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ABSTRACT

The performance of cellular manufacturing systems is intrinsically sensitive to demand
variations and machine breakdowns. A cell formation methodology that addresses, during the shop
design stage, system robustness with respect to product demand variation is proposed. The system
resources are aggregated into cells in a manner that minimizes the expected inter-cell material
handling cost. The statistical characteristics of the independent demand and the capacity of the
system resources are explicitly considered. In the first step of the proposed approach the expected
value of the feasible production volumes, which respect resource capacities, are determined.
Subsequently, the shop partition that results in near optimal inter cell part traffic is found. The

applicability of the proposed approach is illustrated through a comprehensive example.






1 INTRODUCTION

Cellular manufacturing shops are arranged into production cells, each dedicated to the
production of part families with similar processing requirements. A major benefit of this approach
is the simplification of the material flow within the shop. Specifically, the inter-cell flow is
decreased substantially while most of material handling is confined within the manufacturing cells.
This fact coupled with reduced set-up times, which result from part similarities, yield shorter lead
times and lower work-in-process (Kusiak, 1987). Furthermore, the decomposition of a large and
complex manufacturing system into smaller subsystems simplifies scheduling and shop floor
control (Flynn and Jacobs, 1986) and promotes automation (Martin, 1989). On the other hand,
cellular manufacturing systems are highly sensitive to machine breakdowns (Flynn and Jacobs,
1986) and their performance rapidly deteriorates under changes in product mix (Seifoddini, 1990).

The problem of partitioning a manufacturing shop into cells is NP-hard (King and
Nakornchai, 1982) and has been addressed extensively in the literature. The heuristic methods that
have been proposed for its solution can be grouped in two main categories; those that are based on
cluster analysis of the part-machine incidence matrix (King, 1980; McCormick et al., 1972; Chan
and Milner, 1982; Garcia and Proth, 1986), and those that employ mathematical programming
formulations (Gunasingh and Lashkari, 1989; Harhalakis ez al., 1990; Kusiak and Cheng, 1990).
Interesting comparisons and performance evaluations of these methods can be found in (Kusiak
and Cheng, 1991). It is noted that the mathematical programming approaches consider explicitly
many important system attributes, such as material handling traffic, set-up and run times, and
machine capacities (Harhalakis et al., 1990; Nagi et al., 1990; Minis ez al., 1990).

Although the performance of a cellular manufacturing system is directly dependent upon the
manufactured product mix, the issue of robustness of a cellular design to product demand changes
has been addressed by only a few research studies. The cell formation approach proposed by
Seifoddini (1990) considers the random nature of the product mix by assigning probabilities to
discrete product mixes and to the associated machine-component incidence matrix. For each

product mix under consideration a cell formation is determined, and the inter-cell material handling



costs that correspond to this configuration, under all possible product mixes, are calculated.
Subsequently, the expected inter-cell material handling cost for each configuration is evaluated and
used to select a near optimal solution. This approach does not take into account shop characteristics
that affect the probabilities assigned to each product mix, such as resource capacity constraints.
Furthermore, the fact that the optimum shop partition is calculated for every product mix limits the
number of alternative states to be considered. Minimization of the expected material handling cost
has also been the target of related research conducted by Rosenblatt and Kropp (1992), who
consider the stochastic nature of the product demand in their study of plant layout.

Vakharia and Kaku (1993) have studied the impact of demand changes on the performance
of cellular manufacturing systems. They recognized that resource capacities limit the ability of a
cellular system to adequately respond to such changes, and proposed a system redesign
methodology to address the robustness issue. Their method is based on a zero-one mathematical
programming formulation and attempts to allocate new parts, or reallocate those for which large
demand changes have occured, among existing cells. Note that the manufacturing cells remain
unchanged in composition and, therefore, system robustness is not addressed at the shop design
stage. This technique may be viewed as complementary to a robust shop design methodology.

This paper focuses on the cell formation problem under random product demand and
presents an approach to obtain robust shop decompositions, i.e. cellular designs with satisfactory
performance over a certain range of demand variation. The statistical characteristics of the
independent demand, as well as the capacity of the system resources are explicitly considered. The
design objective is to minimize the expected inter-cell material handling traffic, a measure originally
introduced by Seifoddini (1990). In the first stage of the proposed method the statistics of the
feasible production volumes are determined given the statistics of the independent demand and are
used to compute the design criterion for the candidate shop configurations. In the second stage, a
near optimal cell formation is determined using an effective grouping method presented in
(Harhalakis et al., 1990).

