convection cells provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
an additional advective component of heat transfer into the thermal boundary layer. Since 
vertical advection was found to play a major role in the energy balance of the boundary 
layers (Section 3.3) we can expect that this will produce a particularly significant effect on 
the thermal structure of flows in which internal heating is important. 

In Fig. 15 streamlines are plotted for three different numerical models to show how the 
horizontal distribution of near surface vertical advection depends on both p and R R .  At low 
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412 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Jarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15. Streamlines (i.e. contours of constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ) of steady convective circulation. (a) R R  = 6 X 10’; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = 0.20. Dimensionless contour interval A*’ is 0.0341. Solution obtained on a 24 X 24 grid. (b) 
R ~ = 6 X 1 0 ’ ; ~ ( = 0 . 6 0 ;  Aq’=O.O267; 2 4 x 2 4  grid. (c) R R =  1.25X107;p=0.20; AQ’=O. l00;96X96 
grid. Circulation is clockwise in all cases. (Dimensional values may be obtained by multiplying A*’  by 
228.7 I( .)  

Rayleigh numbers with p = 0.20 (Fig. 15a) there is little visible effect of internal heating on 
the streamlines; the flow is fairly symmetric. However, when p is increased to 0.60 (Fig. 15b) 
the centre of the circulation is shifted towards the downgoing plume resulting in a broad 
region of relatively uniform upwards velocity. The centre of circulation can be shifted to the 
same degree by increasing the Rayleigh number and keeping p = 0.2 (Fig. 15c). However, 
unlike the solution shown in Fig. 15(b), most of the heat is transferred across the convection 
cell by the rising plume at the left. Vertical velocities in the interior of these cells are largest 
close to the descending plumes. The asymmetric flow structure which is characteristic of 
convection driven by internal heat sources was first observed experimentally in vertical cross 
sections through the circulation by de la Cruz (1970, 1973). Previously Tritton & Zarraga 
(1967) also noted from observed planforms that regions of descending fluid were more 
localized than those of ascending fluid. 

3.7.1 Thermal structure of the upper boundary layer 

The impact of this asymmetry on the temperature and flow structure within the thermal 
boundary layers is illustrated in Fig. 16. Here the vertical coordinate has been exaggerated 
and we have overlain isotherms and streamlines. When heating is from below = 0; Fig. 
16a) streamlines in the central region are approximately horizontal and the spacing between 
isotherms increases smoothly with x (approximately as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl”). When ~ ~ 0 . 6 ,  at a low 
Rayleigh number, streamlines have a vertical component (upwards) across most of the boun- 
dary layer and consequently the spacing between isotherms increases slowly (Fig. 16b). This, 
combined with a weak upwelling plume, produces a more uniform surface heat flow. The 
model with p=0.20  and large R R  (Fig. 16c) exhibits features common to both of the 
previous models. At the left hot material arrives at the surface from a dominant thermal 
plume and then cools as it drifts to the right. Streamlines are almost horizontal and iso- 
therm spacing increases approximately as x1I2. To the right of centre, buoyant material 
arrives from the interior of the convection cell, advecting heat towards the upper surface. 
Streamlines bend upwards and isotherms level in this region. This initial simple cooling 
behaviour followed by internal heating effects is of particular geophysical interest because 
of the influence which it produces upon the surface topography and heat flow (Section 
3.7.2). 

The local energy balance one grid-plane below the upper surface is plotted in Fig. 17(a) 
for the model solution with RR = 1.25 x lo7 and p = 0.20, shown previously in Figs 15(c) 
and 16(c). This diagram should be compared with that shown in Fig. 9(c) for a heated 
from below model with R B  = 103R,. To the right of centre, vertical advection is the major 
component in the local energy balance and produces a net influx of energy into each volume 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA413 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16. Superimposed isotherms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-) and streamlines (----) within the thermal boundary layer, with 
the corresponding variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I"') juxtaposed for: (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR R  = 1.25 X lo', zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.0, 96 X 96 grid, vertical 
exaggeration of 4; (b) R R  = 6 X l o5 ,  p = 0.6,24 X 24 grid, vertical exaggeration of 2; (c) R R  = 1.25 X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo7, 
p = 0.20, 96 X 96 grid, vertical exaggeration of 4. Grid intervals are indicated at the left margin of the 
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7") graphs. The depths indicated by the labels 1 and 2 correspond to the boundary layer thicknesses 6 ,  
and 6 ,  respectively as defined in Fig. 5. (Contour intervals are equal for parts a and c.) 

