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I. INTRODUCTION 

A wealth of personal genomic data is becoming 

available thanks to scientific advances in sequencing the 

human genome and gene assembly techniques. 

Hospitals, research institutes, clinics, and companies 

handling human genomic material and other sensitive 

health data are all faced with the common problem of 

securely storing, and interacting, with large amounts of 

data. Commercial clouds offer solutions but are subject 

to subpoenas, data misuse or theft, and possible insider 

attacks. To mitigate the privacy risks inherent in storing 

and computing on sensitive data, cryptography offers a 

potential solution in the form of encryption, which 

metaphorically locks the data in a “box” which requires a 

key to open. Traditional encryption systems lock data 

down in a way which makes it impossible to use, or 

compute on, in encrypted form. Recent advances in 

cryptography have yielded new tools that allow 

operations on encrypted data. One such tool is 

homomorphic encryption. Encrypting data using a 

homomorphic encryption scheme allows for meaningful 

computation on the encrypted data producing the 
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results of the computation in encrypted form, without 

the need for decrypting it or requiring access to the 

decryption key. 

This paper details a state-of-the-art homomorphic 

encryption solution and is meant to serve as a guide to 

using it for bioinformatics and genomic computations. 

The Microsoft Research Simple Encrypted Arithmetic 

Library (SEAL) has been publicly released and can be 

downloaded for experimentation and research 

purposes1. Homomorphic encryption is a technique to 

encrypt data in such a way that it can be computed on by 

anyone, without access to the encryption or decryption 

keys, and the result of the computation is obtained in 

encrypted form. Solutions for homomorphic encryption 

which allow one operation, such as addition, have been 

known for decades, for example based on the RSA or 

Elgamal cryptosystems. But a homomorphic encryption 

solution which allows an unlimited number of two 

operations, i.e. addition and multiplication, enables the 

computation of any circuit, and thus such a solution is 

referred to as fully homomorphic (FHE). The first FHE 

solution was proposed in [14], and many improvements 

and extensions have followed over the last 5 years: [9], 

[6], [15], [30], [1]. For practical applications, an 

important idea introduced in [25] is to use homomorphic 

encryption schemes which only allow for a fixed amount 

of computation on the data. It is usually the case that the 

computation (the function or the algorithm) which will 

be applied to the data is known in advance, so that a 

homomorphic encryption scheme may be instantiated to 

allow only for that amount of computation on the data. 

This insight leads to improved parameters, and thus 

better efficiency for both storage and computation. A 

scheme for which it is possible, for any fixed given 

function, to choose parameters such that the scheme 

allows homomorphic evaluation of that function, is 

called a leveled homomorphic encryption scheme. Using 

a leveled homomorphic scheme, where parameters are 

set to allow a certain predetermined, fixed amount of 

computation, together with application-specific data 

http://sealcrypto.codeplex.com/
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encodings and algorithmic optimizations, leads to a 

significant efficiency gain. We refer to such a 

combination as Practical Homomorphic Encryption 

(PHE). 

While it was considered a major breakthrough to 

develop solutions for homomorphic encryption, serious 

challenges remain to convert these proposals into 

practical systems which can overcome the performance 

hurdles and storage requirements. Significant 

improvements have been made by encoding data for 

computation in clever ways to reduce both the size of 

ciphertexts and the depth of circuits to be evaluated. In 

Section III we present new methods for encoding real 

data which lead to concrete improvements in both 

performance and storage requirements. 

When using PHE, parameters of the encoding an 

encryption schemes should be chosen to optimize for 

efficiency, while preserving security and correctness. To 

make this feasible in practice, we have implemented 

tools (most importantly a noise growth simulator and an 

automatic parameter selection module) to help users 

choose their parameters for maximal performance. 

Section IV details these techniques, and demonstrates 

their use in practice. 

Homomorphic encryption provides a suitable solution 

for some, but not all, privacy problems and scenarios. 

Current solutions allow for a single data owner, such as a 

hospital, to encrypt data so that it can be securely stored 

in a commercial cloud. Both private and public key 

solutions are practical, and with the public key version 

many parties can upload data encrypted under the 

hospital’s public key: doctors, patients, lab technicians, 

etc., and the hospital administration can set a policy for 

access to computations and decryptions. The same idea 

can be applied to a research institute which stores data 

in the cloud, selectively allows researchers to make 

queries on the encrypted data, and then provides 

decryptions of the results. Consumer and patient 

scenarios enabled by homomorphic encryption include 

secure and private outsourcing of storage of personal 

health records, or of predictive services for risk of 

disease. 

This article is intended to serve as a guide to help 

bioinformaticians use the library, to experiment with 

secure computation on biomedical data, and to evaluate 

the security implications. 

II. HOMOMORPHIC ENCRYPTION 

An encryption scheme that enables arbitrary 

computations on encrypted data without first decrypting 

the data, and without any access to the secret decryption 

key, is called a Fully Homomorphic Encryption (FHE) 

scheme. The result of any such computation on 

encrypted data is itself provided in encrypted form, and 

can only be decrypted by an owner of the secret key. The 

first FHE scheme was presented by Gentry [14] in 2009, 

and since its discovery many improvements and new 

constructions have been proposed [33], [9], [8], [6], [12], 

[22], [4], [1], [16], [10]. 

In Gentry’s work, and in many later papers, data is 

encrypted bit-wise. This means that a separate 

ciphertext is produced for each bit in the message. The 

computation is described as a boolean circuit with XOR 

and AND gates, which can be realized as addition and 

multiplication modulo 2. Both operations can then be 

performed on the encrypted bits. Unfortunately, 

breaking down a computation into bit operations can 

quickly lead to a large and complex circuit, which 

together with a significant overhead in memory use per 

bit imposed by the encryption scheme this makes 

homomorphic computations very costly. 

Fortunately, most known constructions allow for a 

larger message space. In practical applications the 

desired computations often only consist of additions and 

multiplications of integers or real numbers, so there is no 

need to express the data in a bit-wise manner. Indeed, 

most known constructions allow to encrypt integers, or 

appropriate encodings of integers, and to 

homomorphically add and multiply these values. This 

approach has the clear advantage that a ciphertext now 

contains much more information than just a single bit of 

data, making the homomorphic computations 

significantly more efficient. 

In the known FHE schemes, typically ciphertexts 

contain a certain amount of inherent noise, which 

“pollutes” them. This noise grows during homomorphic 

operations, and if it becomes too large the ciphertext 

cannot be decrypted even with the correct decryption 

key. In order to perform an unlimited number of 

operations, and thus achieve fully homomorphic 

encryption, ciphertexts need to be constantly refreshed 

in order to reduce their noise. This is done using a costly 

procedure called bootstrapping [14]. 

However, in applications where only a predetermined 

computation needs to be done, the costly bootstrapping 

procedure can be avoided by using a so-called leveled 
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homomorphic encryption scheme. As a guiding principle, 

the choice of the parameters dictates how many 

sequential multiplications the computation can involve, 

i.e. the maximum allowed depth of the computation 

expressed as an arithmetic circuit, although in reality also 

other features of the computation need to be taken into 

account. This approach is often significantly more 

practical than using an FHE scheme with bootstrapping, 

but is not as flexible if at a later point a different, more 

complex function needs to be evaluated. 

The remainder of this section describes the leveled 

homomorphic encryption scheme that is implemented 

in our Simple Encrypted Arithmetic Library (SEAL). 

A. Homomorphic encryption scheme algorithms 

The encryption scheme we use is a public-key, 

homomorphic encryption scheme, and consists of the 

following algorithms: 

• A key generation algorithm KeyGen(parms) that, on 

input the system parameters parms, generates a 

public/private key pair (pk,sk) and a public 

evaluation key evk, which is used during 

homomorphic multiplication. 

• An encryption algorithm Enc(pk,m), that encrypts a 

plaintext m using the public key pk. 

• A decryption algorithm Dec(sk,c), that decrypts a 

ciphertext c with the private key sk. 

• A homomorphic addition operation Add(c1,c2) that, 

given as input encryptions c1 and c2 of m1 and m2, 

outputs a ciphertext encrypting the sum m1 + m2. 

• A homomorphic multiplication operation 

Mult(c1,c2) that, given encryptions c1 and c2 of m1 

and m2, outputs a ciphertext encrypting the product 

m1 · m2. 