The paper is organized as follows. In section 2 the cell formation framework is set up, the

design criterion is introduced, and the case of infinite resource capacities is considered. Section 3



examines the cell formation problem under finite capacities. Section 4 describes the proposed cell
formation algorithm. A sample application is presented in section 5 to illustrate the entire design
" procedure. Finally, the conclusions of this work and recommendations for future research are

summarized in section 6.

2 PROBLEM FORMULATION

The cell formation problem consists of partitioning the manufacturing shop into a set of
manufacturing cells C={c;,...,Cy,}, such that the total inter-cell traffic of parts within the design
time horizon H is minimized. The following information concerning the shop operational
characteristics is assumed available. It is noted that bold and underlined characters indicate random
variables.

e The set of machines, M={M1,...,Mg} and their capacities, CMJ-, j=1,....g.
« The set of all manufactured (make) components, Iz{pl1,...,plul,p21,...,p2u2,...,pn1,...,pnun}.

Note that {p11,p31,---Pn1] Tepresent the finished products (final assemblies) while {pjp,....Piu;]}

represent the manufactured components or subassemblies of part p;q, i=1,...,n.

« The random demand of the finished products over the time horizon H , D={D1,...,Dy}.

» The processing sequence (routing) 1;, of each make part p;,, i=1....,n, a=1,...,u;. The production
routing specifies a unique sequence of machines employed during the part manufacture as well as
the corresponding processing times. Alternative routings that may employ functionally similar
machines for the production of a certain part are not considered.

Throughout this study a lot-for-lot batch sizing strategy is assumed and, therefore, the
demand of finished products defines the demand of all dependent make items. Due to machine
capacity limitations and depending on the backlogging/holding policy of the particular
manufacturing environment, the feasible production volume of finished products may or may not
equal the demand. Let A; be the production volume of end product p;; within the entire design

horizon H. Then the cell formation problem is formulated as follows :



minimize  E{T(A}, App)) = E {3, D [ Y, A xi(T.s)] ()
=1 s=1 i=1

1

subject to q.<Q, r=1,...,w (2)
n
ZAiJ@ij < CMj, j=l,..8 (3)
i=1 ‘

where :
* T(Aq, Ay,....A,) is the inter-cell traffic.

« E{...} is the expected value of the expression in brackets.

* x;(1,8) is the number of times the final product p;; or any of its make components Pi2s+-Piy;

have to be transported from cell ¢, to cell ¢g and is given by :

ul
X;(1,8) = 2 Zia Y;a(T.$) @

a=1

where z;, is the quantity of components p;, that are used to produce one unit of final product p;;,
u; is the total number of make components of end product p;;, and yj,(r,s) is the number of times
make component p;, is transported from cell ¢ to cell ¢

* ¢, 1s the number of machines in cell r.

¢ Q is the maximum allowable number of machines per cell.

« CM; is the capacity of machine M;.

* ©; is the cummulative processing time of part type p;; and all its make items on machine M; and

is given by :
Ui U4
su . run c
®;= Y, Ol /bi+ Y 7,05 (5)
a1 a=1
where b; is the average batch size for part p;; and @isz; and @Egjn are the set up and run times of

make item p;, on machine M;, respectively.
All variables are expressed in terms of the same time horizon H .
Minimization of the objective function given by Eq. (1) ensures that the resulting machine
to cell partition will yield minimal inter-cell traffic, on the average. It is emphasized that the traffic
values with higher probability are weighted more by this criterion, while the entire spectrum of

feasible production volumes is considered. The first constraint, given by Eq. (2), maintains the cell
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size below a predefined upper bound Q. The value of the latter is based on several factors, such as
physical machine sizes, product envelope volumes and level of automation (Ang and Willey,
1984). The second set of constraints, given by Eq. (3), reflects the limited machine capacities. The
workload depends on the set-up and run times of the make products and their production volumes.

This formulation does not address the case of alternative production routings and the
distribution of the production volumes among them. The difficulties arising if alternative routings
are to be considered are discussed in section 6.

The cellular design problem was first formulated in this manner in (Minis et al., 1990; Nagi
et al., 1990), for the case of deterministic production volumes. If the machine capacity constraints

are not active, it is shown below that the deterministic and random demand cases are equivalent.