0 
X '  - I 

x '  4 

Figure 17. (a) Contributions of the dimensionless flux components to the local energy balance plotted as 
a function of horizontal distance x '  one grid-plane below the upper surface. R R  = 1.25 X l o7 ;  p = 0.20; 
96 X 96 grid. Notation as in Fig. 9(c). (b) Variation of horizontal velocity across the upper surface of the 
Same convection cell as in (a) dimensionalized using values in Table 1. 
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414 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
element. (In contrast, when heating is entirely from below, horizontal advection is the major 
component and vertical advection produces a net outflow of energy from each volume 
element.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn Fig. 17(a) we see that the large influx of energy due to vertical advection (to 
the right of centre) is partially offset by a change in sign of the contribution due to hori- 
zontal advection. The sign change in AADH is due to the increase in horizontal velocity in 
this region (Fig. 17b) which is required in order to conserve mass. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJawis and W. R. Peltier 

3.7.2 Heat f low and topography 

The change in thermal structure of the boundary layers due to the asymmetric flow, which 
occurs when heating is partially from within, is sufficient to produce major departures from 
the power law variations of F,, the surface heat flow, and of D(x), the bathymetry, 
discussed above. In Fig. 18 D(x)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,(x) are plotted for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp with R R  held 
constant at a relatively low value. Both expressions for bathymetry D l ( x )  and D2(x) are 
shown for comparison. At p = 0, F ,  varies approximately asx-”2; as p increases from 0.0 to 
1 .O, F,  becomes more uniform and loses its x - ~ ’ ~  dependence. Since D ( x )  is an integrated 
effect it is less sensitive to p at this value of R R  and departures from an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxl” dependence are 
not extreme. (This is partially due to the extra degree of freedom in fitting the reference 
curves to bathymetry.) However, to the right of centre, as p increases, the bathymetry 
increases more slowly than the power-law reference curves. This is a direct consequence of 
the additional heat advected into the base of the boundary layer for p > 0. We define P ,  the 
percentage ‘flattening’ of the bathymetry profiles, as the maximum difference between the 
model bathymetry curve and the reference curve, expressed as a percentage of the value on 
the reference curve. For a fixed R R ,  P is an increasing function of p. (At larger Rayleigh 
numbers the dependence of P on p is more pronounced, but steady solutions cannot be 
obtained for all values of p.) At such low Rayleigh numbers D l (x )  (Fig. 18c) exaggerates 
the amount of flattening in the actual bathyrnetry,D2(x) (Fig. 18a). 

In Fig. 19 a sequence of bathymetry and surface heat flow profiles are shown for three 
values of R R  with p = 0.20 in each case. Fig. 19(a) shows that P increases with R R  while 
Fig. 19(b) indicates that the heat flow variation is not very sensitive to changes in R R .  Thus, 
at RR = 1.25 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo7 and p = 0.20, the bathymetry varies as x1’2 to the left of centre and 
flattens by an amount P =  19 per cent to the right of centre, while the heat flow departs 
little from an x - ~ ’ ~  behaviour. At lower values of R R  and higher p the same value of P can be 

01- H~ , -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l b l  R , 6 s T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 

P 10 U L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 6 r  

1 L - _  L ~- 
‘-5 

x -  x -  x -  

Figure 18. Horizontal variations of (a) bathymetry D , ( x ) ,  (b) surface heat flux F ,  and (c) bathymetry 
D ,  (x), across model convection cells at  R R  = 6 0 X l o 5  and a range of values of p as indicated on the 
graphs. Curves are offset at  the origin for clarity. Solid curves are the model predictions and dashed curves 
are the appropriate reference curves fit to  the model curves at the points indicated by the arrows. Van- 
ables have been dimensionallzed using parameter values from Table 1 .  
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA415 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
; "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -- x ~- 
Figure 19. Horlzontdl variations of (a) bdthymetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD , ( x ) ,  (b) s u r f ~ ~ ~  heat f lux F ,  and (c) bdthyinetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D ,  (x), across model convection cells with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 20 dnd a range of R R  a\  indicdted next to the individual 
curves Profiles are not offset here Solid curves are the model predictions and dashed curves are rhe 
appropriate reference curves fit to the model curves at the points indicated by the arrows Varidbles 
dimensionallzed using parameter values from Table I .  

obtained but F, departs considerably from an x - " ~  power law curve. This is due to the 
different streamline pattern for the two cases as discussed above with reference to Figs 15 
and 16. Profiles of D l ( x )  shown in Fig. 19(c) can be compared with those of D 2 ( x ) .  

Although the absolute values of bathymetry differ considerably the values of percentage 
flattening obtained from profiles of either D l ( x )  or D 2 ( x )  differ little from one another at 
this relatively high Rayleigh number. -- 

.I .2 .4 .6 .8 1.0 

t L -  tL-  

Figure 20. Domain diagrams on which percentage flattening P is plotted as a function of R R  and p .  Solid 
circles indicate the (RR,  p )  coordinates for which values of P were obtained and the adjacent numbers 
give the values of P (in per cent). Approximate contours of constant P are shown for P = 10, 20, and 50 
per cent. The broken diagonal roughly divides domains of steady and non-steady single cell flows: Steady 
single-cell solutions can be obtained at points below the line, time-dependent (or multi-cell) solutions 
above. Points for which solutions were too unsteady to compute meaningful values for P are indicated by 
Us. The horizontal broken line at R K  = 2.5 X l o 7  indicates our estimate of R R  for whole mantle convec- 
tion. The model solutions were obtained on finite-difference grids of 24 X 24 intervals for R R  < 6 X lo ' ,  
48 X 48 for R R  = 1.6 X lo6,  64 X 64 for R K  = 5 X lo6 and 96 X 96 for R R  > 1.25 X l o7 .  (a) Values of P 
determined from profiles of D , ( x ) .  (b) Values of P determined from profiles of D ,  (x). 
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416 G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJawis and W. R. Peltier 

