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Abstract. We have applied many-body theory methods to study the interaction of low-energy

positrons with noble-gas atoms. The positron–atom correlation potential includes explicitly the

contribution from the target polarization by the positron and that from the virtual positronium (Ps)

formation. It is demonstrated that the correlations and Ps formation (or tunnelling of electrons

from the atom to the positron) create virtual levels in the positron–atom system. The existence

of the virtual levels strongly influences the scattering and increases the positron annihilation

rate by up to 400 times. The calculated elastic cross sections are in good agreement with

experimental data. The inclusion of virtual Ps formation greatly improves the agreement with

experimental annihilation rates with respect to calculations taking only the polarization into

account. Our calculations have highlighted the difference between the calculation of positron–

atom scattering and the calculation of corresponding annihilation rates. The annihilation rate

is very sensitive to the behaviour of the wavefunction at small positron–electron separations.

A simple approximate formula based on the Sommerfeld factor is suggested to account for the

effect of electron–positron Coulomb attraction on the annihilation rates.

1. Introduction

The aim of this work is to apply many-body theory methods to the calculation of low-energy

positron scattering from Ne, Ar, Kr and Xe atoms and the positron annihilation rates in low-

density atomic gases of H, He, Ne, Ar, Kr and Xe. The interaction of the positron with the

atom is described by means of a non-local energy-dependent correlation potential. We show

that there are two physically distinct mechanisms: polarization of the target by the projectile

and virtual positronium (Ps) formation, which contribute to the correlation potential. We

have calculated both of these explicitly. In all cases the Ps-formation contribution is large,

and its inclusion is necessary to achieve agreement with experimental elastic cross sections.

It turns out, however, that despite the good agreement of our solution with the scattering

problem, an accurate calculation of the annihilation rate (or Zeff, see section 4) requires a

more elaborate approach to describe the behaviour of the wavefunction at small positron–

electron separations. In other words, corrections to the electron–positron annihilation vertex

due to the electron–positron Coulomb interaction should be taken into account. Beside the

many-body calculations, we present a simple formula to approximate the effects of Coulomb

enhancement on the annihilation rates. We suggest that this formula can be used to estimate
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the Zeff values of atoms and molecules, where proper calculations are not available or

feasible.

The theoretical investigation of positron scattering by noble-gas atoms and the

annihilation rates of positrons in noble gases is interesting for a number of reasons. Although

the electronic structure of noble gases is rather simple, the phenomena that have been

observed (scattering cross sections and annihilation rates) demonstrate that the description

of a positron–atom system is quite complicated. It is well known that for Ar, Kr and

Xe, the total electron scattering cross sections possess Ramsauer–Townsend minima at low

electron energies. This is due to the polarization of the target by the projectile, which is

a manifestation of the electron correlations. In the case of positron scattering one would

expect the correlations to be even larger, due to the attraction between the positron and

the electrons. Indeed, despite the static positron–atom potential being repulsive, the total

scattering cross sections for positrons also possess Ramsauer–Townsend minima. Further

evidence of the large correlation effects can be seen by examining the annihilation rates of

positrons in noble gases. The experimentally determined annihilation rate of positrons in a

dilute xenon gas is almost 300 times larger than the annihilation rate found using a static

approximation (see below).

It has been shown (see, e.g., Amusia et al 1976, Basu et al 1989, 1990, Dzuba et al

1993, Higgins and Burke 1993, Mitroy 1994, Gribakin and King 1994) that to describe the

positron–atom interaction accurately one needs to include the effect of virtual Ps formation.

Apart from calculations of He (the most accurate of them are probably those done by the

variational method (Humberston 1973); Amusia et al (1976) and Gribakin and King (1994)

used many-body theory methods, which can hardly compete in accuracy with variational

methods for simple targets like H and He) none of the calculations of positron scattering

from noble gases and of positron annihilation rates in noble gases (McEachran et al 1977,

1979, 1980, Schrader and Svetic 1982) have included the effects of virtual Ps formation,

except the recent work of Dzuba et al (1993). The former calculations employed a polarized-

orbital approximation which implies a linear response of the atom to the positron Coulomb

field and the use of the adiabatic approximation for the positron. Because of this, the good

agreement they obtained with the experimental scattering cross sections remains to some

extent a puzzle. In the work of Dzuba et al (1993) the contribution of virtual Ps formation

was estimated as an attraction which results from tunnelling of the electron from the atom

to the positron. If the energy of the positron–atom system is close to that of the ion and

Ps, such tunnelling has a resonant character and its effect can be quite substantial (Kuchiev

1992). Dzuba et al (1993) also highlighted the role of virtual levels formed by positrons

with heavier noble-gas atoms.