Unlimited Backlogging within the Design Horizon

In this case it is assumed that the portion of the production which cannot be manufactured
within a certain time segment of the design horizon H, due to capacity limitations, can be delayed
and completed at a later time segment within H. Therefore, the demand D; of part p;; over H, is
equal to the production volume A; and the capacity constraints affect neither the production nor the
inter-cell traffic. Remark 1 shows that in this case minimization of the mean inter-cell traffic is
equivalent to minimizing the traffic that corresponds to the mean demands of the finished products.
Remark 1 : The following problems are equivalent
D minimize T(W1,...,1pn) 1)) minimize E{T(Dj ,...,.D,)}

subject to q < Q k=1,...,w subject to q < Q k=1,...,.w
where u1=E{D},....u,=E{D,} and the capacity constraints are not active.

Proof : Given a certain shop configuration, the inter-cell traffic is given by :

Ty o) =T, D =Y Y Z D; xi(rs) =
r=1 s=1 i=1

—2[2 2 (r,9)]D; = ZACD 6)

i=l r=1 s=1

w
where the constants Aiczz 2 x;(1,8), i=1,...,n, depend on the shop configuration only. Taking
=1 s=1



the expected values of both sides of Eq. (6), we obtain :
n

E{T(D;,..D)} =E{D, A°D;} =D ACE(D} = X, Ay, N
i=1 i=1

i=1

o E{T(Dq ,...D)} = T(Uq,.... ) Q.E.D.

The above relationship shows that problems (I) and (II) are equivalent. Problem (I)
corresponds to the deterministic cell formation case, which has been extensively studied in the

literature and will not be considered any further in this paper.
3 CELL FORMATION UNDER LIMITED CAPACITY

In the case of limited resource capacities, the objective function E{T} may no longer be
determined using the mean values of the independent product demands [i1,...,)t,. This section
outlines a systematic way to calculate the expected traffic value E{T} for a certain shop
configuration, based on the evaluation of the actual production volumes that respect the resource
capacity constraints. Having determined E{T} as a function of the shop configuration, any of the
traffic-minimization grouping methods found in the literature can be employed to determine a near-
optimal shop partition.

Consider the time horizon H =fh, where 4 is the unit (elementary) production planning
period beyond which no backlogging and no holding is allowed. For example, H may be a ten
year period for which the facility is designed, and 4 an elementary six-month period. Let d;; be the
demand for part p;; in period t, i=1,...,n, t=1,....f. The statistics of d;; may be time invariant if the
market is expected to exhibit relative stability for the demand of the manufactured products.
Otherwise, the statistics of d;; may vary with time following anticipated market trends over the
design period H .

Since backlogging or holding is not allowed in this case, the independent product demand
in each unit production planning period may not be necessarily satisfied, due to capacity

limitations. Let &1,...,8,, represent the feasible production volumes of the final products

P11s----Pn1> respectively, in the time period t. If d,=d;...d,,;=d,; is a demand mix in elementary



period t, for which all capacity constraints are satisfied, then §;,=d,....0n,=dy;. If satisfaction of
the independent demand (d;,,...,dy,) is not feasible within the period t, then the feasible production
mix (81;,...,0y) i no longer a function of the independent demand alone, but also depends on a
managerial decision that targets a certain objective, such as maximum profit.

Remark 2 : Let T be the total inter-cell traffic within the design horizon H and Aj the total
production volume of part p;; in H . Furthermore, let §;; be the production volume of part p;;

within the elementary time period t of duration 4. Then

f n
E(T} =2 Y ACE(8) (7

t=1 i=1
where A", i=1,...n, are the constants defined in Remark 1.
Proof : The total inter-cell traffic, within the design time horizon H, is given by [see also Eq.(6) of

Remark 1] :

w w

n n
T=Y D Y AxTs) = 2 AfA; (8)
i=1

=1 s=1 i=1

Considering the expected values of both sides, Eq.(8) yields

n n
B(T} =BE{2 A%A) = 2 ACE(4)) ©)
i=1 i=1
However, the total production volume of part p;;, can be expressed as
f
Ai= D, 85 (10)
t=1
and considering the expected values of both sides in Eq.(10) it follows that :
f f
E(A) =E{ X 81} = 2 E{8y) (1)
» t=1 =1
Substituting Eq.(11) in Eq.(9) yields
n f f n ’
E(T) = Y, (A° X E{8;))=2, X, ACE(8) (12)
i=1 t=1 =1 i=1

Q.E.D.
The above remark shows that the mean inter-cell traffic E{T} over the entire time horizon
H can be determined, for a given shop configuration, from the expected values of the random

variables 9y,....0n;, t=1,...,f. The latter are given by :



max §1; max dy;

Edy)= D, ... D, 8 P(81=81p80=00) (13)
8;=0  8=0

where maxd,, is the maximum possible value of the demand of end item p;;.