B. Encryption parameters 

The specific instantiation that is implemented in SEAL 

is the more practical variant of the scheme YASHE, 

proposed in the paper [1]. The encryption parameters of 

the scheme are the degree n, the moduli q and t, the 

decomposition word size w, and distributions χkey,χerr. 

Thus, parms := (n,q,t,w,χkey,χerr). Next we discuss these 

parameters in more detail. 

• The parameter n is the maximum number of terms 

in the polynomials used to represent both plaintext 

and ciphertext elements. In SEAL, n is always a 

power of 2. The polynomial Xn + 1 is called the 

polynomial modulus, and denoted poly_modulus in 

SEAL. 

• The parameter q is the coefficient modulus. It is an 

integer modulus used to reduce the coefficients of 

ciphertext polynomials. In SEAL, q is called 

coeff_modulus. 

• The parameter t is the plaintext modulus. It is an 

integer modulus used to reduce the coefficients of 

plaintext polynomials. In SEAL, t is called 

plain_modulus. 

• The integer w is the base to which we decompose 

integer coefficients into smaller parts. It determines 

the number `w,q := blogw(q)c + 1 of parts when 

decomposing an integer modulo q to the base w. In 

practice, we take w be a power of two, and call log2 

w the decomposition bit count. In SEAL, log2 w is 

called decomposition_bit_count. 

• The distribution χkey is a probability distribution on 

polynomials of degree at most n − 1 with integer 

coefficients, which is used to sample polynomials 

with small coefficients that are used in the key 

generation procedure. In SEAL, coefficients are 

sampled uniformly from {−1,0,1}. 

• Similarly, the distribution χerr on polynomials of 

degree at most n − 1 is used to sample noise 

polynomials, which are needed during both key 

generation and encryption. In SEAL, the distribution 

χerr is a truncated discrete Gaussian centered at 

zero, with standard deviation σ. In SEAL, σ is called 

noise_standard_deviation. 

The remainder of this subsection goes into further 

detail, introduces the necessary mathematical 

structures, and explains how the different parameters 

are related to each other. The scheme operates in the 

ring R := Z[X]/(Xn +1), the elements of which are 

polynomials with integer coefficients of degree less than 

n, where n is a power of 2. Any element a ∈ R can be 

written as a , with ai ∈ Z. All plaintexts, 

ciphertexts, encryption and decryption keys, etc. are 

elements of the ring R, and have this form. Addition in R 

is done coefficient-wise, and multiplication is simply 

polynomial multiplication modulo Xn + 1, i.e. standard 

polynomial multiplication followed by reduction modulo 

Xn+1. The reduction modulo Xn +1 is carried out by 

replacing all occurrences of Xn by −1. 

The scheme uses two integer moduli q and t, for which 

q is much larger than t. The coefficients of ciphertext and 

key elements are taken modulo q, whereas the 
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coefficients of the plaintext elements are taken modulo 

t. In what follows, we use the notation [a]q (resp. [a]t) to 

denote the operation of reducing the coefficients of a ∈ 

R modulo q (resp. t) into the set {d−q/2e,...,b(q−1)/2c} 

(resp. {d−t/2e,...,b(t−1)/2c}). 

The homomorphic multiplication operation, defined 

below, contains a step which decomposes a given 

polynomial into a vector of polynomials with smaller 

coefficients. This step is needed to manage the noise 

growth during the homomorphic multiplication by 

computing a product of two intermediate polynomials 

via a scalar product. The size of the smaller coefficients 

is determined by the parameter w, which thus controls a 

tradeoff between multiplication efficiency and 

evaluation key size on one hand, and noise growth on the 

other. We now present the details for this 

decomposition. 

 A polynomial a ∈ R with coefficients in 

{d−q/2e,...,b(q−1)/2c} can be decomposed using a base w ∈ 

Z as ` , where the ai ∈ R have 

coefficients in {d−w/2e,...,b(w−1)/2c}. This is done by 

decomposing each coefficient to the base w. The 

homomorphic encryption scheme makes use of two 

functions. The first one is Dec , 

which takes a polynomial with coefficients modulo q, and 

returns the vector of polynomial parts obtained by the 

w-adic decomposition described above. The second one 

is Pow , which takes a 

polynomial and returns a vector of polynomials that are 

the products of the polynomial with powers of the base 

w. Both functions take a polynomial and map it to a 

vector of polynomials in R`w,q, such that the following 

property holds hDecw,q(a),Poww,q(b)i = a · b (mod q), 

where h·,·i denotes the dot product of vectors (of 

polynomials), defined in the usual way. 

Finally, the scheme uses two probability distributions 

on R, χkey and χerr, which both generate polynomials in R 

with small coefficients. In our implementation, we chose 

the distribution χkey as the uniform distribution on 

polynomials with coefficients in {−1,0,1}. Sampling an 

element according to this distribution means sampling all 

its coefficients uniformly from {−1,0,1}. For the 

distribution χerr, we use a discrete Gaussian distribution 

with mean 0 and appropriately chosen standard 

deviation σ. Gaussian samplers typically sample from a 

truncated discrete Gaussian distribution, and we denote 

the bound, i.e. the maximal deviation from the mean 

(zero), by Berr. A typical large enough choice for Berr would 

be around 5σ. 

C. Plaintext space and homomorphic operations 

All plaintext elements, i.e. the messages that can be 

encrypted with the homomorphic encryption scheme, 

are polynomials in the ring R, with coefficients reduced 

modulo the integer t. All ciphertext elements, i.e. 

encryptions of plaintext elements, are polynomials in the 

ring R, with coefficients reduced modulo the integer q. 

Formally, this means that the plaintext space is the ring 

Rt := R/tR ∼= Zt[X]/(Xn+1), and the ciphertext space is 

contained in the ring Rq := R/qR ∼= Zq[X]/(Xn+1). 

However, not every element of Rq is a valid ciphertext. 

Any ciphertext produced by the encryption function of 

our scheme, as described below, encrypts one plaintext 

message polynomial m ∈ Rt. Whenever homomorphic 

addition (resp. multiplication) is performed on 

ciphertexts that encrypt two plaintext elements, say 

m1,m2 ∈ Rt, the resulting ciphertext will encrypt the sum 

m1+m2 (resp. the product m1 · m2). The operations 

between the plaintext elements are performed in the 

ring Rt. 

For homomorphic addition this means that the resulting 

ciphertext will encrypt the coefficient-wise sum m1+m2, 

where the coefficients are automatically reduced 

modulo the plaintext modulus t. For homomorphic 

multiplication the resulting ciphertext will encrypt the 

product m1 · m2 ∈ Rt, which means that the polynomial 

will automatically be reduced modulo Xn +1, i.e. all 

powers Xn will be automatically replaced by −1, until no 

monomials of degree n or higher remain, and just as in 

homomorphic addition, the coefficients of the 

polynomial m1 ·m2 will be automatically reduced modulo 

t. 

These properties need to be taken into account when 

encrypting data such as integers or real numbers that 

first need to be encoded as plaintext polynomials. One 

needs to be aware of the fact that the various reductions 

that occur on plaintext polynomials during homomorphic 

operations do not necessarily correspond to meaningful 

operations on the integral or real data. 

D. Detailed algorithm description 

The following gives a detailed description of the key 

generation, encryption, decryption, and homomorphic 

evaluation algorithms. 
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• KeyGen(parms): On input the encryption 

parameters parms := (n,q,t,χkey,χerr), the key 

generation algorithm samples polynomials f0,g ← 

χkey from the key distribution, and sets f := [1 + tf0]q. 

If f is not invertible modulo q, it chooses a new f0. 

Otherwise, it computes the inverse f−1 of f in Rq. 

Next, the algorithm samples vectors e,s ∈ R`w,q, for 

which each component is sampled according to the 

error distribution χerr, and computes the vector of 

polynomials γ := [Poww,q(f) + e + hs]q. It computes 

h := [tgf−1]q ∈ R, and outputs the key pair 

(pk,sk) := (h,f) ∈ R × R, 

and the evaluation key evk := γ. 

• Enc(h,m): To encrypt a plaintext element m ∈ Rt, 

the encryption algorithm samples small error 

polynomials s,e ← χerr, and outputs the ciphertext c 

:= [bq/tcm + e + hs]q ∈ R. 

• Dec(f,c): Given the private decryption key f, and a 

ciphertext c = Enc(h,m), the decryption algorithm 

recovers m using m = [bt/q · [fc]qe]t ∈ R. 