The experimental annihilation rates for the lighter noble gases are very well established

(Coleman et al 1975, Canter and Roellig 1975, Griffith and Heyland 1978). Coleman et

al (1975) measured the annihilation rates for all the noble-gas atoms. Apart from Xe, the

accepted values of the annihilation rates have not changed significantly over time. There

have been several experimental studies on positron annihilation rates in Xe at densities down

to about 1 Amagat† (Coleman et al 1975, Wright et al 1985, Tuomisaari et al 1988) each

suggesting that the Zeff value of Xe is no greater than 320. In all experiments the annihilation

rate showed a strong nonlinear density dependence, which hindered the determination of

the single-atom annihilation rate. The reason for this behaviour, present even at densities of

about 1 Amagat, is that the positron–Xe scattering length is very large and is comparable

to interatomic distances, thus multiple positron–atom collisions and/or effects of clustering

† 1 Amagat = 2.69 × 1019 cm−3; the average distance between atoms at this density is about 60 au.
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can be essential (see below). Murphy and Surko (1990) measured the positron annihilation

rate in Xe gas using a trap at Xe densities nine orders of magnitude less than in the previous

experiments. This allowed them to avoid any many-atom effects, which could have been

seen in the previous experiments. The value they obtained was 401 ± 20, which is 25%

higher than any of the previous experiments. To date this discrepancy is unaccounted for.

There has been quite a lot of theoretical interest in the positron annihilation in noble-gas

atoms (McEachran et al 1977, 1978a, b, 1979, 1980, Schrader and Svetic 1982). McEachran

and co-authors obtained the Zeff values of 4.02, 6.99, 30.5, 56.3 and 200, for He, Ne, Ar,

Kr and Xe at room temperature. These numbers, Xe excepted, are in surprisingly good

agreement with the experimental Zeff values that are presented in table 2 and with the result

of an accurate variational calculations for He, Zeff = 3.86 (Humberston 1974). However,

apart from the latter, none of the calculations accounted for the virtual Ps formation.

Many-body theory enables us to systematically approach the problem of describing

the positron–atom interaction. The perturbation series for a many-body system is very

complicated. Throughout the paper we will be using a diagrammatic language to write

down the various contributions to the positron–atom interaction, thus simplifying the

description of the many terms of the perturbation series. The diagrammatic language

also allows us to identify the various physical processes that contribute to the interaction

and determine the magnitude of their relative contributions (by actually calculating the

underlying mathematical expressions).

It is worth mentioning that there is an essential difference between the processes of

positron–atom scattering and annihilation. In the scattering process, the positron is excluded

from the inside of the atom, due to the repulsion of the nucleus. Furthermore, the polarization

of the atom by the projectile and the virtual Ps formation take place at large positron–atom

distances (the radius of the Ps atom is 2 au). Therefore, the region r > ra (where r is the

position of the positron and ra is the atomic radius) is the most important in the calculation

of the scattering amplitude. However, the positron–atom annihilation rates are determined

by the behaviour of the total wavefunction at very small positron–electron separations. Of

course, within the many-body approach one does not deal with the total many-particle

wavefunction, but rather with various amplitudes which contribute to the process under

consideration. The physical distinction between the scattering and annihilation outlined

above means that the role of different diagrams can be different in these two processes.

Thus, we will see that the treatment of virtual Ps formation adopted in the paper is quite

good for the scattering problem but insufficient for the annihilation problem. Trying to

explain and resolve this problem we have found an effective way of taking into account the

electron–positron Coulomb interaction in the calculation of Zeff. Overall, by considering

both the scattering and the annihilation problem we get a much deeper insight into the

physics of the positron–atom interaction.

2. Calculation of the correlation potential

In many-body perturbation theory the projectile–atom interaction can be described by a

non-local energy-dependent correlation potential (sometimes called the optical potential),

which is equal to the self-energy of the single-particle Green function of the atom 6E (Bell

and Squires 1959). The quasi-particle wavefunction ψ which describes the scattering of a

positron off an atom then satisfies the equation

(H0 +6E)ψ = Eψ (1)
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where H0 is the zeroth-order Hamiltonian of the atom, E is the energy of the projectile and

6Eψ is given by

6Eψ =
∫

6E(r, r
′)ψ(r′) dr′ . (2)

Equation (1) is sometimes called the Dyson equation (see, e.g., Migdal 1967).

The usual and probably the best choice of H0 is made by using the Hartree–Fock

Hamiltonian of the atom. This Hamiltonian describes the interaction of the projectile

with the static charge distribution of the ground-state atom. Its eigenstates provide a

complete basis set for the subsequent calculation of correlation effects. The correlation

potential 6E is then given by a perturbation theory series in powers of the residual

Coulomb interaction between the projectile and the atomic electrons and between the

atomic electrons. The main contribution to 6E is given by the lowest, second-order

diagram (figure 1(a); it is convenient to show diagrams for the matrix element of the

correlation potential between the initial and final projectile states 〈f |6E|i〉 rather than for

6E(r, r
′) itself). It was shown (see, e.g., Kelly 1963, Amusia and Cherepkov 1975) that

in electron scattering, besides the second-order diagrams, several important higher-order

corrections (figures 1(b) and (c)) should also be taken into account (these diagrams are

characterized as having two interactions between the projectile and the target atom), as

well as the associated exchange diagrams. The correlation potential that results from the

summation of these diagrams, hereafter we will call the polarization potential, 6
pol
E . It

describes the polarization of the atom by the projectile in all multipoles. For small E it

has the same long-range behaviour as the well known local dipole polarization potential

−α/2r4, α being the static dipole polarizability of the atom. The potential thus calculated

describes accurately electron scattering and negative ion problems (see, e.g., Amusia et al

Figure 1. Direct diagrams contributing to the atomic polarization potential: (a) lowest-order

diagram, (b) hole–particle interaction diagrams and (c) screening diagrams. As usual, the line

with an arrow to the right describes a particle state (above the Fermi level, i.e. above the atomic

ground state) and the line with an arrow to the left is a hole state (below the Fermi level).

