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The advent in micro/nano electromechanical systems (MEMS/NEMS) has been the main 

thrust for the advancement of high performance miniaturized systems. In addition, the 

application of micro manufacturing technologies to biomedical engineering has presented a 

novel generation of small devices that helped in both medical research and treatment
 [1-6]

. For 

example; lab on a chip and micro-implant systems allowed the reduction in power 

consumption, electronic noise and system complexity and capability. However, the materials 

used in these systems must be biocompatible and able to work in vivo. Popular examples of 

biocompatible materials include silicon, polymers and glass. Many biocompatible metals have 

been also used in micro-implants such as titanium alloys, nitinol, platinum and stainless steel 

[7, 8]
. A remarkable advantage of metals over silicon based materials and ceramics is their high 

strength, eliminating the chance of encountering a failure during service. They also showed 

outstanding stability in vivo and good impermeability. Therefore, they have been the main 

choice of hermetic seals of large biomedical implants such as pacemakers 
[9, 10].
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Soft lithography, micro electroforming, and micro gel casting are techniques used to 

manufacture metal micro-parts. These techniques have been implemented to produce parts 

with the desired precision and surface quality 
[2, 11, 12]

. Selective laser melting (SLM) is one of 

the additive manufacturing techniques in which a 3D product is built layer-by-layer
 [13-15]

. 

SLM allows more freedom for the Computer Aided Drafting (CAD) designers to enable 

design and topology optimisation. SLM enables the production of near-net-shape complex 

parts 
[16-18]

. The use of SLM for the fabrication of micro-components has been seldomly 

reported. Hagemann et al
 [19]

 produced micro actuators from NiTi shape memory alloy which 

could be used for cochlear implants. In addition, Bultmann et al.
 [20]

 utilized the geometric 

freedom offered by the SLM process to produce hollow micro-struts. 316L stainless steel 

micro-struts with a diameter ranged from 300-740 µm and of length of 3.5 mm were 

successfully fabricated. In another research, Sutcliffe and co-authors reported the application 

of SLM to manufacture micro hierarchical structures with complex geometry which could be 

used in orthopaedic implants and ultra-light aerospace applications 
[21]

. However, the main 

challenge of SLM as a micro fabrication tool is how the surface quality and the precision of 

its products can be improved. The surface roughness of SLM components is greatly affected 

by three main factors. The first factor is the “stair step” effect, which is the stepped 

approximation by layers of curves and inclined surfaces. This effect is present as a 

consequence of the additive deposition and fabrication of layers 
[22]

. The second factor is the 

“balling” phenomenon that occurs during laser melting. The balling effect limits the SLM 

resolution because it causes the formation of discontinuous tracks
 [23]

. The third factor is the 

partially melted particles adhered to the parts. In an attempt to improve the surface quality, 

Zhang et al 
[24]

 used atmospheric plasma spraying (APS) alumina coatings to treat the surfaces 

of SLM stainless steel parts. The surface roughness (Ra) of the vertical and horizontal 

surfaces before coating was 28 and 17 µm, respectively. Both surface roughnesses were 

decreased to 15 µm with the APS treatment. However, it was found that the bonding strength 
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between the deposited layer and the SLM part was relatively weak, which might affect the 

serviceability of the component.  In another study by Yasa et al. 
[25]

, laser re-melting was 

applied to improve the surface finish of Ti-6Al-4V parts from 15 µm to 2.9 µm. However, for 

micro systems, better surface finish of a value less than a micron is required, which is  

suggested in the proposed process to be obtained via micro-Electrical Discharge Machining 

(µ-EDM) [26]. 