The joint dependence of P on both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and R R  is summarized in the domain diagrams 
shown in Fig. 20. Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is plotted as a function of p and R R .  Values of P are indicated for 
the states examined and manually drawn contours of P indicate the trends. For a given 
amount of flattening, the value of p required is a decreasing function of R R .  Fig. 20(a) 
results from determining P from profiles of D 2 ( x )  while Fig. 20(b) results from estimating 
P from profiles of D l ( x ) .  Comparing the two indicates that although Fig. 20(b) over- 
estimates P at low Rayleigh numbers, it gives similar results to Fig. 20(a) at high Rayleigh 
numbers. This point has been alluded to previously by Jarvis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Peltier (1980). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof numerical results and discussion of their geophysical implications 

Our numerical simulations of two-dimensional convection in constant viscosity fluids show 
that the power-law dependence of such quantities as the Nusselt number and the thermal 
boundary layer thickness on the (appropriately defined) Rayleigh number agrees reasonably 
well with the predictions of boundary layer theory. The coefficients of proportionality 
which determine the absolute values of these quantities appear, however, to be correct only 
to within a factor of approximately two. The variations of heat flow and topography across 
the upper surface of heated from below convection cells also approximate the power law 
dependence upon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx predicted by boundary layer theory. In the case of the surface heat flux, 
this agreement is due primarily to the fact that three large but competing effects which are 
often ignored in boundary layer theories tend to cancel one another. The most important of 
these effects is the vertical advection of heat into and out of the upper thermal boundary 
layer. This influence is partially compensated by the related effect of non-zero &/ax in the 
boundary layer. The third effect is that due to the lack of singularity in the heat flow above 
the rising plume, which prevents the computed heat flow from exceeding that predicted by 
blt in spite of the predominance of vertical advection in the local energy balance. As there is 
no similar mitigating influence above the cold descending plume, vertical advection results in 
an increasing departure from the boundary layer prediction in this region (see, e.g. Fig. 12). 
Reference curves which depend linearly upon x * ’ ~  fit the model predictions of topography 
very well, although the absolute heights disagree with blt predictions by a factor of two or 
more. This discrepancy may be attributed to  an x dependence of the depth of compensation 
in a convective circulation. In a static system (isostatic) compensation is effected at a 
constant depth whereas, in a dynamic system (isobaric) compensation occurs along a surface 
of constant normal stress. The ‘relief of this isobaric surface in a convection cell with an 
aspect ratio of one is comparable to that due to thermal contraction of the overlying 
thermal boundary layer. 

Since boundary layer theory is applicable only in the limit of very high Rayleigh 
numbers, our comparisons between the numerical model and the predictions of blt for 
surface heat flow and topography (Sections 3.4 and 3.5) were made for the highest Rayleigh 
number for which adequate numeric21 resolution could be achieved (RB = 5 x 103R,), which 
is most appropriate to the whole mantle convection model. For lower Rayleigh numbers, 
such as those appropriate to upper mantle convection models, the discrepancies noted above 
between the numerical results and blt are more pronounced. These discrepancies are 
primarily due to the important effects of the vertical advection of heat on the boundary 
layer energy budget. 

Rayleigh numbers appropriate to upper mantle and whole mantle convection both lie well 
within the boundary layer regime of the numerical calculations. Consequently, if heating 
were entirely from below ( p  = 0) we would expect small departures from boundary layer 
behaviour. It is generally assumed, however, that p must be greater than zero due to the 
presence of heat producing radioactive elements within the convecting region. Our model 
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Mantle convection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA417 

results show that significant departures from the predictions of heated from below boun- 
dary layer theory do occur for convection cells which are partially heated from within. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will proceed, therefore, to consider the geophysical implications of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 both in the context 
of upper mantle convection and in the context of whole mantle convection. 

4.1 U P P E R  M A N T L E  C O N V E C T I O N  

Models of convection in the upper mantle may be divided for our purposes into two basic 
categories, which we shall refer to as ‘large scale’ and ‘small scale’ and which are illustrated in 
Figs 21(a) and (b) respectively. In the large-scale model it is assumed that the convective 
circulation takes the form of large aspect ratio Benard-like convection cells with a hot rising 
plume beneath oceanic ridges and a corresponding cold descending plume associated with 
the deep oceanic trenches (e.g. Turcotte & Oxburgh 1967, 1972). In this model it is assumed 
that the circulation is restricted to the region above the seismic discontinuity a t  670km 
depth and that the oceanic lithosphere is to be associated with the thermal boundary layer 
itself. Below the lithosphere is an extremely elongate isothermal core. In order to achieve 
the large aspect ratios required to account for surface plate dimensions, it is assumed that 
the rigidity of the lithosphere (due to the temperature-dependence of viscosity) stabilizes 
the cells with respect to aspect ratio one disturbances. It is also conceivable, in this picture, 
that the scale of the upper mantle flow associated with plate creation and destruction might 
be governed by that of a distinct circulation in the underlying lower mantle (Busse 1981). 