• Add(c1,c2): Given two ciphertexts c1 and c2, the 

algorithm Add outputs the ciphertext cadd := [c1 + 

c2]q. 

• Mult(c1,c2,evk): Given two ciphertexts c1 and c2, the 

algorithm Mult first computes c˜mult := [bt/q(c1 · 

c2)e]q. It then performs a so-called relinearization 

(or key switch) operation, by returning cmult := 

[hDecw,q(c˜mult),evki]q . 

E. Practical considerations 

As we already explained in the beginning of Section II, 

every ciphertext, even a freshly encrypted one, has a 

certain amount of inherent noise, or error, in it. The 

decryption operation can be understood as an algorithm 

for removing this noise using some auxiliary information, 

namely the secret key. One of the main difficulties in 

homomorphic cryptography is that in every 

homomorphic operation this inherent noise increases, 

until it reaches its maximum, at which point the message 

becomes so distorted that even the decryption algorithm 

can not recover it. To counter this problem, one needs to 

increase the parameter q, but for security reasons this 

means that also n should be increased. Unfortunately, 

increasing n and q can significantly degrade 

performance. 

There are a number of ways to lower the noise growth 

during homomorphic operations, at least in certain 

situations, and thus to improve performance by allowing 

smaller parameters to be used. For example, the 

function to be computed might involve publicly known 

values that do not need to be encrypted before adding 

them to, or multiplying them with an encrypted value. 

One simply needs to mimic the standard operations 

described above, and include the public values as 

ciphertexts obtained from an encryption procedure in 

which all noise terms are set to zero. This approach yields 

significantly smaller noise growth, allowing for the same 

number of homomorphic operations to be performed 

with smaller parameters, and thus will indirectly lead to 

improved performance. 

Furthermore, when such public values are small, a 

multiplication with them can be made much more 

efficient by using their representation according to the 

currently used encoding technique. The multiplication 

can then be performed by a sequence of shifts 

(multiplications by powers of X) and homomorphic 

additions, avoiding the multiplication routine altogether. 

Since typically homomorphic additions are significantly 

less costly than a homomorphic multiplication, this 

approach can increase the efficiency of a computation 

considerably. Due to their importance, SEAL contains 

functionality for performing addition and multiplication 

by a (public) plaintext polynomial. 

Another promising avenue is to omit the 

relinearization step (recall the description of Mult in II-

D). The homomorphic multiplication algorithm then only 

computes the polynomial c˜mult. Thus, we can replace 

Mult by 

• Multnorelin(c1,c2): Given two ciphertexts c1 and c2, 

the algorithm returns c˜mult := [bt/q(c1 · c2)e]q ∈ R. 

The result of this operation does not give the correct 

value when decrypted with the secret key sk, but instead 

needs to be decrypted with the square of the secret key, 

[sk2]q ∈ R. Further multiplications of this kind increase 

the required power of the secret key. This means that the 

decryption algorithm needs to be called with the 

corresponding power s of the secret key, and now looks 

as follows: 
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• Decnorelin(f,s,c): Given the private decryption key f, 

an exponent s, and a ciphertext c, the decryption 

algorithm recovers m using m = [bt/q · [fsc]qe]t ∈ R. 

This approach has the advantage that it omits the by far 

most costly part of the homomorphic evaluation 

algorithms, and works without the evaluation key. Its 

usefulness, however, depends on the specific choice of 

the encryption parameters. For example, the larger the 

plaintext modulus t is, the fewer levels of multiplications 

can be computed like this, given all other parameters 

stay fixed. One can experiment with different trade-offs, 

for example by manually reintroducing relinearization 

steps at certain points in the computation. 

F. Implementation 

We now demonstrate how the above concepts are 

implemented in SEAL. Here we present mostly code 

snippets, and for complete examples we refer the reader 

to Section VI. 

SEAL is written in C++, but comes with a C# wrapper 

library SEALNET. All of our code examples use the C++ 

library. The necessary C++ header files are included with 

#include "seal.h". SEAL contains a data type BigUInt for 

large unsigned integers, and a data type BigPoly for large 

polynomials with BigUInt coefficients. All polynomials 

used in the encryption scheme are stored using instances 

of BigPoly, including plaintext and ciphertext 

polynomials, the secret key, and the public key. For 

example, to create a (plaintext) polynomial p(X) = 3X4 + 

X + 2, we can write 

BigPoly p("3xˆ4 + 1xˆ1 + 2"); 

To access the i-th coefficient as a BigUInt, we can use p[i]. 

To return the polynomial as a human-readable string, we 

can use the member function to_string. We have seen 

above that plaintext polynomials can have either positive 

or negative numbers as coefficients, but in SEAL the 

coefficients of BigPoly are always instances of BigUInt, 

i.e. unsigned. For this reason we store coefficients in the 

range {d−t/2e,...,−1} instead as {b(t−1)/2c + 1,...,t − 1}. For 

example, if t = 210 (0x400 in hexadecimal), the 

polynomial p(X) = X2 − 

3X − 1 could be created using 

BigPoly p("1xˆ2 + 3FDxˆ1 + 3FF"); 

To set up the cryptosystem, the first thing we must do 

is choose the encryption parameters as described in II-B. 

These are encapsulated in an instance of the class 

EncryptionParameters. First, we set the three moduli 

that the encryption scheme uses: q (coefficient 

modulus), t (plain modulus), and Xn + 1 (polynomial 

modulus). These three are the most important 

parameters, and choosing them correctly is crucial for 

achieving optimal performance. Next we set w, or rather 

the decomposition bit count log2 w, the standard 

deviation σ of the distribution χerr, and an upper bound 

for the output of the χerr sampler. For the purpose of the 

examples here, we use the following parameters: 

Listing II.1. encryption_parameters 
EncryptionParameters parms; parms.poly_modulus() = "1xˆ2048 + 

1"; parms.coeff_modulus() = ChooserEvaluator:: 
default_parameter_options().at(2048); 
parms.plain_modulus() = 1 << 10; parms.decomposition_bit_count() = 

32; parms.noise_standard_deviation() = ChooserEvaluator:: 
default_noise_standard_deviation(); 
parms.noise_max_deviation() = ChooserEvaluator:: 

default_noise_max_deviation(); 

In the above, coeff_modulus and plain_modulus are 

instances of BigUInt, poly_modulus is an instance of 

BigPoly, decomposition_bit_count is an int, and the last 

two are double. In general, choosing appropriate and 

optimal encryption parameters is a surprisingly difficult 

task. For this reason SEAL provides an easy-to-use 

automatic parameter selection module, which we 

discuss in more detail in Section IV. A part of this can be 

seen in the above where coeff_modulus, 

noise_standard_devation and noise_max_deviation are 

set to values hard-coded into the library that we consider 

secure. 

Next we need to generate the encryption keys. 

Specifically, there are three types of keys we need to set: 

the public key, the secret key, and the evaluation key 

(recall II-D). Of these, the public key and the secret key 

are instances of BigPoly, and the evaluation key is 

encapsulated in an EvaluationKeys object. The keys are 

generated based on an instance of 

EncryptionParameters using KeyGenerator as follows: 

Listing II.2. key_generator 
KeyGenerator generator(parms); generator.generate(); 
BigPoly public_key = generator.public_key(); 
BigPoly secret_key = generator.secret_key(); EvaluationKeys 

evaluation_keys = generator. evaluation_keys(); 

The next set of tools we need are for encrypting, 

decrypting, and performing homomorphic operations: 
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Listing II.3. encryption_tools 
Encryptor encryptor(parms, public_key); 
Decryptor decryptor(parms, secret_key); Evaluator evaluator(parms, 

evaluation_keys); 

The following code constructs two plaintext 

polynomials, X2 − 2X, and 3X3 + 1, and encrypts them: 

BigPoly plain1("1xˆ2 + 3FExˆ1"); 
BigPoly plain2("3xˆ3 + 1"); 
BigPoly enc1 = encryptor.encrypt(plain1); 
BigPoly enc2 = encryptor.encrypt(plain2); 

We can use the Evaluator to operate on ciphertext 

polynomials: 

BigPoly enc_sum = evaluator.add(enc1, enc2); BigPoly enc_prod = 

evaluator.multiply(enc1, enc2); 

In addition to add and multiply, Evaluator supports a 

number of other operations. For example, it is very 

efficient to add and multiply ciphertexts by plaintext 

polynomials (recall II-E): 

BigPoly p("1x+2"); // Public polynomial 
BigPoly enc1_sum = evaluator.add_plain(enc1, p); 
BigPoly enc2_prod = evaluator.multiply_plain(enc2, 
p); 

The above code produces encryptions of (x2 − 2x) + (x + 

2) and (3x3 + 1) · (x + 2). Finally, we can decrypt using 

our instance of Decryptor: 

BigPoly sum = decryptor.decrypt(enc_sum); 
BigPoly prod = decryptor.decrypt(enc_prod); 
BigPoly plain_sum = decryptor.decrypt(enc1_sum); BigPoly plain_prod 

= deryptor.decrypt(enc2_prod); 

SEAL also supports multiplication without 

relinearization, and a stand-alone relinearization 

operation (recall II-E). These are provided by the member 

functions multiply_norelin and relinearize of Evaluator. 

