
1

Manual for Using Homomorphic Encryption for
Bioinformatics

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine,

Kristin Lauter, Michael Naehrig, John Wernsing

Abstract—Biological Data Science is an emerging field facing
multiple challenges for hosting, sharing, computing on, and
interacting with large data sets. Privacy regulations and
concerns about the risks of leaking sensitive personal health
and genomic data add another layer of complexity to the
problem. Recent advances in cryptography over the last 5
years have yielded a tool, homomorphic encryption, which can
be used to encrypt data in such a way that storage can be
outsourced to an untrusted cloud, and the data can be
computed on in a meaningful way in encrypted form, without
access to decryption keys. This paper introduces homomorphic
encryption to the bioinformatics community, and presents an
informal “manual” for using the Simple Encrypted Arithmetic
Library (SEAL), which we have made publicly available for
bioinformatic, genomic, and other research purposes.

Keywords: homomorphic encryption, outsourced
computation, privacy, genome-wide association studies,
sequence matching

I. INTRODUCTION

A wealth of personal genomic data is becoming

available thanks to scientific advances in sequencing the

human genome and gene assembly techniques.

Hospitals, research institutes, clinics, and companies

handling human genomic material and other sensitive

health data are all faced with the common problem of

securely storing, and interacting, with large amounts of

data. Commercial clouds offer solutions but are subject

to subpoenas, data misuse or theft, and possible insider

attacks. To mitigate the privacy risks inherent in storing

and computing on sensitive data, cryptography offers a

potential solution in the form of encryption, which

metaphorically locks the data in a “box” which requires a

key to open. Traditional encryption systems lock data

down in a way which makes it impossible to use, or

compute on, in encrypted form. Recent advances in

cryptography have yielded new tools that allow

operations on encrypted data. One such tool is

homomorphic encryption. Encrypting data using a

homomorphic encryption scheme allows for meaningful

computation on the encrypted data producing the

1 The SEAL library is available at http://sealcrypto.codeplex.com/

results of the computation in encrypted form, without

the need for decrypting it or requiring access to the

decryption key.

This paper details a state-of-the-art homomorphic

encryption solution and is meant to serve as a guide to

using it for bioinformatics and genomic computations.

The Microsoft Research Simple Encrypted Arithmetic

Library (SEAL) has been publicly released and can be

downloaded for experimentation and research

purposes1. Homomorphic encryption is a technique to

encrypt data in such a way that it can be computed on by

anyone, without access to the encryption or decryption

keys, and the result of the computation is obtained in

encrypted form. Solutions for homomorphic encryption

which allow one operation, such as addition, have been

known for decades, for example based on the RSA or

Elgamal cryptosystems. But a homomorphic encryption

solution which allows an unlimited number of two

operations, i.e. addition and multiplication, enables the

computation of any circuit, and thus such a solution is

referred to as fully homomorphic (FHE). The first FHE

solution was proposed in [14], and many improvements

and extensions have followed over the last 5 years: [9],

[6], [15], [30], [1]. For practical applications, an

important idea introduced in [25] is to use homomorphic

encryption schemes which only allow for a fixed amount

of computation on the data. It is usually the case that the

computation (the function or the algorithm) which will

be applied to the data is known in advance, so that a

homomorphic encryption scheme may be instantiated to

allow only for that amount of computation on the data.

This insight leads to improved parameters, and thus

better efficiency for both storage and computation. A

scheme for which it is possible, for any fixed given

function, to choose parameters such that the scheme

allows homomorphic evaluation of that function, is

called a leveled homomorphic encryption scheme. Using

a leveled homomorphic scheme, where parameters are

set to allow a certain predetermined, fixed amount of

computation, together with application-specific data

http://sealcrypto.codeplex.com/

2

encodings and algorithmic optimizations, leads to a

significant efficiency gain. We refer to such a

combination as Practical Homomorphic Encryption

(PHE).

While it was considered a major breakthrough to

develop solutions for homomorphic encryption, serious

challenges remain to convert these proposals into

practical systems which can overcome the performance

hurdles and storage requirements. Significant

improvements have been made by encoding data for

computation in clever ways to reduce both the size of

ciphertexts and the depth of circuits to be evaluated. In

Section III we present new methods for encoding real

data which lead to concrete improvements in both

performance and storage requirements.

When using PHE, parameters of the encoding an

encryption schemes should be chosen to optimize for

efficiency, while preserving security and correctness. To

make this feasible in practice, we have implemented

tools (most importantly a noise growth simulator and an

automatic parameter selection module) to help users

choose their parameters for maximal performance.

Section IV details these techniques, and demonstrates

their use in practice.

Homomorphic encryption provides a suitable solution

for some, but not all, privacy problems and scenarios.

Current solutions allow for a single data owner, such as a

hospital, to encrypt data so that it can be securely stored

in a commercial cloud. Both private and public key

solutions are practical, and with the public key version

many parties can upload data encrypted under the

hospital’s public key: doctors, patients, lab technicians,

etc., and the hospital administration can set a policy for

access to computations and decryptions. The same idea

can be applied to a research institute which stores data

in the cloud, selectively allows researchers to make

queries on the encrypted data, and then provides

decryptions of the results. Consumer and patient

scenarios enabled by homomorphic encryption include

secure and private outsourcing of storage of personal

health records, or of predictive services for risk of

disease.

This article is intended to serve as a guide to help

bioinformaticians use the library, to experiment with

secure computation on biomedical data, and to evaluate

the security implications.

II. HOMOMORPHIC ENCRYPTION

An encryption scheme that enables arbitrary

computations on encrypted data without first decrypting

the data, and without any access to the secret decryption

key, is called a Fully Homomorphic Encryption (FHE)

scheme. The result of any such computation on

encrypted data is itself provided in encrypted form, and

can only be decrypted by an owner of the secret key. The

first FHE scheme was presented by Gentry [14] in 2009,

and since its discovery many improvements and new

constructions have been proposed [33], [9], [8], [6], [12],

[22], [4], [1], [16], [10].

In Gentry’s work, and in many later papers, data is

encrypted bit-wise. This means that a separate

ciphertext is produced for each bit in the message. The

computation is described as a boolean circuit with XOR

and AND gates, which can be realized as addition and

multiplication modulo 2. Both operations can then be

performed on the encrypted bits. Unfortunately,

breaking down a computation into bit operations can

quickly lead to a large and complex circuit, which

together with a significant overhead in memory use per

bit imposed by the encryption scheme this makes

homomorphic computations very costly.

Fortunately, most known constructions allow for a

larger message space. In practical applications the

desired computations often only consist of additions and

multiplications of integers or real numbers, so there is no

need to express the data in a bit-wise manner. Indeed,

most known constructions allow to encrypt integers, or

appropriate encodings of integers, and to

homomorphically add and multiply these values. This

approach has the clear advantage that a ciphertext now

contains much more information than just a single bit of

data, making the homomorphic computations

significantly more efficient.

In the known FHE schemes, typically ciphertexts

contain a certain amount of inherent noise, which

“pollutes” them. This noise grows during homomorphic

operations, and if it becomes too large the ciphertext

cannot be decrypted even with the correct decryption

key. In order to perform an unlimited number of

operations, and thus achieve fully homomorphic

encryption, ciphertexts need to be constantly refreshed

in order to reduce their noise. This is done using a costly

procedure called bootstrapping [14].

However, in applications where only a predetermined

computation needs to be done, the costly bootstrapping

procedure can be avoided by using a so-called leveled

3

homomorphic encryption scheme. As a guiding principle,

the choice of the parameters dictates how many

sequential multiplications the computation can involve,

i.e. the maximum allowed depth of the computation

expressed as an arithmetic circuit, although in reality also

other features of the computation need to be taken into

account. This approach is often significantly more

practical than using an FHE scheme with bootstrapping,

but is not as flexible if at a later point a different, more

complex function needs to be evaluated.

The remainder of this section describes the leveled

homomorphic encryption scheme that is implemented

in our Simple Encrypted Arithmetic Library (SEAL).

A. Homomorphic encryption scheme algorithms

The encryption scheme we use is a public-key,

homomorphic encryption scheme, and consists of the

following algorithms:

• A key generation algorithm KeyGen(parms) that, on

input the system parameters parms, generates a

public/private key pair (pk,sk) and a public

evaluation key evk, which is used during

homomorphic multiplication.

• An encryption algorithm Enc(pk,m), that encrypts a

plaintext m using the public key pk.

• A decryption algorithm Dec(sk,c), that decrypts a

ciphertext c with the private key sk.

• A homomorphic addition operation Add(c1,c2) that,

given as input encryptions c1 and c2 of m1 and m2,

outputs a ciphertext encrypting the sum m1 + m2.