In the small-scale upper mantle model illustrated in Fig. 21(b), it is assumed that convec- 
tion is occurring beneath a rigid lithosphere and that this circulation has a horizontal scale 
comparable to the depth of the upper mantle (Richter 1973b; McKenzie etal. 1974; Richter 
& Parsons 1975). The many small cells maintain an almost isothermal region below the litho- 
sphere except for the hot and cold plumes associated with the small-scale circulation. In this 
model, oceanic ridges are zones of plate divergence and are not in general associated with 

RIDGE TRENCH 
1 - -  

IT(* )  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0)  

I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( C )  -J 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. A comparison of three models of mantle convective circulation involving the lithospheric 
plates. (a) The lithosphere forms the thermal boundary layer of an upper mantle convective circulation. 
(b) The lithosphere moves above a smaller-scale convective circulation. (c) The lithosphere forms the 
thermal boundary layer of a mantle-wide convective circulation. 
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rising plumes of the small-scale circulation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the plates move apart magma is tapped from 
the underlying convecting zone. A return flow from trench to ridge is superimposed on the 
small-scale flow as required by mass conservation and this might be weak if the lithosphere 
were mechanically decoupled from the mantle below by a thin low viscosity channel 
(Richter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& McKenzie 1978). In this model, the driving mechanism for the observed plate 
motions is not associated with the small-scale convection. Rather, it i s  assumed (and some 
justification for this assumption is provided by Richter & McKenzie 1978) that buoyancy 
forces localized at ridge crests and ocean trenches maintain the plate motions. 

The two versions of upper mantle convection may be compared from the point of view of 
their predictions regarding surface heat flow and ocean floor bathymetry. In the large-scale 
upper mantle model, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 surface heat flux is entirely due to the cooling of the 
initially hot plume material as it drifts horizontally away from the ridge. There is virtually 
no heat delivered to the base of the thermal boundary layer and thus cooling continues 
across the length of the plate with heat flow decreasing as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx - ” ~  and bathymetry increasing as 
XI”. In this model the rheological lithosphere and the thermal boundary layer of the convec- 
tive circulation are coincident, the high effective viscosity of the lithosphere arising as a 
consequence of the strong temperature dependence of viscosity. Qualitatively, our 
previously discussed numerical results suggest that with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0 additional heat will be 
advected to the base of the lithosphere and thus reduce the rate of thermal contraction. Our 
analyses, however, cannot be employed to make any quantitative assessment of the magni- 
tude and distribution of this effect because of the wide disparity between the high aspect 
ratios required in this model of upper mantle convection and the aspect ratio one cells to 
which all our numerical results pertain. 

In the small-scale upper mantle model, when p = 0 the surface heat flux is due to cooling 
of the intruding magma as it moves away from the ridge crest plus the background heat flux 
due to the small-scale convection in the upper mantle beneath the lithosphere. Although the 
upper thermal boundary layer of each small cell cools approximately as predicted by boun- 
dary layer theory, the large number of cells and the relatively small variation of heat flux 
across each produces an approximately uniform heat flux into the base of the lithosphere. 
Cooling of the lithosphere (and the consequent thermal contraction) continues until the 
surface heat flux due to cooling of the horizontally moving lithosphere equals that delivered 
to the base of the lithosphere due to the small-scale convection below. Even with p = 0, this 
model therefore predicts that surface topography will flatten away from an initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx112 varia- 
tion (Parsons & McKenzie 1978). With p > 0 there would be asymmetries induced in the 
small-scale convection cells but this would produce only relatively short wavelength effects. 
In this model surface heat flow and topography are therefore relatively insensitive to the 
degree of internal heating. 

In both large- and small-scale upper mantle models, the implied ocean floor bathymetry 
initially vanes as XI’’. With an appropriate choice of physical parameters, this topographical 
variation can be accounted for by thermal contraction if one assumes isostatic compensation 
at the base of the lithosphere (Parsons & Sclater 1977; Oxburgh & Turcotte 1978). However, 
the numerical models demonstrate that compensation does not occur at a constant depth in 
a dynamic flow. For the large-scale upper mantle model this may produce a significant 
contribution to the surface topography. Attempts to fit the observed topography with the 
thermal contraction model could therefore lead to erroneous estimates of the relevant 
physical parameters of the lithosphere. Although our numerical solutions show that this 
error could be as large as 100 per cent for aspect ratio one cells, we cannot extrapolate this 
result to the large-scale upper mantle model which requires much larger aspect ratios than 
this. We simply point ou t  that this effect may be another source of error and should there- 
fore be considered when the large-scale model of upper mantle convection i s  employed. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJarvis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. R. Peltier 
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Mantle convection as a boundaiy layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA419 

the small-scale upper mantle model, variations in the depth of compensation occur with a 
much shorter wavelength than that corresponding to the overall variation of topography. No 
systematic variation occurs over the length of the plate and hence the assumption of a 
constant depth of compensation is more appropriate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW H O L E  M A N T L E  C O N V E C T I O N  