The remaining portion of this section presents a method to determine the probability

distribution P{8;,....0;]}-

Evaluation of P{8;,....8,(}

Consider the following regions in the independent demand space :

n

Ay = { d=(dypedn) 0 Ve {1g), D, dj ©55< CW; ) (14)
i=1
n

Ay = { d=(d )+ T je (Lg), D, dj O3> CW; } (15)
i=1

Ay =R, - (2, L 2p) (16)

where CW; = CM; /£, is the capacity of each unique machine within period t [see Eq. (3)].

dy, & A

Ay

8,0,,+8,0,,=CW,

8,0,,180,,=CW,

As

8,031 8,8,3=CW;

N\

-
di, 05

Figure 1 : Demand Space Partition for Two End Products and Three Machines

Figure 1 illustrates the three regions defined above, for the simple case of two final

assemblies (end items) and three machines with limited capacities.

8



Case 1:

If (81[”“’51‘1[)6 ﬂl,

n
P{81,;=81( ».r Sy=08p}=P{d =81y ..., A =0y} = H P{d;=8; ) 17)

i=1
The last part of Eq. (17) is true, since the demands of the end items are assumed to be

independent.

Case 2 : If (81,.--»On1)E€ A,

Case 3:

P{81;=81( - Oi=0p1} =0 (18)

If (81y,-..,0n¢)€ A3, then both cases (dyy,....dn)€ A3 and (dyy,...,dy )€ Ay must be consi-
dered to determine P{8;,=8;; ...., 8,,=8y;}. In the latter case, the capacity constraints are
violated and the feasible production volume (8;,....0y) is determined by management on
the basis of certain criteria. If an optimization procedure is employed to make this
decision, the production volume (8y;,...,0,;) will belong to the boundary 23.

The managerial problem, such as the one presented in Appendix A, will be referred
to as (P). Every solution of (#) will map an infeasible demand point d;=(d,...,d)€ A, to
a feasible production volume 8,=(81y,...,0ny)€ A3, such that the appropriate criterion is
optimized. Thus, if 8=(8;y,....0n;)€ A3 then
P{3;,=611-s0n=0n}= P{d =081 »-.., dp=0n }+P{d;€ 4 d; — 6, through (P)}  (19)

where “—” should be read as “is mapped to”. The first term in Eq.(19) is given by

n
P{d1t=51t rneey dm:Sm} = H P{dilzsit} (20)

i=1

To determine the second term, problem (%) should be solved for every di€ A,. Let D, be
the set of infeasible points which are mapped to point §, through (2), i.e.

D5, = {die Ap: dy — d through ()}
Then, the second term of Eq.(19) is given by :

n
P{d,=(dyy,....dn)€ Ap: d, = 8, through (#)} = X, [[] Pldy=d;;}] (1)
95[ i=1

Substituting Egs.(20) and (21) in Eq.(19), the probability function becomes

n n
P{81=311,--0n=0nt} = H P{d;=8;} + 2 [H P{d;=d;;}] (22)
i=1 Dst i=1



It is noted that (%) is independent of the cellular configuration. However, even if the
demand space is discretized by considering only a few distinct demand values for each end
product, the total number of possible demand vectors that exceed the capacity constraints
and for which () should be solved, may be extremely large. For example, considering 10
end items and 10 discrete demand values for each one, the total number of demand
vectors d;e A, and consequently the number of problems () to be solved, is of the order
1010, Thus, only the most critical end products, for which large demand uncertainty is
anticipated, should be considered in the shop design phase (see also Appendix A for ways
to efficiently determine 9Dy, for a particular class of 2).

Having determined P{8;,=81,,...,.0,=0y;} for all three regions 4, 4, and A3 of the demand
space, Eq.(13) is employed to calculate the mean values of the production volumes in each
elementary period, E{§;}, i=1,....n, t=1,...,f. Subsequently, the mean value E{T} of the total
inter-cell traffic T within the design horizon H is determined from Eq. (7) for each candidate shop
configuration. The overall design algorithm presented below is based on the results derived in this

section.