• A homomorphic multiplication operation

Mult(c1,c2) that, given encryptions c1 and c2 of m1

and m2, outputs a ciphertext encrypting the product

m1 · m2.

B. Encryption parameters

The specific instantiation that is implemented in SEAL

is the more practical variant of the scheme YASHE,

proposed in the paper [1]. The encryption parameters of

the scheme are the degree n, the moduli q and t, the

decomposition word size w, and distributions χkey,χerr.

Thus, parms := (n,q,t,w,χkey,χerr). Next we discuss these

parameters in more detail.

• The parameter n is the maximum number of terms

in the polynomials used to represent both plaintext

and ciphertext elements. In SEAL, n is always a

power of 2. The polynomial Xn + 1 is called the

polynomial modulus, and denoted poly_modulus in

SEAL.

• The parameter q is the coefficient modulus. It is an

integer modulus used to reduce the coefficients of

ciphertext polynomials. In SEAL, q is called

coeff_modulus.

• The parameter t is the plaintext modulus. It is an

integer modulus used to reduce the coefficients of

plaintext polynomials. In SEAL, t is called

plain_modulus.

• The integer w is the base to which we decompose

integer coefficients into smaller parts. It determines

the number `w,q := blogw(q)c + 1 of parts when

decomposing an integer modulo q to the base w. In

practice, we take w be a power of two, and call log2

w the decomposition bit count. In SEAL, log2 w is

called decomposition_bit_count.

• The distribution χkey is a probability distribution on

polynomials of degree at most n − 1 with integer

coefficients, which is used to sample polynomials

with small coefficients that are used in the key

generation procedure. In SEAL, coefficients are

sampled uniformly from {−1,0,1}.

• Similarly, the distribution χerr on polynomials of

degree at most n − 1 is used to sample noise

polynomials, which are needed during both key

generation and encryption. In SEAL, the distribution

χerr is a truncated discrete Gaussian centered at

zero, with standard deviation σ. In SEAL, σ is called

noise_standard_deviation.

The remainder of this subsection goes into further

detail, introduces the necessary mathematical

structures, and explains how the different parameters

are related to each other. The scheme operates in the

ring R := Z[X]/(Xn +1), the elements of which are

polynomials with integer coefficients of degree less than

n, where n is a power of 2. Any element a ∈ R can be

written as a , with ai ∈ Z. All plaintexts,

ciphertexts, encryption and decryption keys, etc. are

elements of the ring R, and have this form. Addition in R

is done coefficient-wise, and multiplication is simply

polynomial multiplication modulo Xn + 1, i.e. standard

polynomial multiplication followed by reduction modulo

Xn+1. The reduction modulo Xn +1 is carried out by

replacing all occurrences of Xn by −1.

The scheme uses two integer moduli q and t, for which

q is much larger than t. The coefficients of ciphertext and

key elements are taken modulo q, whereas the

4

coefficients of the plaintext elements are taken modulo

t. In what follows, we use the notation [a]q (resp. [a]t) to

denote the operation of reducing the coefficients of a ∈

R modulo q (resp. t) into the set {d−q/2e,...,b(q−1)/2c}

(resp. {d−t/2e,...,b(t−1)/2c}).

The homomorphic multiplication operation, defined

below, contains a step which decomposes a given

polynomial into a vector of polynomials with smaller

coefficients. This step is needed to manage the noise

growth during the homomorphic multiplication by

computing a product of two intermediate polynomials

via a scalar product. The size of the smaller coefficients

is determined by the parameter w, which thus controls a

tradeoff between multiplication efficiency and

evaluation key size on one hand, and noise growth on the

other. We now present the details for this

decomposition.

 A polynomial a ∈ R with coefficients in

{d−q/2e,...,b(q−1)/2c} can be decomposed using a base w ∈

Z as ` , where the ai ∈ R have

coefficients in {d−w/2e,...,b(w−1)/2c}. This is done by

decomposing each coefficient to the base w. The

homomorphic encryption scheme makes use of two

functions. The first one is Dec ,

which takes a polynomial with coefficients modulo q, and

returns the vector of polynomial parts obtained by the

w-adic decomposition described above. The second one

is Pow , which takes a

polynomial and returns a vector of polynomials that are

the products of the polynomial with powers of the base

w. Both functions take a polynomial and map it to a

vector of polynomials in R`w,q, such that the following

property holds hDecw,q(a),Poww,q(b)i = a · b (mod q),

where h·,·i denotes the dot product of vectors (of

polynomials), defined in the usual way.

Finally, the scheme uses two probability distributions

on R, χkey and χerr, which both generate polynomials in R

with small coefficients. In our implementation, we chose

the distribution χkey as the uniform distribution on

polynomials with coefficients in {−1,0,1}. Sampling an

element according to this distribution means sampling all

its coefficients uniformly from {−1,0,1}. For the

distribution χerr, we use a discrete Gaussian distribution

with mean 0 and appropriately chosen standard

deviation σ. Gaussian samplers typically sample from a

truncated discrete Gaussian distribution, and we denote

the bound, i.e. the maximal deviation from the mean

(zero), by Berr. A typical large enough choice for Berr would

be around 5σ.

C. Plaintext space and homomorphic operations

All plaintext elements, i.e. the messages that can be

encrypted with the homomorphic encryption scheme,

are polynomials in the ring R, with coefficients reduced

modulo the integer t. All ciphertext elements, i.e.

encryptions of plaintext elements, are polynomials in the

ring R, with coefficients reduced modulo the integer q.

Formally, this means that the plaintext space is the ring

Rt := R/tR ∼= Zt[X]/(Xn+1), and the ciphertext space is

contained in the ring Rq := R/qR ∼= Zq[X]/(Xn+1).

However, not every element of Rq is a valid ciphertext.

Any ciphertext produced by the encryption function of

our scheme, as described below, encrypts one plaintext

message polynomial m ∈ Rt. Whenever homomorphic

addition (resp. multiplication) is performed on

ciphertexts that encrypt two plaintext elements, say

m1,m2 ∈ Rt, the resulting ciphertext will encrypt the sum

m1+m2 (resp. the product m1 · m2). The operations

between the plaintext elements are performed in the

ring Rt.

For homomorphic addition this means that the resulting

ciphertext will encrypt the coefficient-wise sum m1+m2,

where the coefficients are automatically reduced

modulo the plaintext modulus t. For homomorphic

multiplication the resulting ciphertext will encrypt the

product m1 · m2 ∈ Rt, which means that the polynomial

will automatically be reduced modulo Xn +1, i.e. all

powers Xn will be automatically replaced by −1, until no

monomials of degree n or higher remain, and just as in

homomorphic addition, the coefficients of the

polynomial m1 ·m2 will be automatically reduced modulo

t.

These properties need to be taken into account when

encrypting data such as integers or real numbers that

first need to be encoded as plaintext polynomials. One

needs to be aware of the fact that the various reductions

that occur on plaintext polynomials during homomorphic

operations do not necessarily correspond to meaningful

operations on the integral or real data.

D. Detailed algorithm description

The following gives a detailed description of the key

generation, encryption, decryption, and homomorphic

evaluation algorithms.

5

• KeyGen(parms): On input the encryption

parameters parms := (n,q,t,χkey,χerr), the key

generation algorithm samples polynomials f0,g ←

χkey from the key distribution, and sets f := [1 + tf0]q.

If f is not invertible modulo q, it chooses a new f0.

Otherwise, it computes the inverse f−1 of f in Rq.

Next, the algorithm samples vectors e,s ∈ R`w,q, for

which each component is sampled according to the

error distribution χerr, and computes the vector of

polynomials γ := [Poww,q(f) + e + hs]q. It computes

h := [tgf−1]q ∈ R, and outputs the key pair

(pk,sk) := (h,f) ∈ R × R,

and the evaluation key evk := γ.

• Enc(h,m): To encrypt a plaintext element m ∈ Rt,

the encryption algorithm samples small error

polynomials s,e ← χerr, and outputs the ciphertext c

:= [bq/tcm + e + hs]q ∈ R.

• Dec(f,c): Given the private decryption key f, and a

ciphertext c = Enc(h,m), the decryption algorithm

recovers m using m = [bt/q · [fc]qe]t ∈ R.

• Add(c1,c2): Given two ciphertexts c1 and c2, the

algorithm Add outputs the ciphertext cadd := [c1 +

c2]q.

• Mult(c1,c2,evk): Given two ciphertexts c1 and c2, the

algorithm Mult first computes c˜mult := [bt/q(c1 ·

c2)e]q. It then performs a so-called relinearization

(or key switch) operation, by returning cmult :=

[hDecw,q(c˜mult),evki]q .