III. ENCODING DATA 

As was described in II-B and II-C, plaintexts and 

ciphertexts are certain polynomials rather than integers 

or real numbers. More precisely, plaintext elements are 

polynomials in R, with coefficients reduced modulo t, 

and ciphertexts are polynomials in R, with coefficients 

reduced modulo q. However, most algorithms in 

genomics and bioinformatics operate on integers, real 

numbers, and binary values. Therefore, there is a 

mismatch between the plaintexts used by the encrypt 

function in SEAL, and the data types used by 

practitioners. This mismatch is resolved using encodings, 

which convert common data types into plaintext 

polynomials. Encodings must always come with a 

matching decoding, which performs the inverse 

operation. For the homomorphic property of the 

encryption scheme to make sense, the encoding and 

decoding functions must also be homomorphic in such a 

way that addition (resp. multiplication) of encoded 

plaintext polynomials yields an encoding of the sum 

(resp. product) of the encoded integers or real numbers. 

The main challenges in designing an encoding are (1) 

making sure that the encoding and decoding functions 

have the appropriate homomorphic poperties (see 

above), and (2) making sure that the representation is 

compact and allows for fast and memory efficient 

computation. As a simple example, consider encoding an 

integer as the scalar coefficient of a plaintext polynomial. 

Decoding in this case is trivial: Simply read the constant 

coefficient. However, if at any point during the 

computation the values of the constant coefficient 

increase beyond t, it will automatically be reduced 

modulo t, and the result might be unexpected. The 

solution is to choose t large enough, but this might in 

turn cause the inherent noise to grow very rapidly in 

homomorphic multiplications. When encoding integers 

or real numbers as higher degree polynomials, it is 

typically necessary to keep track of the degrees of the 

plaintext polynomials appearing during the 

computation, since if they exceed Xn−1 reduction modulo 

the polynomial modulus Xn + 1 might occur, again leading 

to unexpected results. 

In the following section we present several powerful 

encoding techniques. The choice of the right encoding 

depends on the problem. Moreover, there are many 

other encoding techniques that might be more 

appropriate for certain applications. 

A. Encoding integers 

The simplest way to encode an integer is what we 

already mentioned above: by representing it as the 

constant coefficient of a plaintext polynomial. Therefore, 

an integer y is encoded as the constant polynomial p(X) 

:= y. This scalar encoding works as long as the numbers 

used during the computation remain in 

{d−t/2e,...,b(t−1)/2c}. Otherwise reduction modulo t might 

occur, yielding unexpected results. 

 The scalar encoding has two main limitations: 

(1) large integers cannot be encoded without choosing t 

to be enormous, and (2) it is inefficient in its use of 

available space in the plaintext polynomial p(X), which 

has a total of n coefficients waiting to be used. For one 

way to resolve both (1) and (2), consider the following. 
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Let Pi bi2i be the binary representation of an integer y. 

We can encode y as the polynomial p(X) := Pi biXi. In this 

case the number y can be recovered using y = p(2), so 

this encoding also admits an efficient and 

straightforward decoding. The advantage of this binary 

encoding over the scalar encoding is that the coefficients 

at the beginning of each computation have only small 

values: either zero or one. While adding and multiplying 

may increase the sizes of the coefficient, they will still 

grow much slower than in the scalar encoding, and 

therefore may not so easily reduced modulo t. However, 

modular reduction may happen, as may reduction 

modulo around Xn+1, which was not possible with the 

scalar encoding. A negative number we would encode by 

simply negating every coefficient of the binary expansion 

of its absolute value. 

The binary encoding uses a base-2 representation to 

encode integers, but we can just as well use any higher 

base b, although this comes with the cost of having larger 

coefficients appear in the freshly encoded plaintext 

polynomial. Consider an odd base b ≥ 3. In this case we 

can use a balanced set of representatives of integers 

modulo b as coefficients of the base-b representation. In 

other words, each integer has a unique base-b 

representation, where powers of b appear with 

coefficients from the symmetric range {b−b/2c,...,bb/2c}. 

Encoding using the binary encoding wastes space since 

each coefficient is one of {−1,0,1}, but all non-zero ones 

will necessarily have the same sign. In balanced base-3 

representation each coefficient again belongs to the set 

{−1,0,1}, but now they can have different signs. For 

example, encoding the number 25 using balanced base-

3 encoding would yield the polynomial p(X) := X3 − X + 1. 

Decoding amounts to evaluating the polynomial at X = 3. 

Using a higher base b produces shorter polynomials with 

larger coefficients. This might be advantageous if the 

numbers to be encoded are very large. 

Another way to handle large numbers is by encoding 

them multiple times using several co-prime plaintext 

moduli t1,...,tk. Decoding can be done using the Chinese 

Remainder Theorem (CRT) 2  to combine the individual 

decodings back into an integer modulo Qti. Therefore, 

we can break a large integer y into k much smaller 

integers, obtained by reducing y modulo the ti, and for 

                                                           
2 According to CRT, given co-prime integers t1,...,tk, and integers ri 

(mod ti), there is exactly one integer y (mod Qti) such that y ≡ ri 

(mod ti) for every i. 

instance use the scalar encoding to these separately, 

encrypt them, and operate on them. Note that each 

operation must now be performed on each of the k 

ciphertexts. Once done with the computation, use CRT to 

assemble the decrypted remainders into a single number 

modulo t. This method is obviously incredibly wasteful in 

terms of space, but allows for very small t (and hence 

also q and n) to be used with the scalar encoding. Note 

that the range of integers that can be encoded increases 

exponentially with k. 

SEAL provides classes BinaryEncoder and 

BalancedEncoder that contain all of the essential 

functionality for using the binary and balanced odd base 

encodings. The following C++ code demonstrates 

encoding the integer 1234 using binary, balanced base-

3 and balanced base-5 encodings. 
encryption_parameters (Listing II.1) key_generator (Listing 

II.2) encryption_tools (Listing II.3) 

BinaryEncoder encoder2(plain_modulus); 

/* In BalancedEncoder the base defaults to 3 */ 
BalancedEncoder encoder3(plain_modulus); 
BalancedEncoder encoder5(plain_modulus, 5); 

BigPoly e2 = encoder2.encode(1234); 
BigPoly e3 = encoder3.encode(1234); 

BigPoly e5 = encoder5.encode(1234); 

The encoded BigPoly objects can be printed, as usual, 

using the member function to_string. 

B. Encoding real numbers 

The most straightforward way to encode reals is by 

scaling them to integers, which of course can only be 

done when a fixed precision is needed. For example, 

suppose we are given real numbers for which 3 digits 

after the decimal point are significant. Multiplying these 

numbers by 1000 and ignoring the fractional part will 

results in integer values that capture the significant 

information. Note however, that some book-keeping is 

required since all the results will be scaled up. Moreover, 

when multiplying numbers that were scaled up, the 

result will have a different scaling factor than the inputs. 

As a result, it is important to keep track of the scale at 

different parts of the calculation, which can get rather 

tedious with complicated computations. 



9 

When the number of significant digits is large, the 

above method will result in very large integers to be 

encoded. This can be avoided by a different encoding 

scheme, where we encode the digits after the decimal 

point as the highest degree coefficients of the 

polynomial. More precisely, a real number y = y+.y−, 

where y+ denotes the binary digits bI+bI+−1 ...b1b0, and y− 

denotes the binary digits b−1b−2 ...b−I−, is encoded as the 

plaintext polynomial 

X Xib − X Xn−ib−i . 

i 
 i≤I+ 0<i≤I− 

For example, 2 will be encoded as X, while 1/2 is encoded 

as −Xn−1. When these two representations are multiplied, 

we obtain 

 X · (−Xn−1) = −Xn = 1 (mod Xn + 1), 

as should be expected. 