4 DESIGN ALGORITHM

The cell formation algorithm consists of a two-step procedure that results in a near optimal
partition of the manufacturing shop into production cells. In the first step, the mean values of the
feasible production volumes are determined, as described in section 3. The latter are independent of
the shop partition and are employed in the second step to determine the mean traffic for each
candidate shop configuration. In the second step the existing approach of (Harhalakis et al., 1990),
briefly outlined in Appendix B, is applied to determine a near optimal system partition.

As mentioned in the previous section the number of managerial problems () to be solved
increases exponentially with the number of end items. Thus, it is critical for the implementation of
this algorithm to consider random demand only for those final assemblies which are both

financially important and expected to exhibit significant demand fluctuations over the elementary
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period t. Furthermore, when applicable, only bottleneck resources may be considered in order to
simplify the capacity hull 3.

The inputs, outputs and major steps of the proposed design algorithm are listed below [see
also Fig.2].
Inputs :

» Bills-of-material of each final assembly.

* Resources included in the manufacturing shop and their capacities.

* Sequence of operations and processing times for each end item and each make item.

* Cell size limit.

» The design Horizon H and the number of elementary periods f of duration .

» The demand statistics for each final assembly in each elementary period.

» Formulation of the managerial problem () discussed in section 3 [see also Appendix A].

Algorithm :

(a) Consider elementary period t=1.

(b) For every d;=(d1,...,dp,)€ Ay, solve the corresponding managerial problem (), an example
of which is presented in Appendix A. This will provide the feasible production volume
8=(81---,0n )€ 43.

(¢) For every 8;=(81y,...,0)€ 4 calculate the joint probability, P{8;,=81...8,=0y,} from Eq.
(17). For every 6,=(81y,...,0)€ A3 calculate the joint probability P{3;,=81,....8,=0p}
from Eq.(22).

(d) Calculate the mean value of the production volume for each end item py;, i.e. E{;}, V i,
using Eq.(13).

(e) Repeat steps b-d, for each elementary period t=2,...,f of duration 4 .

(f) Obtain a near optimal shop configuration that minimizes the mean value of the inter-cell traffic
based on the grouping algorithm found in (Harhalakis ez al., 1990). At each stage of this
algorithm, Eq.(7) is used to calculate E{T} [see Remark 2].

Output :

» Partition of the manufacturing shop to cells that minimizes the expected inter-cell material

11



handling traffic over the entire design horizon H.
Note that the degree of optimality of the resulting configuration depends on the

performance of the grouping step (f).

tart)

Read input data

|

elementary period
t=1

»‘

For every demand point that does not satisfy
resource capacity constraints, solve managerial
problem (%) to obtain feasible production mix

Y

Calculate the joint probabilities for every
feasible production mix from Eq.(22)

|

Evaluate the mean production volume
for all final assemblies from Eq.(13)

Y

t=t+1

t<f

No

Apply grouping algorithm (Appendix B). For each shop
configuration calculate the mean inter-cell traffic from Eq.(7)

CEnd)

Figure 2 : Flowchart of the Design Algorithm
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S ILLUSTRATIVE EXAMPLE

In order to demonstrate the design approach described in the previous sections, a small-
order example is presented. The sample manufacturing system produces three final assemblies and
the total number of make items is twenty. Seventeen functionally unique machines are included in
the shop. Only functionally unique machines are considered, in order to exclude alternative
production routings which are not accounted for in the problem formulation of section 2.

The sequence of operations (routing) for each make item is presented in the part-machine
incidence matrix of Table 1. The entries of this table identify the order of operations in the part
production routing. The part numbers of the end items are 1,2, 3 and the part numbers of the

remaining make items are 4 through 20. The machines are numbered from 1 to 17.

Table 1 : Part-machine Incidence Matrix

Machine ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Part
1 5 . .3 . L2 . . .4 |
2 1 3 4 2
3 1 3 .4 2
4 4 1 3 2
5 .3 2 1 4
6 4 3 2 . 1
7 1 3 . 2
8 4 3 2 1
9 1 2. 3
10 1 2 4 3
11 4 . 2 1 3
12 4 1 2 . 3
13 2 3 1 . 4
14 1 3 . 4 2
15 3 2 1 . 4
16 1 2 3 . 4
17 . 2 3 1
18 3 2 1 . 4
19 3 4 . 2 1 5
20 2 3 1




The processing times ®;; of each operation in the part production routings are given in
Table 2. ®;; include both the run and set up times [see Eq.(5) of section 2]. The capacity limit of
each machine for an elementary period of duration %, beyond which no backlogging or holding is
allowed, is given in Table 3. Processing times and machine capacities are expressed in the same

time units.