Micro-Electrical Discharge Machining is a thermo-electric process that uses electrical 

discharges to erode electrically conductive materials by a series of discrete sparks between the 

work-piece and the tool electrode, both submerged in a dielectric fluid. The process is quite 

capable of machining intricate profiles from any electrical conductive material irrespective of 

its hardness and strength
 [26, 27]

.  This work introduces a hybrid micro fabrication technology 

combines both the design freedom of SLM and the high surface quality of µ-EDM. The aim is 

to manufacture high quality micro implantable components with the highest density and the 

best surface finishing. Statistical experimental design using analysis of variance technique 

was used to determine the significance of SLM process parameters on the amount of porosity 

and internal defects. Microstructure analysis using image processing was used to calculate the 

parts porosity. After SLM optimization, the samples were further processed using µ-EDM to 

improve their surface quality. The effect of changing µ-EDM parameters on the resultant 

surface roughness was also explored. 

Seventeen samples with different parametric combinations were built using Design of 

Experiment (DoE). In these experiments, the laser power range was 100:200 W, laser scan 

speed range was 500:3000 mm/s and hatching spacing (Scan spacing / laser track width 

constant (150 µm)) range was 0.2:0.8. The 17 different parametric combinations along with 

the measured values of porosity are presented in Table 1. 
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Figure 1 shows the porosity response surface model with respect to laser power, scan speed 

and hatch spacing. Interpretation of the results in Figure 1 and Table 1 shows that at constant 

scan speed and hatch spacing of 1500 mm/s and 0.5, respectively, increasing the laser power 

from 125 to 175 W can decrease the porosity of a SLM part from 1.2% to 0.4%, see Figure 1 

(a). Similar reduction in the porosity level can be obtained by decreasing the scan speed from 

2375 to 1125 mm/s, while the laser power and hatch spacing are kept at 150 W and 0.5, 

respectively, see Figure 1 (b). In addition, it can be clearly seen that the porosity level is very 

sensitive to the hatch spacing values, see Figure 1 (c). The porosity level was dropped from 1 

to 0.55% by increasing the hatch spacing from 0.35 to 0.65, at laser power of 150 W and scan 

speed of 2375 mm/s. In general, it can be concluded that the porosity level can be decreased 

by either increasing the laser power or reducing the scan speed and/or the hatch spacing. This 

means the input energy per unit volume has to be increased to a certain level in order to avoid 

porosity formation. In addition, it seems that the interaction between the hatch spacing and 

scan speed is also significant, as shown in Figure 1 (d). At higher hatch spacing, the effect of 

scan speed on porosity formation is more considerable. Similarly, the influence of the 

hatching spacing is more significant at higher scan speeds. High density can be achieved 

using slow laser speed and small hatch spacing. This can consequently result in a material re-

melting which eliminates powder/metal splashing and porosity formation. Therefore, energy 

density should be sufficient to avoid incomplete melting. Increasing the scan speed and hatch 

spacing and/or a decrease in the laser power can cause incomplete consolidation and a smaller 

melt pool. This can result in entrapment of the voids among the powder particles under the 

solidified hatch lines and in turn reduces the overall density of the SLM part. From the results 

in Table 1, the sample from run number 13 experienced a minimum porosity level of 0.25 %, 

which was produced using laser settings of 175 W laser power, 1125 mm/s scan speed and 

0.35 hatch spacing.  
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An optimisation study was carried out using Design-Expert Software to obtain the optimum 

processing parameters at which the highest density of the SLM can be achieved. Since the 

SLM components were planned to undergo a finishing operation using the µ-EDM, the 

objective function was set to minimise the porosity. The results are shown in Figure 2 (a) 

which shows the contour plot for the optimisation function. The model suggested that the 

optimised values of the process parameters would be 200 W, 1000 mm/s and 0.67 for the laser 

power, scan speed and hatch spacing, respectively. This is equivalent to an energy density of 

100 J/mm
3
. Results from the 17 samples shows that the lowest porosity is 0.25%. On the other 

hand, the process optimisation shows that the predicted optimum porosity level is 0.13%. To 

examine the predicted process parameters, five identical SLM micro components were 

fabricated using a laser power of 200 W, a scan speed of 1000 mm/s and a hatch spacing of 