Summation over all intermediate states is assumed. Wavy lines are the Coulomb interactions

between the projectile and target electrons or between the target electrons. The upper lines in

the diagrams correspond to the projectile.
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1982, Chernysheva et al 1988, Gribakin et al 1990, Dzuba et al 1991, Dzuba and Gribakin

1994a, b).

The numerical calculation of 6
pol
E can be performed in different ways (see the papers

cited above). The series of time-forward diagrams like that in figure 1 corresponding to a

given hole orbital n can be taken into account by calculating the electron wavefunction in the

loop of figure 1(a) in the field of this hole (Amusia and Cherepkov 1975). The summation

over the intermediate states can be performed directly, by appropriately discretizing the

projectile and excited electron continuum. A better numerical accuracy, however, is

achieved when the Feynman diagram technique and the Green functions are used (Dzuba et

al 1987, 1989). We adopt this method in the present paper. It is outlined diagrammatically

in figure 2. Firstly, the polarization operator for ω energy, that includes the infinite series

of hole–particle interactions (figure 2(a)) is calculated. This operator is then used to

calculate the polarization operator that includes the hole–particle and screening diagrams as

in figure 2(b). This operator can then be introduced into the second-order diagram together

with the Green function of ε+ω energy and integration over ω performed, as in figure 3(c).

Thus, all direct diagrams shown in figure 1 and higher-order terms of the same structure are

taken into account (including those with different time ordering of the electron–hole loops

in the diagrams of figure 1(c)). Note that chaining of the polarization operator (figure 2(b))

corresponds to the RPA approximation for the dynamic response of the atom to the external

electric field of the projectile.

Figure 2. Diagrammatic description of the calculation of the polarization potential: (a) firstly,

the hole–particle interaction is taken into account in the polarization operator, (b) then the

screening of the Coulomb interaction; (c) the second-order diagram, taking into account the

hole–particle interaction and screening diagrams.

For positron–atom scattering 6
pol
E includes only the diagrams in figure 1 and alike,

as naturally there are no exchange diagrams. Of course, this does not mean that this

potential is equal to the contribution of these diagrams in the electron–atom case, since

the Hartree–Fock states and Green functions of the projectile which enter the expressions

for the diagrams are different for positrons and electrons. Quite unexpectedly, it turned

out that this approximation produces a large underestimate of the positron–atom interaction
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Figure 3. Infinite series of ‘ladder’ diagrams contributing to the Ps-formation potential. It

describes the interaction of the positron (upper line) with one of the atomic electrons.

(see Dzuba et al 1993, Gribakin and King 1994). Physically this is due to the possibility

of the positron forming a virtual Ps atom with one of the atomic electrons during the

scattering process. In other words one can describe this as tunnelling of the atomic

electron to the positron and back. From the many-body-theory point of view this process

corresponds to the infinite series of diagrams in figure 3. The contribution of this series is

negligible in low-energy electron–atom scattering as it is sign alternating (each successive

diagram contains an additional negative energy denominator and a positive electron–electron

Coulomb interaction)†. In positron–atom scattering (provided the positron energy is less

than the Ps-formation threshold) all terms in this series are negative and the sum gives a

prominent contribution to the correlation potential. Since the series describes the possibility

of virtual Ps formation, the contribution of its sum to the correlation potential will be called

the Ps-formation potential, 6Ps
E .

The polarization potential, 6
pol
E (figure 1 or 2) and the Ps-formation potential, 6Ps

E

(figure 3) result from the addition of non-intersecting subsets of diagrams. The total

correlation potential is found by adding the Ps-formation potential to the polarization

potential, so that

6E = 6
pol
E +6Ps

E . (3)

As 6Ps
E is a short-range potential, its addition to 6

pol
E does not change the long-range

asymptotic behaviour of the correlation potential.

The effect of Ps formation in low-energy positron–atom scattering has been taken into

account by various techniques. Amusia et al (1976) reduced the energy denominator of

6
pol
E by 6.8 eV in their many-body calculation for He. Basu et al (1989, 1990), Hewitt

et al (1990), Mitroy (1993), Kernoghan et al (1994) and others have included Ps states

in the basis of the close-coupling approximation calculations, Higgins and Burke (1993)

included Ps channels in their R-matrix calculation (all for hydrogen) and within the many-

body formalism the non-local energy-dependent Ps-formation potential was calculated by

Gribakin and King (1994). In all of the above cases the effect of virtual Ps formation

was essential to describe the positron–atom interaction. These methods all obtained good

results for H or He scattering. The close-coupling approach can be naturally generalized to

treat positron scattering by alkali atoms with one valence electron (see, e.g., Hewitt 1993).