E. Practical considerations

As we already explained in the beginning of Section II,

every ciphertext, even a freshly encrypted one, has a

certain amount of inherent noise, or error, in it. The

decryption operation can be understood as an algorithm

for removing this noise using some auxiliary information,

namely the secret key. One of the main difficulties in

homomorphic cryptography is that in every

homomorphic operation this inherent noise increases,

until it reaches its maximum, at which point the message

becomes so distorted that even the decryption algorithm

can not recover it. To counter this problem, one needs to

increase the parameter q, but for security reasons this

means that also n should be increased. Unfortunately,

increasing n and q can significantly degrade

performance.

There are a number of ways to lower the noise growth

during homomorphic operations, at least in certain

situations, and thus to improve performance by allowing

smaller parameters to be used. For example, the

function to be computed might involve publicly known

values that do not need to be encrypted before adding

them to, or multiplying them with an encrypted value.

One simply needs to mimic the standard operations

described above, and include the public values as

ciphertexts obtained from an encryption procedure in

which all noise terms are set to zero. This approach yields

significantly smaller noise growth, allowing for the same

number of homomorphic operations to be performed

with smaller parameters, and thus will indirectly lead to

improved performance.

Furthermore, when such public values are small, a

multiplication with them can be made much more

efficient by using their representation according to the

currently used encoding technique. The multiplication

can then be performed by a sequence of shifts

(multiplications by powers of X) and homomorphic

additions, avoiding the multiplication routine altogether.

Since typically homomorphic additions are significantly

less costly than a homomorphic multiplication, this

approach can increase the efficiency of a computation

considerably. Due to their importance, SEAL contains

functionality for performing addition and multiplication

by a (public) plaintext polynomial.

Another promising avenue is to omit the

relinearization step (recall the description of Mult in II-

D). The homomorphic multiplication algorithm then only

computes the polynomial c˜mult. Thus, we can replace

Mult by

• Multnorelin(c1,c2): Given two ciphertexts c1 and c2,

the algorithm returns c˜mult := [bt/q(c1 · c2)e]q ∈ R.

The result of this operation does not give the correct

value when decrypted with the secret key sk, but instead

needs to be decrypted with the square of the secret key,

[sk2]q ∈ R. Further multiplications of this kind increase

the required power of the secret key. This means that the

decryption algorithm needs to be called with the

corresponding power s of the secret key, and now looks

as follows:

6

• Decnorelin(f,s,c): Given the private decryption key f,

an exponent s, and a ciphertext c, the decryption

algorithm recovers m using m = [bt/q · [fsc]qe]t ∈ R.

This approach has the advantage that it omits the by far

most costly part of the homomorphic evaluation

algorithms, and works without the evaluation key. Its

usefulness, however, depends on the specific choice of

the encryption parameters. For example, the larger the

plaintext modulus t is, the fewer levels of multiplications

can be computed like this, given all other parameters

stay fixed. One can experiment with different trade-offs,

for example by manually reintroducing relinearization

steps at certain points in the computation.

F. Implementation

We now demonstrate how the above concepts are

implemented in SEAL. Here we present mostly code

snippets, and for complete examples we refer the reader

to Section VI.

SEAL is written in C++, but comes with a C# wrapper

library SEALNET. All of our code examples use the C++

library. The necessary C++ header files are included with

#include "seal.h". SEAL contains a data type BigUInt for

large unsigned integers, and a data type BigPoly for large

polynomials with BigUInt coefficients. All polynomials

used in the encryption scheme are stored using instances

of BigPoly, including plaintext and ciphertext

polynomials, the secret key, and the public key. For

example, to create a (plaintext) polynomial p(X) = 3X4 +

X + 2, we can write

BigPoly p("3xˆ4 + 1xˆ1 + 2");

To access the i-th coefficient as a BigUInt, we can use p[i].

To return the polynomial as a human-readable string, we

can use the member function to_string. We have seen

above that plaintext polynomials can have either positive

or negative numbers as coefficients, but in SEAL the

coefficients of BigPoly are always instances of BigUInt,

i.e. unsigned. For this reason we store coefficients in the

range {d−t/2e,...,−1} instead as {b(t−1)/2c + 1,...,t − 1}. For

example, if t = 210 (0x400 in hexadecimal), the

polynomial p(X) = X2 −

3X − 1 could be created using

BigPoly p("1xˆ2 + 3FDxˆ1 + 3FF");

To set up the cryptosystem, the first thing we must do

is choose the encryption parameters as described in II-B.

These are encapsulated in an instance of the class

EncryptionParameters. First, we set the three moduli

that the encryption scheme uses: q (coefficient

modulus), t (plain modulus), and Xn + 1 (polynomial

modulus). These three are the most important

parameters, and choosing them correctly is crucial for

achieving optimal performance. Next we set w, or rather

the decomposition bit count log2 w, the standard

deviation σ of the distribution χerr, and an upper bound

for the output of the χerr sampler. For the purpose of the

examples here, we use the following parameters:

Listing II.1. encryption_parameters
EncryptionParameters parms; parms.poly_modulus() = "1xˆ2048 +

1"; parms.coeff_modulus() = ChooserEvaluator::
default_parameter_options().at(2048);
parms.plain_modulus() = 1 << 10; parms.decomposition_bit_count() =

32; parms.noise_standard_deviation() = ChooserEvaluator::
default_noise_standard_deviation();
parms.noise_max_deviation() = ChooserEvaluator::

default_noise_max_deviation();

In the above, coeff_modulus and plain_modulus are

instances of BigUInt, poly_modulus is an instance of

BigPoly, decomposition_bit_count is an int, and the last

two are double. In general, choosing appropriate and

optimal encryption parameters is a surprisingly difficult

task. For this reason SEAL provides an easy-to-use

automatic parameter selection module, which we

discuss in more detail in Section IV. A part of this can be

seen in the above where coeff_modulus,

noise_standard_devation and noise_max_deviation are

set to values hard-coded into the library that we consider

secure.

Next we need to generate the encryption keys.

Specifically, there are three types of keys we need to set:

the public key, the secret key, and the evaluation key

(recall II-D). Of these, the public key and the secret key

are instances of BigPoly, and the evaluation key is

encapsulated in an EvaluationKeys object. The keys are

generated based on an instance of

EncryptionParameters using KeyGenerator as follows:

Listing II.2. key_generator
KeyGenerator generator(parms); generator.generate();
BigPoly public_key = generator.public_key();
BigPoly secret_key = generator.secret_key(); EvaluationKeys

evaluation_keys = generator. evaluation_keys();

The next set of tools we need are for encrypting,

decrypting, and performing homomorphic operations:

7

Listing II.3. encryption_tools
Encryptor encryptor(parms, public_key);
Decryptor decryptor(parms, secret_key); Evaluator evaluator(parms,

evaluation_keys);

The following code constructs two plaintext

polynomials, X2 − 2X, and 3X3 + 1, and encrypts them:

BigPoly plain1("1xˆ2 + 3FExˆ1");
BigPoly plain2("3xˆ3 + 1");
BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);

We can use the Evaluator to operate on ciphertext

polynomials:

BigPoly enc_sum = evaluator.add(enc1, enc2); BigPoly enc_prod =

evaluator.multiply(enc1, enc2);

In addition to add and multiply, Evaluator supports a

number of other operations. For example, it is very

efficient to add and multiply ciphertexts by plaintext

polynomials (recall II-E):

BigPoly p("1x+2"); // Public polynomial
BigPoly enc1_sum = evaluator.add_plain(enc1, p);
BigPoly enc2_prod = evaluator.multiply_plain(enc2,
p);

The above code produces encryptions of (x2 − 2x) + (x +

2) and (3x3 + 1) · (x + 2). Finally, we can decrypt using

our instance of Decryptor:

BigPoly sum = decryptor.decrypt(enc_sum);
BigPoly prod = decryptor.decrypt(enc_prod);
BigPoly plain_sum = decryptor.decrypt(enc1_sum); BigPoly plain_prod

= deryptor.decrypt(enc2_prod);

SEAL also supports multiplication without

relinearization, and a stand-alone relinearization

operation (recall II-E). These are provided by the member

functions multiply_norelin and relinearize of Evaluator.

III. ENCODING DATA

As was described in II-B and II-C, plaintexts and

ciphertexts are certain polynomials rather than integers

or real numbers. More precisely, plaintext elements are

polynomials in R, with coefficients reduced modulo t,

and ciphertexts are polynomials in R, with coefficients

reduced modulo q. However, most algorithms in

genomics and bioinformatics operate on integers, real

numbers, and binary values. Therefore, there is a

mismatch between the plaintexts used by the encrypt

function in SEAL, and the data types used by

practitioners. This mismatch is resolved using encodings,

which convert common data types into plaintext

polynomials. Encodings must always come with a

matching decoding, which performs the inverse

operation. For the homomorphic property of the

encryption scheme to make sense, the encoding and

decoding functions must also be homomorphic in such a

way that addition (resp. multiplication) of encoded

plaintext polynomials yields an encoding of the sum

(resp. product) of the encoded integers or real numbers.