0.67. The average measured value of the porosity of the five samples was 0.17%.  

Figure 2 (b) shows a plot of the porosity versus the energy density for the data previously 

provided in Table 1. The figure shows micrographs of samples with different porosity levels 

at both low and high energy density and a sample from run number 13, which has the 

minimum porosity (See Table 1). It also shows a micrograph of the sample produced using 

the predicted conditions. The graph shows that the porosity content consistently decreased 

with increasing the energy density, which may be due to the improved consolidation of the 

metal powder, until achieving a minimum value at a range of energy density of about 80 to 

100 J/mm
3
. However, a further increase in the energy density causes the porosity content to 

scatter beyond that level until 200 J/mm
3
. In this region, other defects such as keyhole 

formation, which is produced due to vapourisation of the metal powder, might be produced 

within the SLM part. This type of defects also increases the porosity level. The presence of a 

threshold for the energy density that gives a maximum material density was reported by 

previous researches 
[28-31]

. In particular, the energy density required to produce fully dense 
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components from commercially pure titanium and Ti–6Al–4V powder was estimated to be 

about 120 J/mm
3 [7]

. In the current study, a nearly fully-dense Ti–6Al–4V SLM micro-parts 

were obtained at relatively lower energy density, perhaps due to the application of an island 

scanning strategy.   

 

The micro-parts produced by SLM were post processed via µ-wire-EDM in order to improve 

the surface quality of specific surfaces. The average surface roughness of the SLM 

components was measured before the machining by the confocal microscope (Zeiss CSM700) 

to be 14.7 µm. The performance of the EDM process for both the roughing and finishing 

regimes, and the different parameters adopted for each are summarised in Table 2 and Figure 

3. 

As expected, the μ-wire-EDM process improved both surface roughness (Ra) and flatness of 

the SLM parts, see Figure 3. In order to implement the finishing phase, a stock allowance on 

the nominal dimension should be considered when the part is realized in SLM. A higher 

allowance is often needed when the surface porosity level is high and/or surface flatness is 

pour. Figure 3 (a) and (b) shows the scanning of the surface of the square face of the micro 

component before and after being machined using the μ-wire-EDM. Figure 3 (c) shows an 

SEM image of the vertical surface topography of the SLM part before micro machining. As 

shown, the surface roughness of the part is limited by the “balling” phenomenon that occurs 

during laser melting. Particles stuck on the surface of the part are also contribute to the poor 

surface quality. Figure 3 (d) shows a confocal acquisition of the micro-components showing 

the roughing and finishing regimes using the optimum μ-EDM parameters. It can be clearly 

seen that, the machined surface experienced a good surface finish. However, some rounded 

edges due to the SLM process can be also observed. The surface roughness (Ra) was around 

4.6 μm for the roughing regime and was between 0.6 μm and 0.8 μm for finishing regime, See 
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Table 2. The improvement in the surface roughness in the finishing regime is due to use of 

reduced discharge energy, which enabled the production of a small crater size and in turn 

obtaining an outstanding surface quality. The introduced hybrid process was also applied to 

different electro-conductive materials such as Fe. Figure 3 (e) and (f) show a comparison 

between SLM iron micro-gear before and after the µ-EDM machining showing clearly the 

roughing and finishing regimes. It should be emphasized that the use of µ-EDM to machine 

micro parts for medical purposes might be of concern. Possible surface contamination by Cu 

during the machining might affect the behaviour of Ti-6Al-4V components in the human 

body. Further investigations are necessary to evaluate the influence of µ-EDM on the 

biocompatibility of different materials. 

This research was carried out to cover the gap in producing high precision micro-components 

using SLM as well as to study the potential of using µ-EDM in the field of additive 

manufacturing. Selective laser melting process has been optimised to minimise porosity of the 

micro-parts. It was shown that the porosity can be reduced using the optimum laser process 

parameters predicted using a design-of-experiments approach. In addition, surface roughness 

of the SLM micro-components can be significantly improved using µ-EDM technique. It was 

found that, when the material is electro-conductive, μ-EDM process is a good choice for 

improving surface roughness and to machine sharp micro-features. In order to get the best 

results of the proposed technology, the definition of a common reference is required to align 

the target features. Furthermore, An ad-hoc clamping system is crucial for reducing 

machining error and improving the final surface roughness and overall machining time. 