The advantage of the many-body theory approach over the other methods is that it can

describe positron interaction with atoms with many valence electrons in the same way as

with H or He. In the present work we continue the work of Gribakin and King (1994) by

calculating the scattering cross sections for noble-gas atoms and also by calculating positron

annihilation rates with noble-gas atoms.

† In the vicinity of the ionization threshold these diagrams are more important, since they describe correlations

between the two slow electrons in the so-called Wannier regime.
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Figure 4. This diagram is used to represent the sum of the ladder diagram series shown

in figure 3 (our approximation of the Ps-formation potential).

Firstly, let us represent the series in figure 3 by the single diagram in figure 4, where

the shaded rectangle represents the propagation of the interacting electron–positron pair. It

is the sum of the series of ladder diagrams with 1, 2, 3, etc, electron–positron interactions.

Unfortunately, it would be quite difficult to sum this series directly. The reason for this is

that, the electron–positron pair has bound states, therefore there are poles in the propagation

amplitude, which are not present in any of the items of the series. This makes the series

non-perturbative. In addition to this, the calculation of the individual diagrams will involve

electron and positron states with large orbital momenta. Thus, Bray and Stelbovics (1993)

found that in contrast to the electron–hydrogen scattering, it was necessary to include very

large l values of up to 15 in their convergent close-coupling calculation of the low-energy

positron–hydrogen scattering. The origin of this slow convergence is in the physics of

the problem: the partial-wave expansion with respect to the nucleus is used to describe

a relatively compact state of the Ps atom formed some distance away from the origin.

However, this notion suggested an approximate way of tackling the Ps-formation potential.

Assuming that the Ps formation is dominated by the 1s state, Gribakin and King (1994)

suggested the following approximation for 6Ps
E :

〈f |6Ps
E |i〉 =

∑

n

∫ 〈f n|V |9̃1s,K〉〈9̃1s,K |V |ni〉
E + εn − (E1s +K2/4)+ iδ

dK

(2π)3
(4)

where V = −|r − r1|−1 is the electron–positron Coulomb interaction, 91s,K is the

wavefunction of the Ps atom in the ground state, moving with momentum K, E1s +K2/4

is the energy of this state, n is the hole state and εn is its energy (atomic units are used

throughout). The tilde above 91s,K indicates that this wavefunction is orthogonalized to

the electron orbitals occupied in the atomic ground state (see below).

The Ps wavefunction 91s,K in (4) can be written as

91s,K = ϕ1s(r − r1) exp(iK · R) (5)

where ϕ1s(r − r1) = (8π)−1/2 exp(− 1
2
|r − r1|) is the hydrogen-like wavefunction of a Ps

atom in the ground state and R = 1
2
(r + r1) gives the position of the centre of mass of the

Ps atom. The approximation of the centre-of-mass motion of the Ps atom by a plane wave

is consistent with the neglect of the Ps excitations, since a ground-state Ps atom has zero

charge density and does not interact with the ionic field.

As seen in the diagram (figure 4), the shaded rectangle which describes the propagation

of the electron–positron pair is constructed from only the excited electron states. Therefore,

the Ps wavefunction 91s,K in equation (4) must be orthogonalized to the hole states ν,

|9̃1s,K〉 =
(

1 −
∑

ν

|ν〉〈ν|
)

|91s,K〉 (6)

where the sum over ν includes all states below the Fermi level.

Above the Ps-formation threshold (E > |E1s − εn|) the expression (4) acquires an

imaginary part, proportional to the square of the matrix element 〈9̃1s,K |V |ni〉 (for f = i).



3158 V A Dzuba et al

In accordance with the optical theorem, this matrix element should be interpreted as the

Ps-formation amplitude in the lowest order. Using equation (6) it can be re-written as

〈9̃1s,K |V |ni〉 = 〈91s,K |V |ni〉 −
∑

ν

〈91s,K |ν〉〈ν|V |ni〉 . (7)

In appendix A, the rearrangement theory approach (see, e.g., Massey and Mohr 1954) is

applied to derive the amplitude of the Ps ground-state formation in the positron collision

with a many-electron atom. The expression that we have found is identical to the matrix

element (7), thus confirming the validity of our approach to the Ps-formation contribution.

The approximation (4) for the diagram in figure 4 obviously neglects virtual Ps formation

into states other than the ground state, as well as the interaction of the Ps atom with the

hole. We expected the effect of the first of these approximations to be very small for

small- to medium-sized atoms. The reason for this is that the creation of the Ps atom is a

process which takes place at small positron–atom distances r ∼ ra where valence electrons

are localized. Therefore, the amplitude of Ps formation will be roughly proportional to

the magnitude of the Ps wavefunction at the origin (or, more precisely, at r ∼ ra). This

would suggest then that the probability of Ps atoms found in the ground state is about eight

times larger than that for the 2s state. This estimate is supported by the calculations of

Ps formation in 1s, 2s and 2p states in positron–hydrogen collisions (see, e.g., Hewitt et

al 1990). Indirectly, this physical understanding is supported by the results of the close-

coupling calculations of Hewitt et al (1993), which show a progressive increase of the

excited Ps formation in the alkali atoms, Li, Na and K, with the increase of atomic radius

(see also more elaborate close-coupling calculations by McAlinden et al (1994) for Li and

Na and by McAlinden (1996) for K). The radii of all noble-gas atoms are much smaller

than even that of Li, so the excited Ps formation should be of much less importance for

them.