The main challenges in designing an encoding are (1)

making sure that the encoding and decoding functions

have the appropriate homomorphic poperties (see

above), and (2) making sure that the representation is

compact and allows for fast and memory efficient

computation. As a simple example, consider encoding an

integer as the scalar coefficient of a plaintext polynomial.

Decoding in this case is trivial: Simply read the constant

coefficient. However, if at any point during the

computation the values of the constant coefficient

increase beyond t, it will automatically be reduced

modulo t, and the result might be unexpected. The

solution is to choose t large enough, but this might in

turn cause the inherent noise to grow very rapidly in

homomorphic multiplications. When encoding integers

or real numbers as higher degree polynomials, it is

typically necessary to keep track of the degrees of the

plaintext polynomials appearing during the

computation, since if they exceed Xn−1 reduction modulo

the polynomial modulus Xn + 1 might occur, again leading

to unexpected results.

In the following section we present several powerful

encoding techniques. The choice of the right encoding

depends on the problem. Moreover, there are many

other encoding techniques that might be more

appropriate for certain applications.

A. Encoding integers

The simplest way to encode an integer is what we

already mentioned above: by representing it as the

constant coefficient of a plaintext polynomial. Therefore,

an integer y is encoded as the constant polynomial p(X)

:= y. This scalar encoding works as long as the numbers

used during the computation remain in

{d−t/2e,...,b(t−1)/2c}. Otherwise reduction modulo t might

occur, yielding unexpected results.

 The scalar encoding has two main limitations:

(1) large integers cannot be encoded without choosing t

to be enormous, and (2) it is inefficient in its use of

available space in the plaintext polynomial p(X), which

has a total of n coefficients waiting to be used. For one

way to resolve both (1) and (2), consider the following.

8

Let Pi bi2i be the binary representation of an integer y.

We can encode y as the polynomial p(X) := Pi biXi. In this

case the number y can be recovered using y = p(2), so

this encoding also admits an efficient and

straightforward decoding. The advantage of this binary

encoding over the scalar encoding is that the coefficients

at the beginning of each computation have only small

values: either zero or one. While adding and multiplying

may increase the sizes of the coefficient, they will still

grow much slower than in the scalar encoding, and

therefore may not so easily reduced modulo t. However,

modular reduction may happen, as may reduction

modulo around Xn+1, which was not possible with the

scalar encoding. A negative number we would encode by

simply negating every coefficient of the binary expansion

of its absolute value.

The binary encoding uses a base-2 representation to

encode integers, but we can just as well use any higher

base b, although this comes with the cost of having larger

coefficients appear in the freshly encoded plaintext

polynomial. Consider an odd base b ≥ 3. In this case we

can use a balanced set of representatives of integers

modulo b as coefficients of the base-b representation. In

other words, each integer has a unique base-b

representation, where powers of b appear with

coefficients from the symmetric range {b−b/2c,...,bb/2c}.

Encoding using the binary encoding wastes space since

each coefficient is one of {−1,0,1}, but all non-zero ones

will necessarily have the same sign. In balanced base-3

representation each coefficient again belongs to the set

{−1,0,1}, but now they can have different signs. For

example, encoding the number 25 using balanced base-

3 encoding would yield the polynomial p(X) := X3 − X + 1.

Decoding amounts to evaluating the polynomial at X = 3.

Using a higher base b produces shorter polynomials with

larger coefficients. This might be advantageous if the

numbers to be encoded are very large.

Another way to handle large numbers is by encoding

them multiple times using several co-prime plaintext

moduli t1,...,tk. Decoding can be done using the Chinese

Remainder Theorem (CRT) 2 to combine the individual

decodings back into an integer modulo Qti. Therefore,

we can break a large integer y into k much smaller

integers, obtained by reducing y modulo the ti, and for

2 According to CRT, given co-prime integers t1,...,tk, and integers ri

(mod ti), there is exactly one integer y (mod Qti) such that y ≡ ri

(mod ti) for every i.

instance use the scalar encoding to these separately,

encrypt them, and operate on them. Note that each

operation must now be performed on each of the k

ciphertexts. Once done with the computation, use CRT to

assemble the decrypted remainders into a single number

modulo t. This method is obviously incredibly wasteful in

terms of space, but allows for very small t (and hence

also q and n) to be used with the scalar encoding. Note

that the range of integers that can be encoded increases

exponentially with k.

SEAL provides classes BinaryEncoder and

BalancedEncoder that contain all of the essential

functionality for using the binary and balanced odd base

encodings. The following C++ code demonstrates

encoding the integer 1234 using binary, balanced base-

3 and balanced base-5 encodings.
encryption_parameters (Listing II.1) key_generator (Listing

II.2) encryption_tools (Listing II.3)

BinaryEncoder encoder2(plain_modulus);

/* In BalancedEncoder the base defaults to 3 */
BalancedEncoder encoder3(plain_modulus);
BalancedEncoder encoder5(plain_modulus, 5);

BigPoly e2 = encoder2.encode(1234);
BigPoly e3 = encoder3.encode(1234);

BigPoly e5 = encoder5.encode(1234);

The encoded BigPoly objects can be printed, as usual,

using the member function to_string.

B. Encoding real numbers

The most straightforward way to encode reals is by

scaling them to integers, which of course can only be

done when a fixed precision is needed. For example,

suppose we are given real numbers for which 3 digits

after the decimal point are significant. Multiplying these

numbers by 1000 and ignoring the fractional part will

results in integer values that capture the significant

information. Note however, that some book-keeping is

required since all the results will be scaled up. Moreover,

when multiplying numbers that were scaled up, the

result will have a different scaling factor than the inputs.

As a result, it is important to keep track of the scale at

different parts of the calculation, which can get rather

tedious with complicated computations.

9

When the number of significant digits is large, the

above method will result in very large integers to be

encoded. This can be avoided by a different encoding

scheme, where we encode the digits after the decimal

point as the highest degree coefficients of the

polynomial. More precisely, a real number y = y+.y−,

where y+ denotes the binary digits bI+bI+−1 ...b1b0, and y−

denotes the binary digits b−1b−2 ...b−I−, is encoded as the

plaintext polynomial

X Xib − X Xn−ib−i .

i
 i≤I+ 0<i≤I−

For example, 2 will be encoded as X, while 1/2 is encoded

as −Xn−1. When these two representations are multiplied,

we obtain

 X · (−Xn−1) = −Xn = 1 (mod Xn + 1),

as should be expected.

As another simple example, consider 3.25 = 11.012

encoded as −Xn−2 + X + 1. Multiplying this by 1.5 =

1.12 encoded as −Xn−1 + 1 gives (−Xn−2 + X +

1)(−Xn−1 + 1)

= X2n−3 − Xn−2 − Xn − Xn−1 + X + 1

= −Xn−1 − Xn−2 − Xn−3 + X2 (mod Xn + 1).

Decoding yields 22 + 2−1 + 2−2 + 2−3 = 4.875, which is what

we would expect.

When setting up such a fractional encoder, we need to

tell how many plaintext polynomial coefficients are

reserved for the fractional part, and how many are

reserved for the integral part, because the encoding

algorithm needs to know where to truncate a possibly

infinite expansion of the fractional part, and the

decoding algorithm needs to know which coefficients

belong to which part, as they must be treated differently.

For example, if we have n = 4096, we could reserve

1024 coefficients for the integral part, and 128 for the

fractional part. Freshly encoded numbers can then use

all of the 128 highest coefficients for their fractional

parts, and up to 1024 lowest coefficients for their

integral parts. When two such polynomials are

multiplied, they can have up to 256 of their top

coefficients be non-zero. Clearly when such polynomials

are further multiplied, the fractional part quickly grows

down towards the coefficients reserved for the integral

part. In this case the fractional part can take up to 4096

− 1024 = 3072 coefficients, but after that it gets mixed

with the integral part and can yield unexpected results

when decoded. In the decoding process we would only

count the 128 highest coefficients towards the fractional

part, the lowest 1024 towards the integral part, and

ignore the rest. Our library provides basic fractional

encoding functionality in the BinaryFractionalEncoder

and

BalancedFractionalEncoder classes.