As another simple example, consider 3.25 = 11.012 

encoded as −Xn−2 + X + 1. Multiplying this by 1.5 = 

1.12 encoded as −Xn−1 + 1 gives (−Xn−2 + X + 

1)(−Xn−1 + 1) 

= X2n−3 − Xn−2 − Xn − Xn−1 + X + 1 

= −Xn−1 − Xn−2 − Xn−3 + X2 (mod Xn + 1). 

Decoding yields 22 + 2−1 + 2−2 + 2−3 = 4.875, which is what 

we would expect. 

When setting up such a fractional encoder, we need to 

tell how many plaintext polynomial coefficients are 

reserved for the fractional part, and how many are 

reserved for the integral part, because the encoding 

algorithm needs to know where to truncate a possibly 

infinite expansion of the fractional part, and the 

decoding algorithm needs to know which coefficients 

belong to which part, as they must be treated differently. 

For example, if we have n = 4096, we could reserve 

1024 coefficients for the integral part, and 128 for the 

fractional part. Freshly encoded numbers can then use 

all of the 128 highest coefficients for their fractional 

parts, and up to 1024 lowest coefficients for their 

integral parts. When two such polynomials are 

multiplied, they can have up to 256 of their top 

coefficients be non-zero. Clearly when such polynomials 

are further multiplied, the fractional part quickly grows 

down towards the coefficients reserved for the integral 

part. In this case the fractional part can take up to 4096 

− 1024 = 3072 coefficients, but after that it gets mixed 

with the integral part and can yield unexpected results 

when decoded. In the decoding process we would only 

count the 128 highest coefficients towards the fractional 

part, the lowest 1024 towards the integral part, and 

ignore the rest. Our library provides basic fractional 

encoding functionality in the BinaryFractionalEncoder 

and 

BalancedFractionalEncoder classes. 

We present an example of computing 3.14 · 15.93 in 

encrypted form. In this example we use fractional 

balanced base-3 encoding, reserve 128 coefficients for 

the fractional part, and 256 coefficients for the integral 

part. 
encryption_parameters (Listing II.1) key_generator (Listing 

II.2) encryption_tools (Listing II.3) 

/* The base defaults to 3 */ 
BalancedFractionalEncoder encoder(parms. plain_modulus(), 

parms.poly_modulus(), 256, 
128); 

BigPoly plain1 = encoder.encode(3.14); 
BigPoly plain2 = encoder.encode(15.93); 

BigPoly enc1 = encryptor.encrypt(plain1); 
BigPoly enc2 = encryptor.encrypt(plain2); 

BigPoly enc_prod = evaluator.multiply(enc1, enc2); 

BigPoly prod = decryptor.decrypt(enc_prod); double result = 

encoder.decode(prod); 

The correct answer, stored in result, is 50.0202. 

C. Plaintext packing 

SEAL requires working with high degree polynomials to 

ensure both security and correctness of the 

computation. However, the data to be encoded is in 

many cases rather small, resulting in an enormous 

message expansion rate, and relatively long 

encoding/encryption/decryption times. One way to 

avoid these problems is to pack several pieces of data in 

a single message, and use the Single Instruction Multiple 

Data (SIMD) paradigm to operate on these messages [5], 

[29]. 

One way to encode more data in a single message is 

by using the Chinese Reminder Theorem (CRT) for 

polynomial rings. For example, suppose that n = 2 and t 

= 5. Since X2 + 1 = (X + 2)(X + 3) (mod 5), CRT yields an 

explicit isomorphism 
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 . 

This isomorphism allows taking two values, one in 

Z5[X]/(X + 2), and the other in Z5[X]/(X + 3), and 

encoding them as a single element in Z5[X]/(X2 + 1). 

More generally, assume that 
k 

 Xn + 1 = YQi(X) (mod t) 

i=1 for some polynomials 

Q1(X),...,Qk(X) that are coprime3. Then 

. 

This allows to encode k integers in a single plaintext as, 

for instance, the constant coefficients of each of the k 

factors, and to operate on each of them simultaneously. 

3 
This means that if R(X) is a polynomial that divides both Qi(X) and 

Qj(X) such that i 6= j, then R(X) is a constant. 

In many cases it is possible to find n such polynomials 

Q1(X),...,Qn(X) which are co-prime, and Xn + 1 = QQi(X) 

(mod t), in which case, each Qi(X) must be a linear 

polynomial, Zt[X]/(Qi(X)) ∼= Zt, and Zt[X]/(Xn + 1) ∼= Znt 

. This is the optimal case, and allows encoding of n 

integers into one plaintext polynomial. Of course this 

only makes sense if the scalar encoding is otherwise 

appropriate for the problem at hand. 

Plaintext packing is implemented in SEAL in the class 

PolyCRTBuilder. 

D. Encoding binary data 

In some situations encrypting integers is more 

convenient to do bit-by-bit. This is particularly useful for 

efficient comparison or equality testing, but is not very 

efficient or practical when homomorphic multiplication 

of integers is required. For example, one situation where 

bit-wise encryption is particularly useful is in computing 

the edit distance between two short encrypted DNA 

sequences [11]. One option is to use the scalar encoding 

together with a plaintext modulus t = 2, so that the 

plaintexts are elements of Z2[X]/(Xn + 1). This is of 

course incredibly inefficient in many ways, but it does 

allow the user to perform both XOR and AND operations 

on individual bits using homomorphic addition and 

multiplication, respectively, providing an enormous 

amount of functionality. 

A na¨ıve way to improve the performance is by 

encoding up to n bits as the n coefficients of a plaintext 

polynomial. This does allow for some parallelism, namely 

one can evaluate XOR gates on n encrypted pairs of bits 

with just one homomorphic addition, or to evaluate 

either XOR or AND with a plaintext bit on n encrypted 

bits simultaneously. What is not possible however, is 

evaluating AND gates on n encrypted pairs of bits 

simultaneously. 

A much better way to introduce parallelism to bitwise 

encryption is to use the CRT technique of III-C. In this case 

up to n bits can be encoded in the constant coefficients 

of the different slots, where both addition and 

multiplication are performed separately for each slot, 

resulting in massive improvements in the amortized 

complexity. 

IV. PARAMETER SELECTION 

Selecting secure parameters for homomorphic 

encryption schemes is a surprisingly complicated task. 

Security of the encryption scheme used by SEAL depends 

on the assumed hardness of a lattice problem known as 

Ring-Learning With Errors (RLWE) [1], [22]. In some 

parameter settings the hardness of RLWE can further be 

proven to that of certain extremely well studied worst-

case lattice problems [28], [23], [26], [24], [7], but 

unfortunately such parameters are not relevant for 

practical use. Instead, in practice the security claims 

must be directly based on an analysis of state-of-the-art 

attacks against RLWE, which has been done in [20], [32], 

[21]. 

In addition to guaranteeing security, the encryption 

parameters must also be large enough, or else the 

inherent noise (recall Section II) will grow too big, and 

make the ciphertexts impossible to decrypt. We denote 

∆ := bq/tc, and by rt(q) the (positive) remainder when 

dividing q by t. The inherent noise in a ciphertext c ∈ R is 

a polynomial v ∈ R, such that 

 fc ≡ ∆[m]t + v (mod q). 

It is shown in [1] that a ciphertext c is possible to decrypt 

only as long as it has an inherent noise that satisfies 

 . 

Here ||v||∞ denotes the largest absolute value of the 

coefficients of v. Even freshly encrypted ciphertexts have 

a certain amount of noise in them (see IV-A below), and 

performing arithmetic operations on ciphertexts always 
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increases the noise level, until it reaches its maximum 

value and corrupts the underlying plaintext. Due to the 

significance of ||v||∞, we often call it the inherent noise, 

instead of v. In fact, our noise growth simulator only 

estimates the growth of ||v||∞, rather than of v. 

In addition, the encoding scheme typically places 

strong restrictions on the size of the plaintext modulus t, 

and in some cases on the degree n of the polynomial 

modulus, as was explained in Section III. Hence, to set up 

the cryptosystem with appropriate parameters, the user 

must perform (roughly) the following steps: 

(1) Let σ be a constant or possibly a function of n. 