As well as this, the energy denominator in the diagram (figure 4) describing virtual Ps

formation will be smallest for the ground state. We can also refer to the close-coupling

calculations of Mitroy (1993) which showed that the addition of the 2s and 2p states of

Ps into the expansion produces only a small change in the positron–hydrogen phase shifts.

The second approximation, that of neglecting the interaction between the Ps atom and the

hole (i.e. the positive ion), should also not produce a large effect, as the static electric

field of a Ps atom is zero. One can expect that both of the approximations involved in

(4) will produce a small underestimate in the effect that virtual Ps formation has on the

positron–atom interaction. Our earlier calculation (Gribakin and King 1994) showed that

the Ps-formation potential (4) makes about 20 to 30% of the total correlation potential (3)

and provides good agreement with the precise variational calculations of positron–hydrogen

scattering and experimental data for positron–He scattering.

By substituting expression (7) into (4) we obtain an expression for the matrix element

of the Ps-formation potential:

〈f |6Ps
E |i〉 =

∑

n

∫

1

E + εn − E1s −K2/4 + iδ

dK

(2π)3

×
[

〈f n|V |91s,K〉 −
∑

ν

〈f n|V |ν〉〈ν|91s,K〉
]

×
[

〈91s,K |V |ni〉 −
∑

ν ′
〈91s,K |ν ′〉〈ν ′|V |ni〉

]

. (8)

The evaluation of equation (8) is done by expanding the Ps wavefunctions and the Coulomb

interactions in terms of spherical harmonics with respect to the nucleus. The integrals over
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all angular variables can be done analytically and the radial integrals and the integral over

dK are evaluated numerically. The corresponding formulae are given in appendix B. We

should note that it is sufficient to take into account only one outer atomic subshell n, which

has the largest radius and smallest binding energy |εn| (e.g. the np subshell for noble-gas

atoms). However, the orthogonalization sum over ν must be performed over two or three

subshells (i.e. np, ns and (n − 1)d). Also, the Ps-formation potential can be calculated in

the coordinate representation as 6Ps
El(r, r

′) for each positron partial wave l. It is then added

to the polarization potential 6
pol
El (r, r

′) (figure 2(c)) and used to calculate the positron radial

wavefunction from equation (1). The scattering phase shifts are found from the asymptotic

behaviour of the wavefunction.

3. Results for positron–noble-gas atoms elastic scattering

In order to highlight the role of the Ps-formation potential we compare below the results

obtained with 6E = 6
pol
E with those produced by the ‘full’ correlation potential (3). The

positron scattering lengths of Ne, Ar, Kr and Xe are presented in table 1. The total scattering

cross sections shown in figure 5 as a function of the positron momentum p were found by

summing the partial cross sections (for low-energy scattering, only the s, p and d partial

waves need to be calculated). Also shown in this figure are the cross sections obtained

for positrons scattered by the static potential of the Hartree–Fock atomic ground state.

This potential is totally repulsive and the corresponding cross sections do not bear any

resemblance to the true ones.

Table 1. Scattering lengths and virtual level energies for positrons scattered from Ne, Ar, Kr

and Xe.

Atom Ne Ar Kr Xe

a (au) −0.43 −3.9 −9.1 ≈ −100

ε (eV) — 0.9 0.16 ≈ 0.001

If the correlation potential includes only the polarization potential, the cross section

is given by the long-broken curve. One can see from figure 5 that they qualitatively

reproduce the experimental cross sections, e.g. display the Ramsauer–Townsend minimum

(or its traces, in heavier atoms) which is due to the scattering length becoming negative and

the s-wave phase shift passing through zero at small energy. The fact that the scattering

lengths are negative means that the attraction due to the polarization of the atom by the

positron field effectively overcomes the repulsion experienced by the positron in the static

atomic potential.

If the correlation potential includes both the polarization potential and the Ps-formation

potential the cross section is given by the full curve. It is clear that the Ps-formation potential

produces a significant change in the cross sections and greatly improves the agreement of

our calculations with the experimental data points. It also makes the scattering lengths

a for Ar, Kr and Xe much greater than the corresponding atomic radii, which means the

existence of positron–atom virtual levels at ε ≃ h̄2/2ma2 (see table 1). Such virtual levels

have important consequences for the positron–atom annihilation problem. For Xe the huge

magnitude of the scattering length might have a further implication that one can observe

true binary positron–Xe collisions only at densities well below 1 Amagat, when the mean

interatomic distance r̄ becomes greater than the scattering length a. Otherwise, for low-
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Figure 5. Comparison of the elastic scattering cross sections for Ne, Ar, Kr and Xe. Theoretical:

——, present result (6
pol
E +6Ps

E ); — — —, calculations without the Ps-formation contribution

(6
pol
E only); – – –, Hartree–Fock (static atomic potential); — · —, results of McEachran et al

(1978, 1979, 1980). Experimental: �, Sinapius et al (1980), N, Dababneh et al (1980).

energy positrons, pr̄ . 1, the effects of multiple scattering are important if r̄ ∼ a. They can

be described in other words as clustering, since the interaction of the positron with several

nearby Xe atoms becomes important (see section 4.3).