We present an example of computing 3.14 · 15.93 in

encrypted form. In this example we use fractional

balanced base-3 encoding, reserve 128 coefficients for

the fractional part, and 256 coefficients for the integral

part.
encryption_parameters (Listing II.1) key_generator (Listing

II.2) encryption_tools (Listing II.3)

/* The base defaults to 3 */
BalancedFractionalEncoder encoder(parms. plain_modulus(),

parms.poly_modulus(), 256,
128);

BigPoly plain1 = encoder.encode(3.14);
BigPoly plain2 = encoder.encode(15.93);

BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);

BigPoly enc_prod = evaluator.multiply(enc1, enc2);

BigPoly prod = decryptor.decrypt(enc_prod); double result =

encoder.decode(prod);

The correct answer, stored in result, is 50.0202.

C. Plaintext packing

SEAL requires working with high degree polynomials to

ensure both security and correctness of the

computation. However, the data to be encoded is in

many cases rather small, resulting in an enormous

message expansion rate, and relatively long

encoding/encryption/decryption times. One way to

avoid these problems is to pack several pieces of data in

a single message, and use the Single Instruction Multiple

Data (SIMD) paradigm to operate on these messages [5],

[29].

One way to encode more data in a single message is

by using the Chinese Reminder Theorem (CRT) for

polynomial rings. For example, suppose that n = 2 and t

= 5. Since X2 + 1 = (X + 2)(X + 3) (mod 5), CRT yields an

explicit isomorphism

10

 .

This isomorphism allows taking two values, one in

Z5[X]/(X + 2), and the other in Z5[X]/(X + 3), and

encoding them as a single element in Z5[X]/(X2 + 1).

More generally, assume that
k

 Xn + 1 = YQi(X) (mod t)

i=1 for some polynomials

Q1(X),...,Qk(X) that are coprime3. Then

.

This allows to encode k integers in a single plaintext as,

for instance, the constant coefficients of each of the k

factors, and to operate on each of them simultaneously.

3
This means that if R(X) is a polynomial that divides both Qi(X) and

Qj(X) such that i 6= j, then R(X) is a constant.

In many cases it is possible to find n such polynomials

Q1(X),...,Qn(X) which are co-prime, and Xn + 1 = QQi(X)

(mod t), in which case, each Qi(X) must be a linear

polynomial, Zt[X]/(Qi(X)) ∼= Zt, and Zt[X]/(Xn + 1) ∼= Znt

. This is the optimal case, and allows encoding of n

integers into one plaintext polynomial. Of course this

only makes sense if the scalar encoding is otherwise

appropriate for the problem at hand.

Plaintext packing is implemented in SEAL in the class

PolyCRTBuilder.

D. Encoding binary data

In some situations encrypting integers is more

convenient to do bit-by-bit. This is particularly useful for

efficient comparison or equality testing, but is not very

efficient or practical when homomorphic multiplication

of integers is required. For example, one situation where

bit-wise encryption is particularly useful is in computing

the edit distance between two short encrypted DNA

sequences [11]. One option is to use the scalar encoding

together with a plaintext modulus t = 2, so that the

plaintexts are elements of Z2[X]/(Xn + 1). This is of

course incredibly inefficient in many ways, but it does

allow the user to perform both XOR and AND operations

on individual bits using homomorphic addition and

multiplication, respectively, providing an enormous

amount of functionality.

A na¨ıve way to improve the performance is by

encoding up to n bits as the n coefficients of a plaintext

polynomial. This does allow for some parallelism, namely

one can evaluate XOR gates on n encrypted pairs of bits

with just one homomorphic addition, or to evaluate

either XOR or AND with a plaintext bit on n encrypted

bits simultaneously. What is not possible however, is

evaluating AND gates on n encrypted pairs of bits

simultaneously.

A much better way to introduce parallelism to bitwise

encryption is to use the CRT technique of III-C. In this case

up to n bits can be encoded in the constant coefficients

of the different slots, where both addition and

multiplication are performed separately for each slot,

resulting in massive improvements in the amortized

complexity.

IV. PARAMETER SELECTION

Selecting secure parameters for homomorphic

encryption schemes is a surprisingly complicated task.

Security of the encryption scheme used by SEAL depends

on the assumed hardness of a lattice problem known as

Ring-Learning With Errors (RLWE) [1], [22]. In some

parameter settings the hardness of RLWE can further be

proven to that of certain extremely well studied worst-

case lattice problems [28], [23], [26], [24], [7], but

unfortunately such parameters are not relevant for

practical use. Instead, in practice the security claims

must be directly based on an analysis of state-of-the-art

attacks against RLWE, which has been done in [20], [32],

[21].

In addition to guaranteeing security, the encryption

parameters must also be large enough, or else the

inherent noise (recall Section II) will grow too big, and

make the ciphertexts impossible to decrypt. We denote

∆ := bq/tc, and by rt(q) the (positive) remainder when

dividing q by t. The inherent noise in a ciphertext c ∈ R is

a polynomial v ∈ R, such that

 fc ≡ ∆[m]t + v (mod q).

It is shown in [1] that a ciphertext c is possible to decrypt

only as long as it has an inherent noise that satisfies

 .

Here ||v||∞ denotes the largest absolute value of the

coefficients of v. Even freshly encrypted ciphertexts have

a certain amount of noise in them (see IV-A below), and

performing arithmetic operations on ciphertexts always

11

increases the noise level, until it reaches its maximum

value and corrupts the underlying plaintext. Due to the

significance of ||v||∞, we often call it the inherent noise,

instead of v. In fact, our noise growth simulator only

estimates the growth of ||v||∞, rather than of v.

In addition, the encoding scheme typically places

strong restrictions on the size of the plaintext modulus t,

and in some cases on the degree n of the polynomial

modulus, as was explained in Section III. Hence, to set up

the cryptosystem with appropriate parameters, the user

must perform (roughly) the following steps:

(1) Let σ be a constant or possibly a function of n.

(2) Determine lower bounds for t and n (depending on

encoding).

(3) Determine a lower bound for q such that decryption

can be expected to succeed.

(4) Choose n, q, and possibly σ, based on the bounds

determined above and state-of-the-art security

estimates.

(5) Choose w to be as large as possible (at most q) so

that decryption still succeeds.

(6) If w chosen above is too small, or no such w could be

chosen, switch to larger n and q.

Our automatic parameter selection tool essentially

performs the above steps. By default it uses a constant σ

:= 3.19, a constant bound Berr = 15.95 for the Gaussian

error sampler, and a hard-coded list of pairs (n,q) that

we consider to be secure based on the analysis of [20].

Table IV shows the size of q for the values of n that are

used by the automatic parameter selector. A noise

growth simulator then estimates the growth of inherent

noise in the homomorphic operations without requiring

any actual encrypted data as input. These default values

are all available also outside the automatic parameter

selector through the static functions

default_noise_standard_deviation()

default_noise_max_deviation()

default_parameter_options()

of ChooserEvaluator. Alternatively, the user can supply

their own σ, Berr, and list of (n,q)-pairs for the parameter

selector to use.

TABLE I

(n,q)-PAIRS

n 1024 2048 4096 8192 16384
q 48 bits 91 bits 127 bits 383 bits 768 bits

A. Noise growth simulator

Upper bounds for inherent noise growth in the

homomorphic encryption scheme are well understood

[1], and have already been used for parameter selection

in e.g. [2]. The problem with these bounds is that they

are typically extremely conservative, and as such yield

highly inefficient parameters. We instead focus on the

most significant terms contributing to the noise, and use

average-case estimates for their sizes. As a result, we

obtain simple, but fairly accurate estimates for inherent

noise growth in all homomorphic operations. Moreover,

these estimates only require the encryption parameters,

and the inherent noise estimates for the input

ciphertexts to work. More precisely, given input

ciphertexts with estimated inherent noises v1,v2, the

estimated inherent noise of the output is computed as

follows:

fresh: 2t

add: p||v1||2∞+ ||v2||2∞ multiply:

add_plain: ||v||∞

multiply_plain by p(X): pdeg(p)+1||v||∞ ||p||∞ negate: ||v||∞

The above estimates are only valid when the parameters

are in realistic ranges, and only until the inherent noise

reaches its upper bound of (∆ − rt(q))/2. It is crucial to

understand that both homomorphic addition and

multiplication by a plaintext polynomial typically

increase the noise significantly less than true

homomorphic multiplication of two ciphertexts, which

can be easily seen from the estimates.

Recall from II-E that it is possible to also do

multiplication without performing the relinearization

procedure, but that the result must then be decrypted

with a different secret key. In the above noise growth

estimate for multiply, the first term comes from the

multiply_norelin part, and the second from the

operation relinearize.

To understand what is involved in these estimates,

consider for example estimating the noise in a freshly

encrypted ciphertext. Recall that the encryption of a

plaintext polynomial m ∈ R is c := [bq/tc[m]t + e + hs]q ∈

R,

r 2 n
3

B

12

where is the public key, and s,e ← χerr.