(2) Determine lower bounds for t and n (depending on 

encoding). 

(3) Determine a lower bound for q such that decryption 

can be expected to succeed. 

(4) Choose n, q, and possibly σ, based on the bounds 

determined above and state-of-the-art security 

estimates. 

(5) Choose w to be as large as possible (at most q) so 

that decryption still succeeds. 

(6) If w chosen above is too small, or no such w could be 

chosen, switch to larger n and q. 

Our automatic parameter selection tool essentially 

performs the above steps. By default it uses a constant σ 

:= 3.19, a constant bound Berr = 15.95 for the Gaussian 

error sampler, and a hard-coded list of pairs (n,q) that 

we consider to be secure based on the analysis of [20]. 

Table IV shows the size of q for the values of n that are 

used by the automatic parameter selector. A noise 

growth simulator then estimates the growth of inherent 

noise in the homomorphic operations without requiring 

any actual encrypted data as input. These default values 

are all available also outside the automatic parameter 

selector through the static functions 

default_noise_standard_deviation() 

default_noise_max_deviation() 

default_parameter_options() 

of ChooserEvaluator. Alternatively, the user can supply 

their own σ, Berr, and list of (n,q)-pairs for the parameter 

selector to use. 

TABLE I 

(n,q)-PAIRS 

n 1024 2048 4096 8192 16384 
q 48 bits 91 bits 127 bits 383 bits 768 bits 

A. Noise growth simulator 

Upper bounds for inherent noise growth in the 

homomorphic encryption scheme are well understood 

[1], and have already been used for parameter selection 

in e.g. [2]. The problem with these bounds is that they 

are typically extremely conservative, and as such yield 

highly inefficient parameters. We instead focus on the 

most significant terms contributing to the noise, and use 

average-case estimates for their sizes. As a result, we 

obtain simple, but fairly accurate estimates for inherent 

noise growth in all homomorphic operations. Moreover, 

these estimates only require the encryption parameters, 

and the inherent noise estimates for the input 

ciphertexts to work. More precisely, given input 

ciphertexts with estimated inherent noises v1,v2, the 

estimated inherent noise of the output is computed as 

follows: 

fresh: 2t 

add: p||v1||2∞+ ||v2||2∞ multiply: 

 
add_plain: ||v||∞ 

 

multiply_plain by p(X): pdeg(p)+1||v||∞ ||p||∞ negate: ||v||∞ 

The above estimates are only valid when the parameters 

are in realistic ranges, and only until the inherent noise 

reaches its upper bound of (∆ − rt(q))/2. It is crucial to 

understand that both homomorphic addition and 

multiplication by a plaintext polynomial typically 

increase the noise significantly less than true 

homomorphic multiplication of two ciphertexts, which 

can be easily seen from the estimates. 

Recall from II-E that it is possible to also do 

multiplication without performing the relinearization 

procedure, but that the result must then be decrypted 

with a different secret key. In the above noise growth 

estimate for multiply, the first term comes from the 

multiply_norelin part, and the second from the 

operation relinearize. 

To understand what is involved in these estimates, 

consider for example estimating the noise in a freshly 

encrypted ciphertext. Recall that the encryption of a 

plaintext polynomial m ∈ R is c := [bq/tc[m]t + e + hs]q ∈ 

R, 

r 2 n 
3 

B  
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where  is the public key, and s,e ← χerr. 

To find the inherent noise in c, we compute 

 , 

where coefficients of the secret polynomial f0 are chosen 

uniformly at random from {−1,0,1}. We have also used q 

= bq/tct + rt(q). The inherent noise polynomial in a fresh 

ciphertext is therefore 

 . 

It is the || · ||∞-norm of vfresh that matters, and that we 

need to estimate. By the triangle inequality 

||vfresh||∞ ≤ ||fe||∞ + ||tgs||∞ + rt(q)||f0 [m]t||∞ . 

In typical cases the last term is very small compared to 

the first two, so we omit it. This is especially true when 

rt(q) is small, when [m]t has small coefficients, and/or 

when [m]t is sparse and short enough. In the first term, 

the polynomial e is dense and has coefficients distributed 

according to a discrete Gaussian distribution with mean 

0 and standard deviation σ. Since approximately two 

thirds of the coefficients of f are ±t, and one third are 0, 

each coefficient of fe is roughly a sum of 2n/3 discrete 

Gaussian distributions, multiplied by t, and hence 

distributed according to a discrete Gaussian distribution 

with standard deviation tp2n/3σ. This means that we 

can expect ||fe||∞ ≈ tp2n/3Berr. The polynomial tgs 

 

has similar structure, so also ||tgs||∞ ≈ tp2n/3Berr, 

resulting in the estimate above for fresh. The other ones 

involve similar approximations. 

B. Automatic parameter selection 

As we explained in the beginning of this section, 

automatic parameter selection involves much more than 

simply estimating inherent noise growth. In particular, 

the plaintext modulus t must be large enough for 

decoding to work. The user must provide an estimated 

size of the input plaintext data, in particular bounds on 

the lengths of the plaintext polynomials and on the 

absolute values of their coefficients, and of course the 

homomorphic operations that are to be performed. 

From all this information we can compute a compute a 

lower bound for t. The homomorphic operations must 

also be stored in order to later run the noise simulator. 

In practice we perform this by introducing a device 

called ChooserPoly. These objects carry three essential 

pieces of data: 

(CP1) Upper bound on the number of non-zero 

coefficients in a (plaintext) polynomial 

(CP2) Upper bound on the ||·||∞-norm of a (plaintext) 

polynomial 

(CP3) A directed acyclic graph representing the entire 

operation history of the ChooserPoly 

One should think of a ChooserPoly as modeling a 

ciphertext, while only carrying information about the size 

of the underlying plaintext polynomial, and information 

about how the ciphertext was obtained as a result of 

homomorphic operations. The operation history tells 

exactly how the particular ChooserPoly was obtained 

from freshly encrypted ciphertexts. Those ChooserPolys 

that model freshly encrypted ciphertexts have their 

operation history set to a special fresh value, with no 

inputs. We use ChooserPolys with NULL operation 

history to model plaintext polynomials instead of 

ciphertexts. Whenever a homomorphic operation is 

performed on one or more ChooserPolys, a new one is 

created with (CP1) and (CP2) computed from (CP1) and 

(CP2) of the inputs. Finally, the operation histories of the 

inputs are fully cloned and merged to create (CP3). 

We still have not mentioned the parameter w, or the 

decomposition bit count log2 w. For efficiency reasons 

we prefer to have log2 w be an integer in the range 

{1,...,dlog2 qe}, i.e. we always take w to be a power of 2. 

It is clear from the estimates in IV-A that a larger w 

corresponds to larger noise growth in homomorphic 

multiplication, but it also makes the operation faster. 

Thus, the procedure for selecting w is as follows: 

(1) Start with log
2 w = dlog

2 qe. 

(2) Use the inherent noise growth simulator to find out 

whether decryption can be expected to work with 

encryption parameters (n,q,t,σ,w). 

(3) If decryption can not be expected to succeed, 

decrease log
2 w, and go to (2), unless log

2 w is 

already too small to be efficient (bound can be 

determined by user), in which case increase (n,q) 

and go to (1). 

Finally, we need to explain in more detail how the pairs 

(n,q) are chosen. For security and efficiency reasons, we 

always take n be a power of 2, and choose q from a hard-

coded list of prime numbers of a certain form, whose 

sizes were presented above in Table IV. These choices 
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are estimated to yield a security level of well over 128 

bits (see [20]), and are certainly a conservative choice3. 

Our automatic parameter selection module contains 

also tools analogous to BalancedEncoder, Encryptor, and 

Evaluator. This makes it very easy for the user to switch 

from running their code on ChooserPoly objects to 

running it on actual data. More precisely, the following 

classes are provided: 

ChooserPoly: 

Contains information about the approximate size of a 

plaintext polynomial, and an operation history, as was 

explained above. 

ChooserEncoder: 

This class can be used analogously to 

BalancedEncoder. If the user knows beforehand some 

numbers going into the computation, e.g. coefficients of 

a linear function to be evaluated on the encrypted data, 

they can be converted into ChooserPoly objects with 

NULL operation history using the encode function in 

ChooserEncoder. 

ChooserEncryptor: 

Most importantly, this class contains a function encrypt 

that can be used to change the operation history in a 

ChooserPoly from NULL to fresh. The same result can be 

achieved by calling the set_fresh member function of the 

particular ChooserPoly. 