Current limitations of the micro µ-EDM include the inability to machine non-conductive 

materials, 3D curved surfaces, non-pass through surfaces and the low metal removal rate. 
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Experimental Section  

In this study Ti-6Al-4V gas-atomised powder was supplied by TLS Technik GmbH. The size 

range was 25–50 µm, as measured using Coulter LS230 laser diffraction particle size analyser. 

To perform the design of experiment Design-Expert® Software Version 7.0.0 from Stat-Ease 

was used and the response surface methodology was adopted [32]. Design–Expert was 

applied to generate an experimental design to screen the process input parameters. The 

software utilised the analysis of variance (ANOVA) technique to determine the statistical 

significance of these parameters. In order to determine the equations of the response surface, 

the central composite second order design was used. The expression for the second order 

central composite design is given in Equation 1: 

𝑌 =  𝑏𝑜 + ∑ 𝑏𝑖𝑥𝑖 + ∑ 𝑏𝑖𝑖𝑥𝑖
2 + ∑ 𝑏𝑖𝑗𝑥𝑖 𝑥𝑗                                                                                  (1)                                                                                   

where Y is the process yield (or the response surface), while 𝑥𝑖  are the factors or process 

parameters. The expression contains linear terms in 𝑥𝑖 , quadratic terms in 𝑥𝑖
2, and product 

terms in 𝑥𝑖𝑥𝑗. The terms bi , bii, and bij are constant coefficients. Method of least squares is 

used to determine the constant coefficients. In this way, the response surface methodology can 

quantify the relationship between controllable input parameters and the obtained response 

surface. Finally, the software was used for the optimisation of the process responses. The 

optimisation involves setting a goal (e.g. maximise or minimise) for each of the responses 

being studied. The goals are then combined into an overall desirability function. The program 

seeks to maximise this function. The goal seeking begins at a random starting point and 

proceeds up the steepest slope to a maximum. In this study, DoE was used to study the effect 

of SLM process parameters such as laser power, scan speed and hatch spacing on the porosity 

https://www.google.com.eg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiJrYmNuoLNAhVGLsAKHfnuBpkQFggaMAA&url=http%3A%2F%2Fwww.statease.com%2Fdx10.html&usg=AFQjCNEO7wSgeAprqkA-JXudPWPR7LMVAw&sig2=4xo3tnEZGlA5iELGFjJnrQ&bvm=bv.123325700,d.ZGg
https://en.wikipedia.org/wiki/Analysis_of_variance
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of the SLM parts. The optimum process parameters required for obtaining minimum porosity 

were also predicted.    

A Concept Laser M2 powder bed system was used to fabricate the Ti-6Al-4V micro-parts. All 

samples were built using a layer thickness of 20 µm and the build was carried out under 

Argon. An ''island scanning strategy” was applied to manufacture the SLM samples. To 

characterise the porosity in the samples, polished surfaces were examined using a Zeiss 

Axioskop microscope. 20 images were captured for each sample and ImageJ Software was 

used to determine the area fraction of the pores. After the assessment of the porosity, the 

parameters setting suggested by the model to produce the minimum porosity was used to 

fabricate five micro-components with a square cross-section of 3x3 mm and minimum feature 

of 200 µm. These components were further machined via micro-EDM to enhance their 

surface quality. 