To find the inherent noise in c, we compute

 ,

where coefficients of the secret polynomial f0 are chosen

uniformly at random from {−1,0,1}. We have also used q

= bq/tct + rt(q). The inherent noise polynomial in a fresh

ciphertext is therefore

 .

It is the || · ||∞-norm of vfresh that matters, and that we

need to estimate. By the triangle inequality

||vfresh||∞ ≤ ||fe||∞ + ||tgs||∞ + rt(q)||f0 [m]t||∞ .

In typical cases the last term is very small compared to

the first two, so we omit it. This is especially true when

rt(q) is small, when [m]t has small coefficients, and/or

when [m]t is sparse and short enough. In the first term,

the polynomial e is dense and has coefficients distributed

according to a discrete Gaussian distribution with mean

0 and standard deviation σ. Since approximately two

thirds of the coefficients of f are ±t, and one third are 0,

each coefficient of fe is roughly a sum of 2n/3 discrete

Gaussian distributions, multiplied by t, and hence

distributed according to a discrete Gaussian distribution

with standard deviation tp2n/3σ. This means that we

can expect ||fe||∞ ≈ tp2n/3Berr. The polynomial tgs

has similar structure, so also ||tgs||∞ ≈ tp2n/3Berr,

resulting in the estimate above for fresh. The other ones

involve similar approximations.

B. Automatic parameter selection

As we explained in the beginning of this section,

automatic parameter selection involves much more than

simply estimating inherent noise growth. In particular,

the plaintext modulus t must be large enough for

decoding to work. The user must provide an estimated

size of the input plaintext data, in particular bounds on

the lengths of the plaintext polynomials and on the

absolute values of their coefficients, and of course the

homomorphic operations that are to be performed.

From all this information we can compute a compute a

lower bound for t. The homomorphic operations must

also be stored in order to later run the noise simulator.

In practice we perform this by introducing a device

called ChooserPoly. These objects carry three essential

pieces of data:

(CP1) Upper bound on the number of non-zero

coefficients in a (plaintext) polynomial

(CP2) Upper bound on the ||·||∞-norm of a (plaintext)

polynomial

(CP3) A directed acyclic graph representing the entire

operation history of the ChooserPoly

One should think of a ChooserPoly as modeling a

ciphertext, while only carrying information about the size

of the underlying plaintext polynomial, and information

about how the ciphertext was obtained as a result of

homomorphic operations. The operation history tells

exactly how the particular ChooserPoly was obtained

from freshly encrypted ciphertexts. Those ChooserPolys

that model freshly encrypted ciphertexts have their

operation history set to a special fresh value, with no

inputs. We use ChooserPolys with NULL operation

history to model plaintext polynomials instead of

ciphertexts. Whenever a homomorphic operation is

performed on one or more ChooserPolys, a new one is

created with (CP1) and (CP2) computed from (CP1) and

(CP2) of the inputs. Finally, the operation histories of the

inputs are fully cloned and merged to create (CP3).

We still have not mentioned the parameter w, or the

decomposition bit count log2 w. For efficiency reasons

we prefer to have log2 w be an integer in the range

{1,...,dlog2 qe}, i.e. we always take w to be a power of 2.

It is clear from the estimates in IV-A that a larger w

corresponds to larger noise growth in homomorphic

multiplication, but it also makes the operation faster.

Thus, the procedure for selecting w is as follows:

(1) Start with log
2 w = dlog

2 qe.

(2) Use the inherent noise growth simulator to find out

whether decryption can be expected to work with

encryption parameters (n,q,t,σ,w).

(3) If decryption can not be expected to succeed,

decrease log
2 w, and go to (2), unless log

2 w is

already too small to be efficient (bound can be

determined by user), in which case increase (n,q)

and go to (1).

Finally, we need to explain in more detail how the pairs

(n,q) are chosen. For security and efficiency reasons, we

always take n be a power of 2, and choose q from a hard-

coded list of prime numbers of a certain form, whose

sizes were presented above in Table IV. These choices

13

are estimated to yield a security level of well over 128

bits (see [20]), and are certainly a conservative choice3.

Our automatic parameter selection module contains

also tools analogous to BalancedEncoder, Encryptor, and

Evaluator. This makes it very easy for the user to switch

from running their code on ChooserPoly objects to

running it on actual data. More precisely, the following

classes are provided:

ChooserPoly:

Contains information about the approximate size of a

plaintext polynomial, and an operation history, as was

explained above.

ChooserEncoder:

This class can be used analogously to

BalancedEncoder. If the user knows beforehand some

numbers going into the computation, e.g. coefficients of

a linear function to be evaluated on the encrypted data,

they can be converted into ChooserPoly objects with

NULL operation history using the encode function in

ChooserEncoder.

ChooserEncryptor:

Most importantly, this class contains a function encrypt

that can be used to change the operation history in a

ChooserPoly from NULL to fresh. The same result can be

achieved by calling the set_fresh member function of the

particular ChooserPoly.

ChooserEvaluator:

The ChooserEvaluator class is used to perform

operations on the ChooserPoly objects. The operations

take a varying number of ChooserPolys as input

parameters, and always output a new ChooserPoly with

updated values for (CP1)–(CP3).

Once the user has performed all of their computations

on the ChooserPoly objects, they can use the function

select_parameters of ChooserEvaluator to obtain an

optimized set of encryption parameters encapsulated in

an instance of EncryptionParameters.

C. Examples

Here we present a few simple examples of using the

automatic parameter selection module.

Suppose the user wants to compute 12·345+6789 in

encrypted form. Consider the following C++ code:

3 An expert user might benefit from switching to slightly less secure

parameters (larger q, smaller n), and this is certainly easy to do by

ChooserEncoder encoder;
ChooserEncryptor encryptor;
ChooserEvaluator evaluator;

ChooserPoly plain1 = encoder.encode(12);
ChooserPoly plain2 = encoder.encode(345);
ChooserPoly plain3 = encoder.encode(6789);
ChooserPoly enc1 = encryptor.encrypt(plain1);
ChooserPoly enc2 = encryptor.encrypt(plain2);
ChooserPoly enc3 = encryptor.encrypt(plain3);

ChooserPoly prod = evaluator.multiply(enc1, enc2);
ChooserPoly result = evaluator.add(prod12, enc3);

EncryptionParameters parms = evaluator. select_parameters(result);

This stores a working set of encryption parameters in

parms, which the user can read and use. Once the user

knows which encryption parameters they want to use,

and have set up the cryptosystem accordingly, it is

extremely easy to convert the above code to run on real

data. The only change needed is, instead of creating

ChooserEncoder, ChooserEncryptor, and

ChooserEvaluator, to create an encoder, encryptor, and

evaluator as usual, e.g.
encryption_parameters (Listing II.1) key_generator (Listing

II.2) encryption_tools (Listing II.3)

BalancedEncoder encoder(parms.plain_modulus());
Encryptor encryptor(parms, public_key);

Evaluator evaluator(parms, evaluation_keys); and change the

ChooserPoly objects into BigPoly objects. Then BigPoly

result will contain the

encryption of 12 · 345 + 6789 = 10929.

Typically whoever chooses the parameter sizes does

not know exactly what the input data is, but only an

estimate of its size. For example, if we know that enc1,

enc2, and enc3 will contain encryptions of balanced

base-3 encoded numbers, with encodings of length at

most 9, we could use

ChooserEvaluator evaluator;

ChooserPoly enc1(9,1);
ChooserPoly enc2(9,1);
ChooserPoly enc3(9,1);

ChooserPoly prod = evaluator.multiply(enc1, enc2);
ChooserPoly result = evaluator.add(prod12, enc3);

EncryptionParameters parms = evaluator.
select_parameters(result);

changing the values in the code, but is also highly discouraged

without a very good understanding of the security results.

14

to obtain appropriate encryption parameters. The

constructor of ChooserPoly takes (CP1) and (CP2) as

input parameters. The operation histories of the three

ChooserPolys are set by default to fresh.

Next we demonstrate choosing parameters for

computing a linear combination of encrypted numbers

with public coefficients. Suppose we know that all of the

encrypted numbers are encoded using balanced base-7

encoding, and have length at most 20 terms5. Suppose

that the coefficients are stored as integers in an std::

vector<int>. The following C++ code can be used to find

an appropriate set of encryption parameters:

#include <vector> ...