A whole mantle alternative to the upper mantle convection models discussed above is illus- 
trated schematically in Fig. 21(c). In this model the lithosphere is identified with the 
thermal boundary layer of a large-scale convective circulation which itself extends to the 
core-mantle boundary. Hot plumes rise beneath ocean ridges and cold plumes sink beneath 
ocean trenches (in the manner envisioned originally by Hess 1962, and recently advocated 
on the basis of quantitative considerations by Sharpe & Peltier 1978. and Peltier 1980). As in 
the large-scale upper mantle model, the rigidity of the lithosphere is assumed to provide 
stability with respect to smaller scale circulation, although in the whole mantle model the 
largest aspect ratio required to account for surface motions is only about three. One diffi- 
culty in applying the numerical results to the whole mantle model concerns the neglect of 
geometric curvature in the numerical calculations. Fig. 22 illustrates the degree of misfit of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the computational domain with aspect ratio one and a slice of the Earth’s mantle of width 
2900km at mid-depth. In applying numerical results to this model it is implicitly assumed 
that convection in the square domain approximates that in the curved mantle wedge. For an 
aspect ratio of one this assumption does not seem unreasonable, particularly in view of the 
fact that the direction of gravity remains normal to the bounding surfaces. For aspect ratios 
as large as three this assumption becomes suspect, although numerical solutions obtained in 
spherical coordinates (Hsui, Turcotte & Torrance 1972; Young 1974; Zebib, Schubert & 
Strauss 1980) show few qualitative differences from those in Cartesian coordinates. The 
main effect is an increasing heat flux with depth, to account for the decreasing surface area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.=LOO 

773 

Figure 22. Misfit of square computational domain and wedge of whole mantle with horizontal dimension 
at middepth equal to 2900 km (the depth to the core-mantle boundary). 
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420 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of  concentric spherical shells, which results in a larger temperature difference across the 
lower thermal boundary layer than that across the upper since the boundary layer thick- 
nesses are found to remain approximately equal. 

In the whole mantle model an adiabatic core rotates passively. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 heat flows 
across the mantle primarily through the vertical plumes at the edges of the convection cell. 
There is no (superadiabatic) background heat flux from the mantle away from the plumes 
and consequently surface heat flux and topography vary as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-’“ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx112 respectively. When 
y > 0 the numerical results discussed above suggest that, at low values of p, the departure of 
the surface heat flow variation from that when p = 0 is relatively small. In contrast, even 
small amounts of internal heating produce a sufficient change in the thermal boundary layer 
structure to  cause significant ‘flattening’ of the topographic variation compared to the x112 
variation found when p = 0. The initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1I2 variation of the cooling lithosphere can only be 
partially accounted for by thermal contraction; there is also a contribution from hydrodynamic 
pressures beneath the lithosphere. Thus, if the whole mantle convection model were correct, 
fitting an isostatically compensated thermal contraction model to the ocean bathymetry 
would lead to erroneous estimates of the physical parameters of the lithosphere. 

The geophysical data most relevant to the above discussion are those for the variation of 
ocean floor bathymetry (e.g. Parsons & Sclater 1977). The bathymetry of both the North 
Pacific and North Atlantic varies initially as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt”’, or asx“’ on each (constant velocity) plate. 
For ocean floor older than about 80-90Ma (the approximate mid-point of both ocean 
basins) the bathymetry systematically flattens with respect to an x112 behaviour. The 
percentage flattening in both cases is about 18 per cent. The small-scale upper mantle model 
appears to be able to account qualitatively for this behaviour regardless of the value of p. In 
the context of the large-scale upper mantle and whole mantle models, the asymmetric 
flow structure developed when p >  0 may also account for (or at least contribute to) this 
behaviour. In particular we have found that, at Rayleigh numbers appropriate to the whole 
mantle model, a percentage flattening of P =  18 per cent is obtained in constant viscosity 
fluids for y = 0.2 (Fig. 20). The main difficulty with this interpretation is that it does not 
account for the similarity of the depth-age curves for the Atlantic and Pacific oceans which 
obtains in spite of a presumably different large-scale flow structure beneath the two. The 
amount of flattening achieved with relatively low values of y and the qualitative similarity of 
the model and ocean floor bathymetry nevertheless suggest that internal heating may play 
the crucial role. 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Jarvis and W. R. Peltier 