Table 2 : Part Processing Times

Machine 1D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Part
1 30 . . 40 . .10 . . . .35 . . 35 .
2 . . . . .20 . . . .15 . . 50 . .50
3 20 . 30 . . . . . . .25 40 . . .
4 10 . . . . 20 10 . . . .20 .
5 . . .20 . . . . .15 . . . . 10 40
6 20 . 30 . . .25 . . . .25 .
7 25 . .10 . . . .20 . . . .
8 . . .55 . . . .10 . .45 . . 40
9 .15 . . .15 . .40 .
10 40 . .25 . .25 . . . .25 . . .
11 . . .10 . . . .5 . . . . .25 10
12 115 . 30 . . . 35 . . . .40 . . .
13 . . . 10 . . . .15 25 . . . .15
14 120 . 35 . . . . . . .25 40 .
15 25 . .15 . .10 . . . .40 . . .
16 15 . . . .10 15 . . . . .20 .
17 . . . . . 65 . . . . . . .40 . . 50
18 |20 . 40 . . .15 . . .15 . . . . .
19 20 . .30 . .30 . . . .20 . . 20
20 20 . . .15 . . .20

Table 3 : Machine Capacities over period A

Machine  Capacity | Machine Capacity | Machine Capacity | Machine Capacity

1 16200 6 15500 11 18900 16 23100
2 30100 7 18700 12 22800 17 12500
3 34800 8 23400 13 24800
4 11200 9 10700 14 15500
5 35300 10 12600 15 14800

14



Table 4 presents the relationship between the three final assemblies and their make

components in a single level fashion. For simplicity, without loss of generality, each make

component is used with a quantity of one per unit parent product.

Table 4 : Parent-child Relationships and Demand Statistics of End Items

End Product pj; | Mean Demand | Standard Deviation | Unit Profit Make Items Pij
1 175 40 500 4 7 10 13 15 19
2 80 10 700 5 8 11 16 17
3 110 30 400 6 9 12 14 18 20

It is assumed that the demand within each elementary period of duration % is distributed

normally. Furthermore, the means and the standard deviations are assumed to be time invariant,

ie.

where,

dj; = U + O €54

* Wi, = I; 1s the mean value of the demand of product p;; during periéd t.

* 0;, = Oj is the standard deviation of the demand of product p;; for the same period.

» ¢;; = random variable for which :

. E{eit}:O
* E{eit2}=1

* E{e;e,,}=0 if izu (different product) or tzv (different time period)

Table 4 provides the mean values J; and the standard deviations o, i=1,2,3. Note that due to the

time invariant statistics, the design can be performed by taking into account the production

variables of a single elementary period only.

In this example, it is assumed that the managerial problem (%?) maximizes the total profit.

The resulting linear programming formulation is presented in Appendix A. The unit profit for each

final assembly is given in Table 4. The mean feasible production volumes derived from the

solution of () were: E{$;}=150, E{$,}=79, E{83}=90.

The design algorithm described in section 4 was applied to the above example, for a cell
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size limit Q=5 [see Eq.(2)] and the resulting machine to cell partition is shown in Table 5. Four
cells are included in the optimal shop partition Ly={C; A,C2.C3.Can}; C14=(2,5,8,13},
Coa=(1,3,7,12}, C34={4.9,10,15,16} and C45=(6,11,14,17}. The expected value of the traffic

that corresponds to this configuration is E{T p };n=570.

Table 5 : Manufacturing Cells for the Random Product Demand Case (Lp)

Machine ID
2 5 8 131 3 7 12 4 9 10 15 16 o6 11 14 17

Part

10 | 1
15
19 |3

AN =W
N =AW N
_—n N R

N -

12
14
18
20

[\®]
B LW — N

W =

BN DD WO = e LD W]
[\
~ B

11
13
16

o
o= NI
W

(98}
—

— AWK
o

T R I S S

To ensure optimality of this result, the traffic value, E{T 4 };;;;,=570, was used as an upper
bound to the state-space search algorithm proposed by (Ghosh, er al.). This is essentially a branch-
and-bound algorithm with a special state-space search that operates under memory and execution
time constraints. Given very large values for these constraints, and for problems of small
dimension, the algorithm is guaranteed to find the optimum. For the example of this section the