ChooserEncoder encoder(7);
ChooserEncryptor encryptor; ChooserEvaluator evaluator;

std::vector<int> c_ints {/* list of coeffs */}; int c_count = c_ints.size();

std::vector<ChooserPoly> c_cps; for(int i=0;

i<c_count; ++i)
{ c_cps.push_back(encoder.encode(c_ints[i]));
}

std::vector<ChooserPoly> encs(
c_count, ChooserPoly(20, 3));

ChooserPoly result = evaluator.multiply_plain(encs[0], c_cps[0]);
for (int i = 1; i < c_count; ++i)
{
ChooserPoly term = evaluator.multiply_plain(encs[i], c_cps[i]);
result = evaluator.add(result, term);
}

EncryptionParameters parms = evaluator. select_parameters(result);

V. BIOMEDICAL APPLICATIONS

A. Sample tasks

There are many different types of analyses which

researchers or healthcare professionals may wish to

perform on sensitive genomic or medical data. For

example, Genome-Wide Association Studies (GWAS)

typically perform statistical calculations across a large

population, such as computing Minor Allele Frequencies

(MAFs), χ2-statistics, Pearson goodness-of-fit tests, tests

for association between different loci in the genome,

estimates of haplotype frequencies, and tests for

association of a genotype with a disease. These, and

other statistical analysis tools, are available and widely

used in the R Project [27].

5 20
So the numbers have absolute value at most (7 −1)/2.

Based on earlier internal implementations of

homomorphic encryption which were hand-tuned, not

publicly available, and not very flexible, performance

numbers for many such computations on

homomorphically encrypted genomic data were

reported in [18], [19], [2]. Most recently, [18]

implemented MAFs, χ2-statistics, Hamming distance, and

edit distance for sequence matching, which were the

tasks in the Secure Genome Analysis Contest run by

iDASH, and funded by NIH [17]. The implementation in

[19] was written using the Magma software package [3],

and demonstrated encodings and performance numbers

for many functions from the R package: the Pearson

goodness-of-git and χ2-tests to test for deviation from

Hardy-Weinberg equilibrium, various measures of

linkage disequilibrium to test for association in the

genotypes at two different loci in a genome, the

Estimation Maximization (EM) Algorithm to estimate

haplotype frequencies from genotype counts, and the

Cochran-Armitage Test for Trend (CATT) to determine if

a candidate allele is associated with a disease.

In [2], logistic regression and the Cox proportional

hazard model were implemented as representative

examples for disease prediction. A private cloud service

for predicting cardiovascular disease (CVD) was

demonstrated on homomorphically encrypted data

using a model based on logistic regression, and shown at

the AAAS Meeting 2014 Newsroom. To apply logistic

regression to homomorphically encrypted data, we use a

polynomial approximation to the function which

approximates the prediction well enough in a certain

range. Logistic regression has been commonly used to

predict whether a patient will survive or suffer from

various diseases, including cardiovascular disease (CVD),

diabetes, probability of survival in blunt trauma, testing

gender as a predictor of mortality after heart surgery,

correlating genotypes with the risk of cardiovascular

disease, and relating protein abnormalities with

occurrence of diabetes [13].

B. Practical considerations

The statistical functions mentioned above often take

inputs which are integers or real numbers. For example,

frequency counts for MAF and haplotype frequencies are

represented as integers, and health data input to

predictive models using logistical regression are often

real numbers. The encoding methods described in III-A

and III-B can be used to significantly improve the

15

parameters and performance of homomorphic

encryption for such applications. On the other hand,

tasks like sequence matching often take discrete inputs,

such as strings of genomic data. In such cases the best

option might be to use bit-wise encryption of inputs, and

use the CRT techniques to pack multiple bits in one

plaintext/ciphertext pair, as was briefly described in III-

D. In this section we demonstrate how to concretely use

SEAL for tasks such as these.

As our first example we discuss using the logistic

regression model for predicting the likelihood of a

patient developing diabetes [2]. A predictive equation to

screen for diabetes was developed based on logistic

regression in [31]. The equation was computed from

data on more than 1,000 Egyptian patients with no

history of diabetes. The predictive variables used were:

age (a), sex, BMI, number of hours since the last food or

drink (PT: postprandial time), and Random Capillary

Plasma Glucose level (RCPG). The study was cross-

validated on a sample of more than 1,000 American

patients. The predictive equation calculated is

,

with the following logistic regression parameters: x

= −10.0382 + 0.0331 · a

+ 0.0308 · RCPG + 0.2500 · PT

+ 0.5620 · (if female) + 0.0346 · BMI, where

age is given in years, random plasma glucose (RPG) in

mg/dl, and postprandial time (PT) in hours. Undiagnosed

diabetes is predicted if the value is greater than 0.20

(20%). Thus only one digit of accuracy is required

beyond the decimal point when computing the value of

the predictive function approximately.

The sigmoid function P(x) can be approximated near x

= 0 by the Taylor series

,

which we can attempt to evaluate homomorphically on

our input data.

First set up the scheme and the encoder, and encrypt

some sample patient data:

#include <vector> ...

encryption_parameters (Listing II.1) key_generator (Listing

II.2) encryption_tools (Listing II.3)

BalancedFractionalEncoder encoder(parms.plain_modulus(),

parms.poly_modulus(),
256, 16);

BigPoly a = encoder.encode(42);
BigPoly RCPG = encoder.encode(115); BigPoly PT =

encoder.encode(8);
BigPoly female = encoder.encode(1); BigPoly BMI =

encoder.encode(20.2); std::vector<BigPoly> data {

encryptor.encrypt(a), encryptor.encrypt(RCPG),

encryptor.encrypt(PT), encryptor.encrypt(female),

encryptor.encrypt(BMI)

};

Next, encode the coefficients needed to evaluate x:

std::vector<BigPoly> xweights { encoder.encode(0.0331),

encoder.encode(0.0308), encoder.encode(0.2500),

encoder.encode(0.5620), encoder.encode(0.0346)
};
BigPoly translate = encoder.encode(-10.0382);

Computing x is now easy using the multiply_plain

and add functions:
BigPoly x = evaluator.multiply_plain(data[0], xweights[0]);
for (int i = 1; i<5; ++i)
{
BigPoly prod = evaluator.multiply_plain(encrypted_data[i],

encoded_xweights[i]);
x = evaluator.add(x, prod);
}
x = evaluator.add_plain(x, translate);

Now we come to evaluating the Taylor expansion. First

encode the coefficients of the expansion:
std::vector<BigPoly> taylor_coeffs {
encoder.encode(1.0 / 4), encoder.encode(-1.0 / 48),

encoder.encode(1.0 / 480), encoder.encode(-17.0 / 80640)
};
BigPoly taylor_constant = encoder.encode(1.0 / 2);

To compute the odd powers of x we can use the member

function exponentiate of Evaluator. Computing the

Taylor expansion is now easy:
BigPoly result = evaluator.multiply_plain(x, taylor_coeffs[0]);

for (int i = 1; i<4; ++i)
{
BigPoly power_of_x = evaluator.exponentiate(x, 2 * i + 1);
BigPoly prod = evaluator.multiply_plain(power_of_x, taylor_coeffs[i]);
result = evaluator.add(result, prod);
} result = evaluator.add_plain(result, taylor_constant);

16

Finally, result can be decrypted and decoded:

double plain_result = encoder.decode(decryptor. decrypt(result));

The computation above is, however, not a very

optimal solution. In fact, the parameters given in

Listing II.1 are not nearly large enough to deal with

this problem. Everything works well until the sigmoid

function has to be evaluated. Problems arise when

real numbers encoded with the fractional encoders

are raised to high powers, such as 7. The reason is

that even if only very few terms of precision are used,

the number of cross terms between those few high

degree terms in the exponentiation quickly becomes

enormous, and dominates the growth of the coefficients

of the plaintext polynomial. This forces us to increase t

significantly, which in turn forces us to use a much larger

(n,q) pair than what is given in Listing II.1. Another

unrelated problem is that the sigmoid function is not

very well approximated by a Taylor expansion, and the

quality of the result in this case depends hugely on the

exact value of x.

There are numerous ways to solve these problems

using more complicated neural networks to perform the

prediction. Such neural networks can be made to use low

degree polynomials as activation functions to yield

models better suited for homomorphic computations

than the above logistic regression model. Another option

is to return x instead of returning the troublesome

probability P(x).

VI. EXAMPLES

In this section we present complete examples for using

the SEAL library. Our examples are in C++, but are easy

to convert to use the C# wrappers in the SEALNET library.

All of the examples we present here use the basic setup

presented in Listings II.1, II.2, and II.3.

As the first example, consider the following encrypted

computation of (x2−1)·(x3−2x+1)−(x3+x2+x+1).