4.3 I N F L U E N C E  O F  T H E  L I T H O S P H E R I C  P L A T E S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An important physical effect not contained in our numerical calculations, which could alter 
the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp inferred from the bathymetry in the context of the whole mantle model, is 
the strong temperature-dependence of viscosity. The high viscosity lithosphere behaves in a 
plate-like fashion such that the horizontal velocity is not a strong function of age. In 
Section 3.3 we have shown that convection at infinite Prandtl number in a fluid with 
constant viscosity was characterized by pronounced variation, even at very high Rayleigh 
numbers, of the horizontal velocity across the top of the cell (Fig. 8a). This variation results 
in vertical advection of heat within the thermal boundary layer. The temperature depen- 
dence of viscosity acts to suppress such variation and hence to reduce the influence of 
vertical advection upon the boundary layer temperature field. Since flattening due to 
internal heating in the convective circulation is controlled by horizontal variations of 
temperature within the boundary layer it would appear that, for a given proportion of 
internal heating, inclusion of the plate-like behaviour of the lithosphere could affect the 
predicted degree of flattening. 
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Mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvection as a boundary layer phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42 1 

Perhaps the simplest approach to investigate the effects of suppressing au/ax in the hori- 
zontal boundary layer is to impose a constant horizontal velocity on the upper surface as a 
boundary condition. Viscous coupling to the underlying fluid will then suppress &/ax 
close to the surface. Imposing a constant surface velocity produces a shear stress on the 
upper boundary; hence vorticity along the upper surface, which is proportional to shear 
stress, no longer vanishes. Rather it must be obtained iteratively from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 field (Richter 
1973a; Lux, Davies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Thomas 1979). 

For illustrative purposes we consider a model with R R  = 5 x lo6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.20 and a constant 
surface velocity, uo,  equal to the mean surface velocity which occurs for a model with the 
same values of R R  and p but with free-slip boundaries. The predicted temperature, vorticity 
and stream function fields are compared with those of the corresponding free-slip case in 
Figs 23(a) and (b). The most diagnostic field is that of the vorticity, w. The constant surface 
velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo is greater than that occurring near the plume in the stress free case (Fig. 23a) and 
less than that in the central regions. Thus, the new mechanical boundary condition produces 
an increase in vorticity near the vertical boundaries of the cell (drawing the contours of w 
towards the corners) and a reversal of vorticity, or drag, in the central regions (close to the 
surface). The net effect on the streamlines is to square off the flow in the upper regions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
significant point to note from Fig. 23(b) is that the basic asymmetry of the flow persists in 
spite of the constant velocity of the upper boundary. 

Away from the vertical boundaries the thermal field is not very sensitive to the boundary 
condition on the velocity field (Fig. 23). When a constant velocity is imposed at the surface, 
vertical advection is enhanced above the plumes (due to the increased horizontal velocities 
in the near vicinity) and suppressed throughout the central region. The net effect on the 
variation of surface heat flow, shown in Fig. 24(b), is that it now more closely approximates 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-l” variation predicted by boundary layer theory and observed on the seafloor. 

At large Rayleigh numbers the surface topographic variation is determined primarily by 
the horizontal integral of aw/az at the upper surface (see Section 3.3). aw/az is in turn the 
vertical integral of a’ w/az’ which, away from the vertical boundaries, equals aT/ax. Thus, 
the qualitative similarity of the temperature field shown in Figs 23(a) and (b) results in 
similar topographic variations for the two cases (Fig. 24a). In the central region the topo- 
graphic profile is not significantly altered by the constant velocity boundary condition. 

T w 

Figure 23. Contours of T (temperature), w (vorticity) and * (stream function) for R R  = 5 . 0 X 1 0 6 ,  
Ir = 0.20. (a) Solution with free-slip boundary condition at the upper surface. (b) Solution with constant 
velocity boundary condition at the upper surface. Contour levels of each field are the same in (a) and (b). 
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422 G. T. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJarvis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand W. R. Peltier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  1 -  

Figure 24. Comparison of (a) relative bathymetry, D , ( x ) ,  dnd (b) surface heat flux, F,, as computed 
from the model solutions with free-slip upper boundary conditions (curves labelled A) and constant 
velocity upper boundary condition (curves labelled B). D ,  and Fu have been dimensionallzed using the 
parameter values listed in Table 1 .  In (a) the lett ordinate scale refers to  curve B whlle the right scale 
refers to curve A. (c) Variation of  dimensionless vorticity at the upper surface, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw i ,  in the case of the 
constant velocity upper surface 

One distinction between the two cases is the reversed topographical gradient close to the 
vertical boundaries when a constant surface velocity is imposed, which does not occur with 
the no-shear boundary condition. These reversals imply a change in sign of a’ w@z2. This is 
not possible away from the vertical boundaries where a’ o /az2  = aT/ax and is always nega- 
tive. However, near the vertical boundaries 

az0 a T  a2w 

a 2  ax ax2 
- 

where d2w/ax2 is negative, so that a2w/az2 may be positive. In the vicinity of the vertical 
boundaries the constant surface velocity produces a large shear and hence vorticity at the 
upper surface (Fig. 24c). Immediately below the surface horizontal diffusion of vorticity 
(d2u/ax2)  reduces the value of vorticity in spite of the vorticity source term (aT/ax). 
Consequently, surface values of aw/az are negative close to the vertical boundaries but 
positive elsewhere. This local effect is a manifestation of the unrealistically large shear 
stresses resulting from the imposed constant surface velocity boundary condition and cannot 
be expected to occur on the ocean floor. (The same topographic feature was noted by 
Parmentier & Turcotte 1978 near the spreading axis of their upper mantle convection model 
when they applied similar boundary conditions.) 