The micro-EDM machine used for the present study was a Sarix SX-200 (SARIX SA, 

Switzerland), with three translational axes (XYZ) and one rotational axis (C). It is provided 

with a relaxation type generator enabling the discharge of very fine pulses (discharge energy 

down to few µJ). The machine is equipped with a wire-EDM unit (SX-Arianne), which uses a 

brass wire of 0.2 mm diameter capable of shaping micro-features. Positive polarity was 

applied through the entire cutting operation, and hydrocarbon oil was used as dielectric. The 

machining of the sample was performed using two sets of parameters; for roughing and 

finishing regimes, as described in Table 3. An Axio CSM 700 confocal microscope from Carl 

Zeiss was used to evaluate the overall shape and surface roughness (Ra) of the samples before 

and after the micro-EDM process.  
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Table 1: Matrix building parameters and porosity content %. 

Run 
Laser Power 

(W) 

Scan Speed 

(mm/s) 

Hatching 

Spacing) 
Porosity % 

1 100 1750 0.5 1.90±0.2 

2 125 1125 0.35 0.54±0.05 

3 125 1125 0.65 0.51±0.07 

4 125 2375 0.35 1.0±0.12 

5 125 2375 0.65 2.36±0.22 

6 150 500 0.5 0.34±0.05 

7 150 1750 0.2 0.76±0.06 

8 150 1750 0.5 0.80±0.07 

9 150 1750 0.5 0.70±0.06 

10 150 1750 0.5 0.69±0.07 

11 150 1750 0.8 1.62±0.2 

12 150 3000 0.5 2.10±0.3 

13 175 1125 0.35 0.25±0.05 

14 175 1125 0.65 0.27±0.04 

15 175 2375 0.35 0.50±0.06 

16 175 2375 0.65 1.35±0.15 

17 200 1750 0.5 0.40±0.05 
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Figure 1: Response surface plot showing the effect of (a) laser power, (b) scan speed, (c) hatch spacing 

and (d) the interaction between speed and hatch spacing on the porosity %. The solid line represents 

model prediction. 

 

 

 

 

 

 

 

 

  

Laser Power=150 W 

Scan Speed=2375 mm/s 

 

 

Scan Speed=1750 mm/s 

Hatch Spacing=0.5 

 

(a) (b) 

(c) 

(d) 

Laser Power=150 W 

Hatch Spacing=0.5 

 

Laser Power=150 W 

Hatch Spacing=0.65 

Laser Power=150 W 

Hatch Spacing=0.35 

(d) 
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Figure 2: (a) Predicted optimum laser power and scan speed for minimum porosity %, (b) Porosity % 

variation versus the energy density. (Black is DoE samples and Red is the optimised sample). 

  

Table 2: Wire EDM process performance 

Machining 

Regime 
Step-over 

Stripe width 

(mm) 
Gain 

Average speed 

(mm/min) 
Ra (µm) 

Original  - - - - 14.7 

Roughing 
0.1 mm / 50% 3 10 0.68 

4.6 
0.2 mm / 100% 3 20 1.029 

Finishing 

0.025 mm / 12.5% 3 10 0.463 

0.8 0.01 mm/ 5% 3 10 0.796 

0.01 mm/ 5% 1.5 10 1.682 

Hatch Spacing=0.65 
  

(b) 

(a) 

2 mm 

2 mm 

2 mm 

2 mm 
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Figure 3: Optical micrographs of the micro-component surface before (a) and after (b) the μ-

EDM machining, (c) SEM image of the as SLM vertical surface (d) Confocal acquisition of 

the micro-components showing the roughing and finishing regimes (e) Confocal acquisition 

of the as SLM Fe micro-components, (f) as μ-EDM micro-gear  

Table 3: Technological parameters adopted in wire-EDM machining for roughing and finishing 

regimes 

Regime 
 

Roughing Finishing 

Electrode Polarity +/- + + 

Width [μs] 5 4.5 

Freq [kHz] 110 180 

Current [index] 70 80 

Voltage [V] 110 130 

Gap [index] 65 75 

Energy [index] 365 105 

Wire Diameter [mm] 0.2 0.2 

Working Diameter [mm] 0.22 0.21 

(f) 1 mm 

Roughing 

Regime 

Finishing 

Regime 

  

1 mm (e) 

Roughing 

Regime 

Finishing 

Regime 
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