optimum was verified to be 570.
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The above results were compared to the partition derived when deterministic demand is
assumed. The algorithm of Harhalakis et al. (1990), was applied on the same shop data using the
means of the independent demands to define the constant production volumes [see Table 4]. The
latter satisfy all capacity constraints. The traffic value that corresponds to the solution yielded by
the grouping algorithm was found to be Tg=650. However, the state-space search algorithm of
(Ghosh, et al.) showed that this is not the optimal configuration. The global optimum was found
by the search algorithm and the corresponding traffic is Tgp,;,=640. The resulting manufacturing
cells are shown in Table 6. Four cells were also found in this case, Lg={C;5,Csp,C38.Csn},
where C;5={2,5,8,13,16}, C,5={1,3,7,11,12}, C33={4.9,10,15} and C4p={6,14,17}. The
difference between the two configurations, shown in Tables 5 and 6 is that machines 11 and 16

have been placed at different cells.

Table 6 : Manufacturing Cells for the Deterministic Product Demand Case (Lg)

Machine ID
2 5 8 13 16 1 3 7 11 12 4 9 10 15 6 14 17

Part
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In order to test configuration Ly in a random demand environment, the means of the
feasible production volumes were used to evaluate the actual mean traffic. Note that these values
are, in general, lower than the expected values of the independent demand due to capacity
limitations. However, as already shown in Remark 2, the expected value of the inter-cell traffic
under random product demand is equal to the traffic value obtained when the mean feasible
production volumes are used. For this example, an expected traffic value of E{Tg}=632 was
obtained for Ly, which is 9.81% higher than E{T 4 },;n=570, obtained for L, for the same
production volumes. Thus, considerable savings in the material handling cost are achieved by
grouping the machines into cells based on the mean production volumes, rather than the
(deterministic) expected demand values. The savings are expected to increase if the standard

deviations, ¢, i=1,2,3, of the independent demand for the three final assemblies increase.

Table 7 : Total Traffic Evaluation for 20 Elementary Periods

Independent Demands | Production Volumes Traffic | Traffic Savings
Period 1 2 3 1 2 3 La LB (Lg-LA)*100/Lg
1 172 81 116 172 81 111 677 648 -4.48%
2 214 92 141 177 92 111 687 786 12.60%
3 135 74 93 135 74 93 549 592 7.26%
4 178 108 166 177 103 111 687 824 16.63%
5 143 82 125 143 82 111 619 656 5.64%
6 216 94 33 177 94 33 543 752 27.79%
7 247 77 104 177 77 104 666 616 -8.12%
8 138 85 178 138 85 111 609 680 10.44%
9 71 80 113 71 80 111 475 640 25.78%
10 179 68 61 177 68 61 537 544 1.29%
11 292 72 88 177 72 88 618 576 -7.29%
12 212 101 149 177 101 111 687 808 14.98%
13 58 86 107 58 86 107 437 688 36.48%
14 171 52 42 171 52 42 468 416 -12.50%
15 279 88 95 177 88 95 639 704 9.23%
16 207 66 187 177 66 111 687 528 -30.11%
17 103 79 132 103 79 111 539 632 14.72%
18 136 59 54 136 59 54 434 472 8.05%
19 211 83 127 177 83 111 687 664 -3.46%
20 139 75 81 139 75 81 421 600 29.83%
Total Traffic | 11576 | 12826
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To demonstrate the appropriateness of the machine to cell partition obtained by the
algorithm presented in this study, the traffic values corresponding to configurations L, and Ly
have been obtained for twenty elementary periods, which constitute the design horizon H. The
results are shown in Table 7. The product demands for each of these periods have been generated
from a random number generator using the mean and standard deviation values given in Table 4.
Table 7 shows that the savings in material handling cost obtained using L4 over Ly are 9.75% over
the entire design horizon H . This is due to the activation of the resource capacity constraints that

lower the mean production volumes, with respect to the mean demand values.
6 CONCLUSIONS

The manufacturing cell formation problem under random product demand has been set up
in an optimization framework. The objective is to minimize the expected material handling cost,
while constraints are imposed by resource capacities and cell size limits. It has been shown that the
conventional deterministic formulation is applicable in the case of unlimited backlogging. The
proposed design methodology addresses the case in which no backlogging or holding is allowed
beyond a certain time period. Given the statistics of the independent demand the means of the
production volumes, which respect the capacity constraints and maximize the overall profit, are
determined by solving a set of linear programmihg problems. These mean values are utilized by the
grouping algorithm to obtain a near optimal shop configuration.

Under accurate predictions of the independent demand statistics, the proposed algorithm
will result in a shop design that offers substantial savings in the expected material handling cost as
compared to the shop configuration obtained by using the mean values of the independent demand.
This has been illustrated by a comprehensive example.