A second effect excluded from the present calculations is the influence of the 
temperature-dependence of viscosity on the overall circulation. McKenzie & Richter (1976) 
have shown that in one parameter range the circulation of internally heated fluids is quali- 
tatively the same in both constant viscosity and temperature-dependent viscosity fluids. In a 
different parameter range Daly (1978) finds that internally heated fluids with temperature 
dependent viscosity exhibit narrow upwelling and broad downwelling regions (i.e. opposite 
to the constant viscosity case). No variable viscosity calculations have yet been performed at 
the high Rayleigh numbers appropriate to the whole mantle. However, in this parameter 
range we find that the asymmetry characteristic of internally heated constant viscosity fluids 
is highly accentuated (Fig. 15), and it therefore seems possible that a narrow downwelling 
and broad upwelling pattern will also exist in variable viscosity flows at these high Rayleigh 
numbers. However, regardless of the magnitude, or sense, of asymmetry of the flow, once 
variable viscosity is introduced the topography is no longer simply related to the position of 
the centre of circulation. Thus, McKenzie (1977), for example, provides examples of heated 
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from below circulations in variable viscosity fluids, with narrow upwelling and broad down- 
welling regions, above which the topography increases away from the upwelling axis. 

None of the currently available variable viscosity solutions incorporate, at Rayleigh 
numbers appropriate to  the whole mantle, either a dependence of viscosity on homologous 
temperature T,/T (where T ,  is the melting temperature) (Weertman 1970), or a constant 
surface velocity boundary condition. It is therefore difficult to assess the role of variable 
viscosity within the mantle. Peltier (1980) has suggested that near surface melting could play 
a crucial role in regulating the system such that the high viscosity of the lithosphere itself 
exerts no active influence on the flow. If this were the case then the approximate incorpora- 
tion of the effect of variable viscosity which we have effected here, by forcing the circu- 
lation to satisfy the constant surface velocity boundary condition, may produce a circulation 
not unlike that in the mantle. Our model is now similar to the two-layer model of the mantle 
proposed by Elsasser (1 971) and employed recently by Richter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& McKenzie (1 978) in which 
a rigid lithosphere overlies a uniform viscous fluid. If this is a reasonable approximation to 
mantle rheology then the above results may not be sensitive to the precise functional depen- 
dence of viscosity on temperature. In this regard, the lack of geophysical evidence to 
indicate a broad zone of high viscosity adjacent to descending plates at subduction zones 
suggests that the two-layer model may in fact be the appropriate model. 

4.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP A R  AM E T E  K I  Z E D  CON V L C T I O N  

The plausibility of a low value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp in a mantle-wide convection model has important impli- 
cations for planetary thermal history calculations. Sharpe & Peltier (1978, 1979), for 
example, assumed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 as a first approximation and made use of boundary layer scaling 
relationships appropriate for BCnard convection in the form 

6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 ( ~ ) ~ ( R B / R C ) ~ '  (44a) 

= h ( a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K/d)  (RB/Rc)'~ (44b) 

= 0 3 ( a )  (K/d)  (RB/Rc)" (44c) 

4 =04(a) ( K n T / d )  (RB/Rc)s4 (444 

Nu = P 4 @ )  (RB/RC)'4 (44e) 

where approximate values of /3 and S were deduced from boundary layer theory. Exact 
values of Pand S for an aspect ratio a = 1 can be computed from the curves plotted on Fig. 5 
as 

p= (0.300,8.468,8.671,2.30) (45a) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S = (-0.278,0.645,0.684,0.313). 

A comparison of the scaling relations derived from our numerical models and boundary layer 
theory is shown in Table 2. Scaling relationships similar to (44) can also be written for non- 
zero values of p ,  the coefficients and power laws again being deduced from numerical calcu- 
lations (e.g. McKenzie et al. 1974). 