ChooserEvaluator: 

The ChooserEvaluator class is used to perform 

operations on the ChooserPoly objects. The operations 

take a varying number of ChooserPolys as input 

parameters, and always output a new ChooserPoly with 

updated values for (CP1)–(CP3). 

Once the user has performed all of their computations 

on the ChooserPoly objects, they can use the function 

select_parameters of ChooserEvaluator to obtain an 

optimized set of encryption parameters encapsulated in 

an instance of EncryptionParameters. 

C. Examples 

Here we present a few simple examples of using the 

automatic parameter selection module. 

Suppose the user wants to compute 12·345+6789 in 

encrypted form. Consider the following C++ code: 

                                                           
3 An expert user might benefit from switching to slightly less secure 

parameters (larger q, smaller n), and this is certainly easy to do by 

ChooserEncoder encoder; 
ChooserEncryptor encryptor; 
ChooserEvaluator evaluator; 

ChooserPoly plain1 = encoder.encode(12); 
ChooserPoly plain2 = encoder.encode(345); 
ChooserPoly plain3 = encoder.encode(6789); 
ChooserPoly enc1 = encryptor.encrypt(plain1); 
ChooserPoly enc2 = encryptor.encrypt(plain2); 
ChooserPoly enc3 = encryptor.encrypt(plain3); 

ChooserPoly prod = evaluator.multiply(enc1, enc2); 
ChooserPoly result = evaluator.add(prod12, enc3); 

EncryptionParameters parms = evaluator. select_parameters(result); 

This stores a working set of encryption parameters in 

parms, which the user can read and use. Once the user 

knows which encryption parameters they want to use, 

and have set up the cryptosystem accordingly, it is 

extremely easy to convert the above code to run on real 

data. The only change needed is, instead of creating 

ChooserEncoder, ChooserEncryptor, and 

ChooserEvaluator, to create an encoder, encryptor, and 

evaluator as usual, e.g. 
encryption_parameters (Listing II.1) key_generator (Listing 

II.2) encryption_tools (Listing II.3) 

BalancedEncoder encoder(parms.plain_modulus()); 
Encryptor encryptor(parms, public_key); 

Evaluator evaluator(parms, evaluation_keys); and change the 

ChooserPoly objects into BigPoly objects. Then BigPoly 

result will contain the 

encryption of 12 · 345 + 6789 = 10929. 

Typically whoever chooses the parameter sizes does 

not know exactly what the input data is, but only an 

estimate of its size. For example, if we know that enc1, 

enc2, and enc3 will contain encryptions of balanced 

base-3 encoded numbers, with encodings of length at 

most 9, we could use 

ChooserEvaluator evaluator; 

ChooserPoly enc1(9,1); 
ChooserPoly enc2(9,1); 
ChooserPoly enc3(9,1); 

ChooserPoly prod = evaluator.multiply(enc1, enc2); 
ChooserPoly result = evaluator.add(prod12, enc3); 

EncryptionParameters parms = evaluator. 
select_parameters(result); 

changing the values in the code, but is also highly discouraged 

without a very good understanding of the security results. 
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to obtain appropriate encryption parameters. The 

constructor of ChooserPoly takes (CP1) and (CP2) as 

input parameters. The operation histories of the three 

ChooserPolys are set by default to fresh. 

Next we demonstrate choosing parameters for 

computing a linear combination of encrypted numbers 

with public coefficients. Suppose we know that all of the 

encrypted numbers are encoded using balanced base-7 

encoding, and have length at most 20 terms5. Suppose 

that the coefficients are stored as integers in an std:: 

vector<int>. The following C++ code can be used to find 

an appropriate set of encryption parameters: 

#include <vector> ... 

ChooserEncoder encoder(7); 
ChooserEncryptor encryptor; ChooserEvaluator evaluator; 

std::vector<int> c_ints {/* list of coeffs */}; int c_count = c_ints.size(); 

std::vector<ChooserPoly> c_cps; for(int i=0; 

i<c_count; ++i) 
{ c_cps.push_back(encoder.encode(c_ints[i])); 
} 

std::vector<ChooserPoly> encs( 
c_count, ChooserPoly(20, 3)); 

ChooserPoly result = evaluator.multiply_plain( encs[0], c_cps[0]); 
for (int i = 1; i < c_count; ++i) 
{ 
ChooserPoly term = evaluator.multiply_plain( encs[i], c_cps[i]); 
result = evaluator.add(result, term); 
} 

EncryptionParameters parms = evaluator. select_parameters(result); 

V. BIOMEDICAL APPLICATIONS 

A. Sample tasks 

There are many different types of analyses which 

researchers or healthcare professionals may wish to 

perform on sensitive genomic or medical data. For 

example, Genome-Wide Association Studies (GWAS) 

typically perform statistical calculations across a large 

population, such as computing Minor Allele Frequencies 

(MAFs), χ2-statistics, Pearson goodness-of-fit tests, tests 

for association between different loci in the genome, 

estimates of haplotype frequencies, and tests for 

association of a genotype with a disease. These, and 

other statistical analysis tools, are available and widely 

used in the R Project [27]. 
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So the numbers have absolute value at most (7 −1)/2. 

Based on earlier internal implementations of 

homomorphic encryption which were hand-tuned, not 

publicly available, and not very flexible, performance 

numbers for many such computations on 

homomorphically encrypted genomic data were 

reported in [18], [19], [2]. Most recently, [18] 

implemented MAFs, χ2-statistics, Hamming distance, and 

edit distance for sequence matching, which were the 

tasks in the Secure Genome Analysis Contest run by 

iDASH, and funded by NIH [17]. The implementation in 

[19] was written using the Magma software package [3], 

and demonstrated encodings and performance numbers 

for many functions from the R package: the Pearson 

goodness-of-git and χ2-tests to test for deviation from 

Hardy-Weinberg equilibrium, various measures of 

linkage disequilibrium to test for association in the 

genotypes at two different loci in a genome, the 

Estimation Maximization (EM) Algorithm to estimate 

haplotype frequencies from genotype counts, and the 

Cochran-Armitage Test for Trend (CATT) to determine if 

a candidate allele is associated with a disease. 

In [2], logistic regression and the Cox proportional 

hazard model were implemented as representative 

examples for disease prediction. A private cloud service 

for predicting cardiovascular disease (CVD) was 

demonstrated on homomorphically encrypted data 

using a model based on logistic regression, and shown at 

the AAAS Meeting 2014 Newsroom. To apply logistic 

regression to homomorphically encrypted data, we use a 

polynomial approximation to the function which 

approximates the prediction well enough in a certain 

range. Logistic regression has been commonly used to 

predict whether a patient will survive or suffer from 

various diseases, including cardiovascular disease (CVD), 

diabetes, probability of survival in blunt trauma, testing 

gender as a predictor of mortality after heart surgery, 

correlating genotypes with the risk of cardiovascular 

disease, and relating protein abnormalities with 

occurrence of diabetes [13]. 

B. Practical considerations 

The statistical functions mentioned above often take 

inputs which are integers or real numbers. For example, 

frequency counts for MAF and haplotype frequencies are 

represented as integers, and health data input to 

predictive models using logistical regression are often 

real numbers. The encoding methods described in III-A 

and III-B can be used to significantly improve the 
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parameters and performance of homomorphic 

encryption for such applications. On the other hand, 

tasks like sequence matching often take discrete inputs, 

such as strings of genomic data. In such cases the best 

option might be to use bit-wise encryption of inputs, and 

use the CRT techniques to pack multiple bits in one 

plaintext/ciphertext pair, as was briefly described in III-

D. In this section we demonstrate how to concretely use 

SEAL for tasks such as these. 

As our first example we discuss using the logistic 

regression model for predicting the likelihood of a 

patient developing diabetes [2]. A predictive equation to 

screen for diabetes was developed based on logistic 

regression in [31]. The equation was computed from 

data on more than 1,000 Egyptian patients with no 

history of diabetes. The predictive variables used were: 

age (a), sex, BMI, number of hours since the last food or 

drink (PT: postprandial time), and Random Capillary 

Plasma Glucose level (RCPG). The study was cross-

validated on a sample of more than 1,000 American 

patients. The predictive equation calculated is 

, 

with the following logistic regression parameters: x 

= −10.0382 + 0.0331 · a 

+ 0.0308 · RCPG + 0.2500 · PT 

+ 0.5620 · (if female) + 0.0346 · BMI, where 

age is given in years, random plasma glucose (RPG) in 

mg/dl, and postprandial time (PT) in hours. Undiagnosed 

diabetes is predicted if the value is greater than 0.20 

(20%). Thus only one digit of accuracy is required 

beyond the decimal point when computing the value of 

the predictive function approximately. 