We must stress that the accuracy of the approximation adopted for the correlation

potential does not allow us to consider either the scattering length or the energy of the

virtual level firmly established for Xe. For example, when we used in (3) the polarization

potential without the electron–hole interaction and screening (in figure 1(a)), the scattering

length would become positive and a bound positron–Xe state with −0.005 eV energy would

emerge. We also checked that a 5% reduction of the correlation potential would then

eliminate the binding. However, this would produce very little difference for the elastic

cross section above several meV and the estimate |a| ∼ 100 au would remain valid in any

case. Note that recently we have examined several atoms (Mg, Zn, Cd and Hg) which have

larger dipole polarizabilities and smaller ionization potentials than those of Xe (Dzuba et al

1995). Our calculations, which are similar to the present ones, show that these atoms can
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form true bound states with positrons, with binding energies ranging from 0.87 to 0.045 eV.

The large strength of the binding secures the result against possible uncertainties in the

correlation potential. Some evidence has been presented that there are other atoms which

could form bound states with positrons. Comparison of the calculated (Gribakin and King

1996) and measured (Jiang et al 1996) cross sections for positrons on Mg indirectly supports

the existence of the bound state in this system.

The chain curves in figure 5 are the results of McEachran et al (1978b, 1979, 1980).

These cross sections are produced using the polarized orbital approximation, in which

the positron–atom system is treated using the adiabatic approximation and the monopole

polarization contribution is neglected. They do not explicitly include the effects of virtual

Ps formation. With respect to our calculation, this approximation corresponds to omitting

the intermediate energy of the positron in the diagram in figure 2(c). The positron is a

light particle, hence the adiabatic approximation produces a noticeable overestimate of the

positron–atom interaction. It appears that in this energy range the incurred overestimation

has quite accurately compensated for the neglect of virtual Ps formation.

4. Positron annihilation rates in noble gases

4.1. Many-body theory calculations

The annihilation rate λ, of a positron in a gas of density n, may be expressed in terms of

the effective number of electrons (Zeff) of the atom (see, e.g., Akhiezer and Berestetskii

1965) by the expression

λ = πr2
0cnZeff (9)

where r0 is the classical radius of the electron and c is the speed of light. At low densities,

where there are no clusters and only binary positron–atom collisions contribute, the Zeff is

independent of density and characterizes the positron–atom system. Definition (9) means

that Zeff is the ratio of the positron annihilation cross section of the atom to the annihilation

cross section of a free electron in the Born approximation. Accordingly, the expression for

Zeff of an atom can be written as

Zeff =
N
∑

i=1

∫

|9(r1, r2, . . . , rN ,X)|2δ(ri − X) dr1 dr2 . . . drN dX (10)

where 9(r1, r2, . . . , rN ,X) is the full (N + 1)-particle wavefunction, X is the positron

coordinate and the wavefunction is normalized so that the asymptotic form at |X| ≫ ra
is 90(r1, r2, . . . , rN ) exp(ip · X), p being the incoming positron momentum. Using this

normalization the Zeff value of an electron in the Born approximation is equal to one. It

is worth noting that formally expression (10) has the structure of a matrix element of the
∑

i δ(ri − X) operator (although Zeff itself is rather a cross section). This enables one

to develop a diagrammatic technique for calculating Zeff, similar to that used, e.g., for the

scattering amplitude (Dzuba et al 1993, see below).

As one might expect from the asymptotic form of the wavefunction, Zeff is a function

of the positron momentum p. The experimental determination of Zeff effectively measures

the thermal average of Zeff(p) (provided the positrons are thermalized). If Zeff(p) is flat at

thermal energies (p ≈ 0.045) then one can calculate Zeff at this value of p. Otherwise, as we

will see in the case of Xe, we must calculate Zeff(p) and convolve this with the Maxwellian

distribution. In any case, for such small momenta only the s-wave component of the
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Table 2. The Zeff values for hydrogen and the noble gases. a, b and c are the contributions to the

Zeff value of the diagram in figure 6, where the positron wavefunction is calculated in the static

potential of the Hartree–Fock atomic ground state, with the correlation potential 6E = 6
pol
E and

with 6E = 6
pol
E +6Ps

E , respectively. Contributions of other diagrams obtained for the positron

wavefunction calculated with 6E = 6
pol
E +6Ps

E : d, diagram in figure 9; e, diagram in figure 10;

f, the total Zeff value from our many-body calculation, including estimates of uncalculated

diagrams. g, the Zeff value resulting from the simplistic inclusion of the Sommerfeld factor.

h, the accepted Zeff values (for hydrogen, Bhatia et al (1974), for noble gases, Coleman et al

(1975)). i, experimental values obtained in the positron trap, Iwata et al (1995) for Ar and Kr

and Murphy and Surko (1990) for Xe.