In order to  apply these scaling relations to the Earth's mantle, some a priori assumptions 
must be made. This is because the computed power law indices and coefficients apply 
strictly to two-dimensional, steady-state flows in constant viscosity fluids. Their use, there- 
fore, involves the implicit assumption that departures from these conditions will not affect 
the end result. As yet these assumptions have not been justified. 
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Table 2. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomparison of numerical and theoretical power-law relations. 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJarvis and W. R. Peltier 

Relation Coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p i )  Exponent (Si) 

Numerical Theoretical* Numerical Theoretical 

6 = D,d (RBIR~) '~ 0.300t 0.465 -0.278t -0.333 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I( = 0 , ~ )  ( R B I R ~ ) ' ~  8.468 10.813 0.645 0.666 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w = P ,  (K/d) (RB/&)" 8.671 18.98 0.684 0.666 
Nu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPa (RBIR,)'~ 2.30 0.93 0.313 0.333 

*Coefficients in this column are from Oxburgh & Turcotte (1978) and apply strictly for an aspect ratio of 
1.4 rather than 1.0. 
?These values correspond to 6 , as defined in Fig. 5. For 6 *, p ,  = 0.518 and S,  = -0.285. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Conclusions 

The foregoing discussion has been concerned with the description of numerical simulations 
of thermal convection through the range of Rayleigh numbers which is appropriate to the 
Earth's mantle. With respect to convective flows forced by heating from below, the analysis 
focused upon a detailed comparison of the numerical results with the predictions of boun- 
dary theory. Although boundary layer theory correctly predicts the power-law dependence 
of the heat transport, boundary layer thickness and typical velocities, it fails at the 100 per 
cent level to determine their absolute values correctly. For the purpose of thermal history 
modelling the exact power-law relations determined either numerically or empirically should 
therefore be employed rather than those obtained from boundary layer theory. Fortunately 
from the point of view of the prospects of such modelling, the detailed mean temperature 
profile exhibits a strong similarity as a function of Rayleigh number, a feature which may be 
employed to  generate mean temperature profiles for the thermal history models. 

The major new physical result, presented in Section 3.3, is the important role played by 
the vertical advection of heat in the local energy balance within the horizontal thermal 
boundary layers, of constant viscosity fluids, at all Rayleigh numbers. For steady convection 
cells which are heated entirely from below, a balance is maintained locally (within the 
horizontal boundary layers) by the horizontal and vertical advection and vertical diffusion of 
heat. Thus, when computing the local surface heat flux across the upper surface of a 
constant viscosity convection cell, in terms of the temperature and flow fields immediately 
below the surface, neither horizontal nor vertical advection should be neglected. (However, 
when averaging horizontally across the cell horizontal advection may be ignored since the 
integrated local contributions must vanish.) Contrary to this result, boundary layer theories 
generally assume that vertical advection is negligible in the horizontal boundary layers. 
Somewhat ironically this assumption appears to be more appropriate to those mantle 
convection models in which the rigid lithosphere forms the upper thermal boundary layer of 
the convective circulation than it is to the simpler case of a constant viscosity fluid. 

An interesting geophysical result obtained from this work has concerned the impact of 
internal heating upon the boundary layer structure such as to cause increasingly marked 
departures from heated below flows as the Rayleigh number R R  increases, with p fixed. 
These departures are most clearly seen in the topographic variation associated with boun- 
dary layer cooling. Internal heating causes the implied topography to 'flatten' away from the 
xl'* variation expected when heating is entirely from below. The geophysical implications of 
this result are most important if the oceanic lithosphere forms the thermal boundary layer of 
a mantle-wide convective circulation. If this is the case, the observed flattening of the 
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oceanic bathymetry profiles might be attributed to radioactive heating in the mantle. With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,J = 0.2 the constant viscosity model then predicts the observed amount of flattening and the 
approximate magnitude of topographic relief on the ocean floor. 

The small-scale model of upper mantle convection also appears capable of explaining the 
observed bathymetry, independent of the value of p.  It is therefore only in the context of 
the whole mantle model that topography constrains the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp to be small. Although this 
constraint depends upon the validity of the whole mantle model it is nevertheless interesting 
to compare the value of p = 0.2 to independent estimates. 

According to some authors (e.g. Oxburgh & Turcotte 1978; Turcotte et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat. 1979) who 
believe that the convective circulation is most probably driven entirely by internal heating, 
1.1 = 0.2 is an extremely low estimate. With p as low as 0.2 the circulation is, in contrast, 
driven primarily by heating from below. In the context of the whole mantle model this 
would imply that there is a substantial heat flow across the core-mantle boundary. This 
implication is consistent with the thermal history calculations of Sharpe & Peltier (1 978, 
1979) which suggest that the heat capacity of the core is sufficiently high that the large heat 
transports associated with high Rayleigh number convection can be tolerated for times on 
the order of the age of the Earth without leading to freezing of the Earth’s core. In these 
models the assumed mantle-wide convective circulation is driven entirely by the cooling of 
Earth in bulk. Although this cannot be literally true their calculations established that this 
energy source for the circulation could well be of predominant importance. Independent 
geochemical evidence has recently been forthcoming which suggests that an appropriate 
value of p for the whole mantle is as low as 0.3 (O’Nions et al. 1978; O’Nions, Evenson & 
Hamilton 1979; Ringwood 1979). The importance of the interpretation of seafloor flatten- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ing provided here, in the context of whole mantle convection, is that it provides indepen- 
dent corroboration of the assumptions of the thermal history calculations. The extent to 
which the interpretation is correct is a question which may be answered by further develop- 
ments of numerical models of the mantle convective circulation. If this is correct and if the 
core contains no radioactivity then the planet is surely cooling. 
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