The sigmoid function P(x) can be approximated near x 

= 0 by the Taylor series 

, 

which we can attempt to evaluate homomorphically on 

our input data. 

First set up the scheme and the encoder, and encrypt 

some sample patient data: 

#include <vector> ... 

encryption_parameters (Listing II.1) key_generator (Listing 

II.2) encryption_tools (Listing II.3) 

BalancedFractionalEncoder encoder( parms.plain_modulus(), 

parms.poly_modulus(), 
256, 16); 

BigPoly a = encoder.encode(42); 
BigPoly RCPG = encoder.encode(115); BigPoly PT = 

encoder.encode(8); 
BigPoly female = encoder.encode(1); BigPoly BMI = 

encoder.encode(20.2); std::vector<BigPoly> data { 

encryptor.encrypt(a), encryptor.encrypt(RCPG), 

encryptor.encrypt(PT), encryptor.encrypt(female), 

encryptor.encrypt(BMI) 

}; 

Next, encode the coefficients needed to evaluate x: 

std::vector<BigPoly> xweights { encoder.encode(0.0331), 

encoder.encode(0.0308), encoder.encode(0.2500), 

encoder.encode(0.5620), encoder.encode(0.0346) 
}; 
BigPoly translate = encoder.encode(-10.0382); 

Computing x is now easy using the multiply_plain 

and add functions: 
BigPoly x = evaluator.multiply_plain(data[0], xweights[0]); 
for (int i = 1; i<5; ++i) 
{ 
BigPoly prod = evaluator.multiply_plain( encrypted_data[i], 

encoded_xweights[i]); 
x = evaluator.add(x, prod); 
} 
x = evaluator.add_plain(x, translate); 

Now we come to evaluating the Taylor expansion. First 

encode the coefficients of the expansion: 
std::vector<BigPoly> taylor_coeffs { 
encoder.encode(1.0 / 4), encoder.encode(-1.0 / 48), 

encoder.encode(1.0 / 480), encoder.encode(-17.0 / 80640) 
}; 
BigPoly taylor_constant = encoder.encode(1.0 / 2); 

To compute the odd powers of x we can use the member 

function exponentiate of Evaluator. Computing the 

Taylor expansion is now easy: 
BigPoly result = evaluator.multiply_plain( x, taylor_coeffs[0]); 

for (int i = 1; i<4; ++i) 
{ 
BigPoly power_of_x = evaluator.exponentiate( x, 2 * i + 1); 
BigPoly prod = evaluator.multiply_plain( power_of_x, taylor_coeffs[i]); 
result = evaluator.add(result, prod); 
} result = evaluator.add_plain(result, taylor_constant); 
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Finally, result can be decrypted and decoded: 

double plain_result = encoder.decode(decryptor. decrypt(result)); 

The computation above is, however, not a very 

optimal solution. In fact, the parameters given in 

Listing II.1 are not nearly large enough to deal with 

this problem. Everything works well until the sigmoid 

function has to be evaluated. Problems arise when 

real numbers encoded with the fractional encoders 

are raised to high powers, such as 7. The reason is 

that even if only very few terms of precision are used, 

the number of cross terms between those few high 

degree terms in the exponentiation quickly becomes 

enormous, and dominates the growth of the coefficients 

of the plaintext polynomial. This forces us to increase t 

significantly, which in turn forces us to use a much larger 

(n,q) pair than what is given in Listing II.1. Another 

unrelated problem is that the sigmoid function is not 

very well approximated by a Taylor expansion, and the 

quality of the result in this case depends hugely on the 

exact value of x. 

There are numerous ways to solve these problems 

using more complicated neural networks to perform the 

prediction. Such neural networks can be made to use low 

degree polynomials as activation functions to yield 

models better suited for homomorphic computations 

than the above logistic regression model. Another option 

is to return x instead of returning the troublesome 

probability P(x). 

VI. EXAMPLES 

In this section we present complete examples for using 

the SEAL library. Our examples are in C++, but are easy 

to convert to use the C# wrappers in the SEALNET library. 

All of the examples we present here use the basic setup 

presented in Listings II.1, II.2, and II.3. 

As the first example, consider the following encrypted 

computation of (x2−1)·(x3−2x+1)−(x3+x2+x+1). 

#include "seal.h" #include 

<iostream> 

using namespace std; using 

namespace seal; 

int main() 
{ encryption_parameters (Listing II.1) key_generator 

(Listing II.2) encryption_tools (Listing II.3) 

/* Note that a negative coefficient y is expressed as t-y */ 
BigPoly plain1("1xˆ2 + 3FF"); 
BigPoly plain2("1xˆ3 + 3FExˆ1 + 1"); 
BigPoly plain3("1xˆ3 + 1xˆ2 + 1xˆ1 + 1"); 

/* Now encrypt plain1, plain2, plain3 */ 
BigPoly enc1 = encryptor.encrypt(plain1); 
BigPoly enc2 = encryptor.encrypt(plain2); 
BigPoly enc3 = encryptor.encrypt(plain3); 

/* Use Evaluator to do the computation */ 
BigPoly prod = evaluator.multiply(enc1, enc2); BigPoly negenc3 = 

evaluator.negate(enc3); 
BigPoly result = evaluator.add(prod, negenc3); 

BigPoly plain_result = decryptor.decrypt( result); 

/* Now print the result: xˆ5-4xˆ3+x-2 */ cout << "Result: " << 

plain_result.to_string() 
<< endl; 

return 0; 
} 

Here is an example of computing the weighted 

average of 5 real numbers (in the vector numbers), with 

given public weights (in the vector weights). 
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#include "seal.h" 
#include <iostream> #include 

<vector> 

using namespace std; using 

namespace seal; 

int main() 
{ encryption_parameters (Listing II.1) key_generator 

(Listing II.2) encryption_tools (Listing II.3) 

/* We need the fractional encoder */ 
BalancedFractionalEncoder encoder(parms. plain_modulus(), 

parms.poly_modulus(), 
256, 64); 

vector<BigPoly> numbers{ 
encryptor.encrypt(encoder.encode(6.12)), 

encryptor.encrypt(encoder.encode(1.10)), 

encryptor.encrypt(encoder.encode(8.43)), 

encryptor.encrypt(encoder.encode(9.30)), 

encryptor.encrypt(encoder.encode(7.05)) 
}; 

vector<BigPoly> weights{ encoder.encode(0.20), 

encoder.encode(0.20), encoder.encode(0.35), 

encoder.encode(0.15), encoder.encode(0.20) 
}; 
BigPoly denom = encoder.encode(0.2); 

/* Multiply numbers by weights and add them up to result */ 
BigPoly result = evaluator.multiply_plain( numbers[0], weights[0]); 
for (int i = 1; i<5; ++i) 
{ 
BigPoly prod = evaluator.multiply_plain( numbers[i], weights[i]); 
result = evaluator.add(result, prod); 
} 

/* Finally divide by 5 */ result = evaluator.multiply_plain(result, 

denom); 

/* Now decrypt/decode and print the result: 
*/ 
BigPoly plain_result = decryptor.decrypt( result); 
cout << "Result: " << encoder.decode( 
plain_result) << endl; 

return 0; 
} 

The above code will print the correct answer: 1.4399. 

A. Performance 

To give a rough idea of the overhead for doing 

computation on homomorphically encrypted data, we 

give some sample timings for the SEAL library when 

running on a 2.00 GHz machine using a single thread. 

Much better performance can be achieved by 

parallelizing the computations. These timings were 

obtained by averaging across 25 runs of the operations. 

For a smaller parameter set with n = 1024, and 

coefficient modulus q of size roughly 48 bits, the time 

required for a homomorphic multiplication of 

ciphertexts is around 92 milliseconds, including the 

costly relinearization step II-E. For a larger parameter set 

with n = 4096, and coefficient modulus q of size roughly 

127 bits, the time required for a homomorphic 

multiplication of ciphertexts is around 291 milliseconds, 

including relinearization. 
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