Atom H He Ne Ar Kr Xe

a 0.41 0.69 0.97 0.75 0.70 0.65

b 0.94 1.17 2.03 3.90 5.55 10.3

c 1.16 1.31 2.22 5.1 11.3 73.6

d 1.45 1.05 1.3 5.0 11.7 83.3

e 0.05 0.003 0.007 0.1 0.5 6.1

f 3.9 2.7 4.0 13.6 33.8 250

g 5.7 4.4 5.7 18.7 45.3 340

h 7.5 3.94 6 27 65 < 320

i — — — 33.8 90.1 401

Figure 6. Diagrammatic representation of Z
(0)
eff , the lowest-order contribution to Zeff.

The positron wavefunction ε can be calculated either in the static atomic potential of

the Hartree–Fock ground state or with the correlation potential 6E taken into account.

positron wavefunction has to be taken into account, since higher-partial-wave contributions

are suppressed as p2l .

In the Hartree–Fock approximation 9(r1, r2, . . . , rn,X) is the product of the positron

wavefunction ψ(X) (calculated in the static field of the atom) and the wavefunction of the

electrons 90(r1, r2, . . . , rN ) which is the antisymmetrized product of the single-particle

orbitals ψn(r) of the atom. Therefore, in the Hartree–Fock approximation equation (10)

becomes

Z
(0)
eff =

N
∑

n=1

∫

|ψn(r)|2|ψ(X)|2δ(r − X) dr dX . (11)

This may be represented graphically by the diagram in figure 6. Figure 6 is similar to a

many-body scattering diagram and is calculated using the same rules. The Zeff values found

in this way are presented in row a of table 2. Note that in this section we consider H and

He, as well as the heavier noble-gas atoms. The problem of positron scattering by these

two atoms has been considered within the present many-body approach earlier (Gribakin

and King 1994). The experimental values of Zeff are between 5 and 300 times higher than

these values. This difference between the experimental values and the Hartree–Fock results

gives an indication of the important role that correlation effects play in the annihilation of

positrons with atoms.

The first improvement to this approximation is to use a better positron wavefunction

ψ(X), the one found from the Dyson equation, equation (1) with the positron–atom

correlation potential taken into account. In principle, if 6E were known exactly, this

wavefunction would be the best single-particle positron wavefunction with exact positron–

atom phase shifts. Rows b and c show the value of Z
(0)
eff when the correlation potential 6E
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is equal to 6
pol
E and 6

pol
E +6Ps

E , respectively. Note that in the latter case the phase shifts of

the positron wavefunction produced the cross sections in good agreement with experiment,

figure 5. We can see from table 2 that the correlation effects alter the positron wavefunction

so as to produce a huge increase of Z
(0)
eff and that Ps formation is responsible for a large part

of these correlations. In Xe, the correlations increase Zeff
(0) by a factor of 100. However,

the experimental values of Zeff are typically four times larger than the Zeff
(0) shown in

row c.

Although, from the scattering cross sections, the positron wavefunction appears to be

quite accurate, Z
(0)
eff is strongly deficient for the description of positron annihilation. The

difference in the calculation of rows a, b and c in table 2, is the corrections to the positron

wavefunction, caused by the positron–atom correlation potential. That is, the corrections to

the ‘ends’ in figure 6. To calculate the annihilation rate properly we must take into account

the corrections to the vertex (see Dzuba et al 1993).

In other words, while improving the positron wavefunction we have so far approximated

the total wavefunction of the system as ψ(X) times the Hartree–Fock atomic ground-state

wavefunction. Now we have to include corrections to the positron–atom wavefunction.

From the physical point of view the most important corrections arise from the Coulomb

interaction of the annihilating electron–positron pair. This interaction determines the

exact magnitude of the wavefunction at small (zero) electron–positron separations. The

wavefunction with such corrections is represented by the sum of diagrams in figure 7.

The first term is the product of the positron wavefunction and the ground-state electron

wavefunction (the ground-state electron wavefunction is not shown in many-body diagrams).

The square of this diagram gives the contribution to the Zeff value that is shown in figure 6,

equation (11). The other terms are electron–positron correlation corrections and as such are

not trivial to calculate†.

Figure 7. Diagrammatic representation of the wavefunction of the positron–atom system

diagrams. Diagrams (b) and (c) are the corrections due to the electron–positron Coulomb

interaction. They are most essential for the correct calculation of the wavefunction at small

electron–positron separations.

Figure 8 gives the approximation that we have actually used in the calculation of the

annihilation rates. We have again used virtual Ps formation to describe the infinite series

of ladder diagrams that correct the wavefunction at zero positron–electron separation. Once

again in the numerical calculations we include only the Ps 1s state and neglect the interaction

between the Ps atom and the ionic residue. Using the approximation in figure 8, the Zeff

† One can consider more complicated correlation corrections involving excitations of more than one atomic

electron. However, the other electrons will just be spectators during the annihilation of the positron with the first

electron and such corrections should be of less importance.
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Figure 8. Approximation that we have used for the positron–atom wavefunction in the

annihilation rate calculations. Diagram (c) is meant to account for the electron–positron

annihilation in the virtual Ps state.