#include "seal.h" #include

<iostream>

using namespace std; using

namespace seal;

int main()
{ encryption_parameters (Listing II.1) key_generator

(Listing II.2) encryption_tools (Listing II.3)

/* Note that a negative coefficient y is expressed as t-y */
BigPoly plain1("1xˆ2 + 3FF");
BigPoly plain2("1xˆ3 + 3FExˆ1 + 1");
BigPoly plain3("1xˆ3 + 1xˆ2 + 1xˆ1 + 1");

/* Now encrypt plain1, plain2, plain3 */
BigPoly enc1 = encryptor.encrypt(plain1);
BigPoly enc2 = encryptor.encrypt(plain2);
BigPoly enc3 = encryptor.encrypt(plain3);

/* Use Evaluator to do the computation */
BigPoly prod = evaluator.multiply(enc1, enc2); BigPoly negenc3 =

evaluator.negate(enc3);
BigPoly result = evaluator.add(prod, negenc3);

BigPoly plain_result = decryptor.decrypt(result);

/* Now print the result: xˆ5-4xˆ3+x-2 */ cout << "Result: " <<

plain_result.to_string()
<< endl;

return 0;
}

Here is an example of computing the weighted

average of 5 real numbers (in the vector numbers), with

given public weights (in the vector weights).

17

#include "seal.h"
#include <iostream> #include

<vector>

using namespace std; using

namespace seal;

int main()
{ encryption_parameters (Listing II.1) key_generator

(Listing II.2) encryption_tools (Listing II.3)

/* We need the fractional encoder */
BalancedFractionalEncoder encoder(parms. plain_modulus(),

parms.poly_modulus(),
256, 64);

vector<BigPoly> numbers{
encryptor.encrypt(encoder.encode(6.12)),

encryptor.encrypt(encoder.encode(1.10)),

encryptor.encrypt(encoder.encode(8.43)),

encryptor.encrypt(encoder.encode(9.30)),

encryptor.encrypt(encoder.encode(7.05))
};

vector<BigPoly> weights{ encoder.encode(0.20),

encoder.encode(0.20), encoder.encode(0.35),

encoder.encode(0.15), encoder.encode(0.20)
};
BigPoly denom = encoder.encode(0.2);

/* Multiply numbers by weights and add them up to result */
BigPoly result = evaluator.multiply_plain(numbers[0], weights[0]);
for (int i = 1; i<5; ++i)
{
BigPoly prod = evaluator.multiply_plain(numbers[i], weights[i]);
result = evaluator.add(result, prod);
}

/* Finally divide by 5 */ result = evaluator.multiply_plain(result,

denom);

/* Now decrypt/decode and print the result:
*/
BigPoly plain_result = decryptor.decrypt(result);
cout << "Result: " << encoder.decode(
plain_result) << endl;

return 0;
}

The above code will print the correct answer: 1.4399.

A. Performance

To give a rough idea of the overhead for doing

computation on homomorphically encrypted data, we

give some sample timings for the SEAL library when

running on a 2.00 GHz machine using a single thread.

Much better performance can be achieved by

parallelizing the computations. These timings were

obtained by averaging across 25 runs of the operations.

For a smaller parameter set with n = 1024, and

coefficient modulus q of size roughly 48 bits, the time

required for a homomorphic multiplication of

ciphertexts is around 92 milliseconds, including the

costly relinearization step II-E. For a larger parameter set

with n = 4096, and coefficient modulus q of size roughly

127 bits, the time required for a homomorphic

multiplication of ciphertexts is around 291 milliseconds,

including relinearization.

REFERENCES

[1] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig.

Improved security for a ring-based fully homomorphic

encryption scheme. In Cryptography and Coding, pages 45–64.

Springer, 2013.
[2] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private

predictive analysis on encrypted medical data. Journal of

biomedical informatics, 50:234–243, 2014.
[3] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma

algebra system. I. The user language. J. Symbolic Comput., 24(3-

4):235–265, 1997. Computational algebra and number theory

(London, 1993).
[4] Zvika Brakerski. Fully homomorphic encryption without

modulus switching from classical GapSVP. In Reihaneh Safavi-

Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture

Notes in Computer Science, pages 868–886. Springer, 2012.
[5] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed

ciphertexts in lwe-based homomorphic encryption. In PublicKey

Cryptography–PKC 2013, pages 1–13. Springer, 2013.
[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(leveled) fully homomorphic encryption without bootstrapping.

In Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, pages 309–325. ACM, 2012.
[7] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev,

and Damien Stehle. Classical hardness of learning with errors.´

In Proceedings of the forty-fifth annual ACM symposium on

Theory of computing, pages 575–584. ACM, 2013.
[8] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully

homomorphic encryption from (standard) LWE. In Rafail

Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.
[9] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic

encryption from ring-lwe and security for key dependent

messages. In Advances in Cryptology–CRYPTO 2011, pages 505–

524. Springer, 2011.
[10] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as

secure as PKE. In Moni Naor, editor, ITCS, pages 1–12. ACM,

2014.
[11] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homomorphic

computation of edit distance. Cryptology ePrint Archive, Report

2015/132, 2015. http://eprint.iacr.org/.
[12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully

homomorphic encryption. Cryptology ePrint Archive, Report

2012/144, 2012. http://eprint.iacr.org/.
[13] Andreas Festa, Ken Williams, Anthony J.G. Hanley, James D.

Otvos, David C. Goff, Lynne E. Wagenknecht, and Steven M.
Haffner. Nuclear magnetic resonance lipoprotein abnormalities

http://eprint.iacr.org/
http://eprint.iacr.org/

18

in prediabetic subjects in the insulin resistance atherosclerosis
study. Circulation, 111(25):3465–3472, 2005.

[14] Craig Gentry. Fully homomorphic encryption using ideal lattices.

In STOC, volume 9, pages 169–178, 2009.
[15] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic

evaluation of the aes circuit. In Advances in Cryptology– CRYPTO

2012, pages 850–867. Springer, 2012.
[16] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic

encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In Ran Canetti and Juan

A. Garay, editors, CRYPTO (1), volume 8042 of Lecture Notes in

Computer Science, pages 75–92. Springer, 2013.
[17] iDASH Privacy & security workshop 2015. Secure genome

analysis competition. http://www.humangenomeprivacy.org/

2015/competition-tasks.html.
[18] Miran Kim and Kristin Lauter. Private genome analysis through

homomorphic encryption. Cryptology ePrint Archive, Report

2015/965, 2015. http://eprint.iacr.org/.
[19] Kristin Lauter, Adriana Lopez-Alt, and Michael Naehrig. Pri-´

vate computation on encrypted genomic data. In Progress in

Cryptology-LATINCRYPT 2014, pages 3–27. Springer, 2014.
[20] Tancrede Lepoint and Michael Naehrig. A comparison of the`

homomorphic encryption schemes fv and yashe. In Progress in

Cryptology–AFRICACRYPT 2014, pages 318–335. Springer, 2014.
[21] Richard Lindner and Chris Peikert. Better key sizes (and attacks)

for lwe-based encryption. In Topics in Cryptology– CT-RSA 2011,

pages 319–339. Springer, 2011.
[22] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan.´

On-the-fly multiparty computation on the cloud via multikey

fully homomorphic encryption. In Proceedings of the fortyfourth

annual ACM symposium on Theory of computing, pages 1219–

1234. ACM, 2012.
[23] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal

lattices and learning with errors over rings. Journal of the ACM

(JACM), 60(6):43, 2013.
[24] Daniele Micciancio and Chris Peikert. Trapdoors for lattices:

Simpler, tighter, faster, smaller. In Advances in Cryptology–

EUROCRYPT 2012, pages 700–718. Springer, 2012.
[25] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can

homomorphic encryption be practical? In Proceedings of the

3rd ACM workshop on Cloud computing security workshop,

pages 113–124. ACM, 2011.
[26] Chris Peikert. Public-key cryptosystems from the worst-case

shortest vector problem. In Proceedings of the forty-first annual

ACM symposium on Theory of computing, pages 333–342. ACM,

2009.
[27] R Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna,

Austria, 2015.
[28] Oded Regev. On lattices, learning with errors, random linear

codes, and cryptography. Journal of the ACM (JACM), 56(6):34,

2009.
[29] Nigel P Smart and Frederik Vercauteren. Fully homomorphic

simd operations. Designs, codes and cryptography, 71(1):57–

81, 2014.
[30] Damien Stehle and Ron Steinfeld.´ Making ntru as secure as

worst-case problems over ideal lattices. In Advances in

Cryptology–EUROCRYPT 2011, pages 27–47. Springer, 2011.

[31] Bahman P Tabaei and William H Herman. A multivariate logistic

regression equation to screen for diabetes development and

validation. Diabetes Care, 25(11):1999–2003, 2002.
[32] Joop van de Pol and Nigel P Smart. Estimating key sizes for high

dimensional lattice-based systems. In Cryptography and

Coding, pages 290–303. Springer, 2013.
[33] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod

Vaikuntanathan. Fully homomorphic encryption over the

integers. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of

Lecture Notes in Computer Science, pages 24–43. Springer,

2010.

http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://eprint.iacr.org/