An important topic for further study is to extend the design methodology presented above
to account for the presence of alternative production routings. This case is common in
manufacturing shops that include functionally similar machines. The deterministic case of this

problem has been addressed by (Nagi et al., 1990) who distribute the part demand among the
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alternative production routings in a manner that inter-cell traffic is minimized. It is, however, a
challenging problem to assign part production volumes to alternative production routings when
random demand is considered. The main reason is that the assignment procedure should be
performed for every product mix and system configuration. Furthermore, Remark 2 does not hold
in this case, since the constants A;® [see Egs.(6) and (7) in sections 2 and 3, respectively] are not
only dependent on the shop partition, but also depend on the assignment procedure (Nagi et al.,

1990).

APPENDIX A

In this study it is assumed that the feasible production volume vector, (81y,...,0n¢); iS
selected such that the overall profit is maximized. The optimal production volume is determined by

solving the following linear programming problem :

maximize B1d1; + - + Brdus (Al)
subject to
n
Y. 80 < CWj, j=1....g (A2)
i=1

where f3;, i=1,...,n, is the unit profit of end product p;; and B8, + ... + Bdy, is the total profit in
period t. The remaining symbols are explained in sections 2 and 3.

Equation (Al) represents the linear objective function. Constraint set (A2) prevents
overloading of resources beyond their capacity limits. Constraint (A3) implies that holding is not
allowed. The linear programing problem of Egs. (A1), (A2) and (A3) forms the basis for the
calculation of the mean feasible production volumes.

It is noted that in the case of only two final assemblies with independent random demand it
is not required to solve the above problem for every infeasible demand mix. This is due to a special
partition of the infeasible space that is possible with respect to the basic feasible solutions of the

linear programming problem (LPP) of Eqgs.(A1) and (A2).



For the example of Figure A-1, let point A(3; 5,0,4) represent the optimal solution of the
LPP of Egs.(Al) and (A2). Point A is the intersection of constraints §;0,+0,0,,;=CW; and
81017+3,0,,=CW,. It can be easily shown that A is also the solution of the LPP of Eqs.(Al),

(A2) and (A3) for every point P,, the coordinates of which satisfy 8,28, o and 6,28, 4.

""’//////////// 2

prd /
OOONNN
51@12+5 0,75CW, \ §

d1, 01

Figure A-1 : Solution of The Managerial LPP for the Case of Two End Items

with Random Demand

Let P; be a point in the region defined by the inequalities §;01,+6,0,;>CW; and §;<5; 4
[see Fig.A-1]. For P, the optimal solution of LPP of Eqs.(Al), (A2) and (A3) is given by
{(81,82): 81=dp,, 8,=(CW-dp,©11)/0;;}.

In a similar manner we can derive analytical expressions for the solution of the LPP of
Eqgs.(Al), (A2) and (A3) for every point P5 and P, in the remaining shaded regions of Fig.A-1
(see Fig.A-1).

The fact that the LPP can be solved analytically results in a substantial reduction of the
computational effort required to determine the expected values of the feasible production volumes
E{d;]}, i=1,...,n, t=1,....f [see section 3]. It is noted, however, that the infeasible space cannot be

partitioned in a straight forward manner for those cases that i>3.

21



APPENDIX B

The bottom-up aggregation procedure proposed in (Harhalakis et al., 1990) to minimize the
inter-cell traffic in cellular manufacturing systems is briefly outlined in this appendix.

At the beginning of the procedure, each machine is placed in a separate cell. At each
subsequent step of the minimization procedure, the normalized traffic (that is the value of the total
inter-cell traffic divided by the total number of machines in both cells) is calculated for each feasible
aggregation. Feasible aggregations are those that result in cells for which the number of machines
does not exceed the cell-size limit Q. The two cells, between which the normalized traffic is
maximum, are aggregated into a single cell. Every aggregation is accompanied by a reduction in the
number of cells (w) by one, and a reduction of the total inter-cell traffic by the traffic
corresponding to the two cells being merged. Subsequently, the traffic between the remaining cells
is revised by the following rules : i) the part traffic between two unaffected cells remains the same;
ii) the part traffic between an unaffected cell and the new aggregate is the summation of the traffic
between the former and the components of the aggregate.

This procedure is repeated until it is either not possible to obtain a new feasible

aggregation, or the traffic between each of the existing cells is zero (perfect decomposition).
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