Figure 9. Diagrammatic representation of the Z
(2ab)
eff contribution.

value of an atom may now be written as

Zeff =
N
∑

i=1

∫

(〈a| + 〈b| + 〈c|)δ(ri − X)(|a〉 + |b〉 + |c〉) dr1 . . . drn dX (12)

where |a〉, |b〉 and |c〉 are the symbolic notations for the contributions of the three diagrams

in figure 8. One can see from this equation that there will be three diagonal contributions,

Zeff
(a2), Z

(b2)

eff and Zeff
(c2) (the first of them is equivalent to Zeff

(0), equation (11), figure 6)

and three non-diagonal terms, Zeff
(2ab), Z

(2ac)
eff and Zeff

(2bc).

The first-order correction to the zeroth-order diagram (figure 6) results from the product

of the a and b terms in equation (12) and is given by the two equal-valued diagrams shown

in figure 9. The sum of these two diagrams can be written as

Z
(2ab)
eff ≡

N
∑

i=1

〈a|δ(ri − X)|b〉 +
N
∑

i=1

〈b|δ(ri − X)|a〉

= −2
∑

αβn

〈εn|δ(r − X)|βα〉〈αβ|V |nε〉
E − εα − εβ + εn

. (13)

This expression is very similar to the second-order scattering diagram shown in figure 1(a),

with one of the Coulomb interactions replaced by the δ-function. The contribution of

equation (13) to the Zeff value, where the positron wavefunction was calculated with the

correlation potential 6E = 6
pol
E + 6Ps

E , is shown in row d of table 2. Their addition

to Zeff
(a2) ≡ Z

(0)
eff (row c) almost doubles the magnitude of Zeff. These diagrams were

calculated in Dzuba et al (1993), where they were also found to be important. The fact

that this contribution is comparable to the zeroth-order diagram, is indicative that the vertex

correction series will be at best slowly convergent.

We must note that the contribution (13) is analogous to the first-order correction to

Zeff included in the polarized-orbital calculations of McEachran et al (1977). In spite of

the absence of higher-order corrections they obtained surprisingly good values of Zeff for

noble-gas atoms (see section 2). In contrast to the many-body theory, their approach includes
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an adiabatic treatment of the positron that corresponds to the neglect of the intermediate

positron energy εα in the correlation-potential diagrams (figure 1(a)), and in the annihilation

diagrams (figure 9). This obviously produces a considerable overestimate of the first-order

correction (13), and makes for the absence of the higher-order corrections (as well as for

the neglect of the Ps-formation contribution in the scattering problem).

It is quite easy to calculate the contribution to Zeff from the squared Ps-formation

amplitude (figure 8(c)). The corresponding annihilation diagram is shown in figure 10 and

the analytic expression for it is

Z
(c2)

eff ≡
N
∑

i=1

〈c|δ(ri − X)|c〉

=
∫ 〈εn|V |91s,K〉|ϕ1s(0)|2〈91s,K |V |nε〉

(E + εn −K2/4 − E1s)2

dK

(2π)3

= −|ϕ1s(0)|2
∂

∂E
〈ε|6Ps

E |ε〉 (14)

where |ϕ1s(0)|2 = 1/8π is the density of the ground-state Ps state at the origin. The

contribution to Zeff from this diagram is shown in row e of table 2 and appears to be quite

small.

Figure 10. Diagrammatic representation of the Z
(c2)
eff contribution.

We have now calculated three of the six terms that need to be evaluated (see

equation (12)). To approximate the rest of the terms, we assumed that the annihilation

diagrams are proportional to the contributions to the wavefunction (a, b or c) which produce

them. Then, after calculating the a2-, 2ab- and c2-type contributions, the rest of them are

estimated in a simple way. For example,

Z
(b2)

eff ≃ Cb2

= C

(

2ab

2
√
a2

)2

≃
(

Z
(2ab)
eff /2

)2
/Z

(a2)

eff . (15)

The remaining terms (‘2ac’ and ‘2bc’) are approximated in the same manner and the total

of all six terms is shown in row f of table 2.

The inclusion of the Ps-formation potential in the scattering problem and the Ps-

formation contribution in Zeff has improved the agreement between the experimental and our

theoretical values of Zeff. However, despite the fact that our calculations of the scattering

cross sections agree well with the experimental curves, there is still a significant discrepancy

between the accepted experimental values and our values of Zeff. We believe that the origin

of this difference is in the approximate way in which we treat the electron–positron ladder

diagram series. Why is it then that the same ground-state Ps approximation of this series is

quite good for the scattering problem and rather poor for the annihilation problem?
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Compare the ladder-diagram series for the correlation potential (scattering problem,

figure 3) and the wavefunction to be used for calculating the annihilation rate (figure 7).

In the former case the electron returns back to fill its parent hole state and the typical

distances occupied by the interacting positron and electron are comparable to the Ps or

atomic radii (1–2 au). Of course, bringing the positron and electron closer would result

in a stronger Coulomb attraction between them. However, this process involves greater

kinetic energies and consequently, produces large energy denominators in the diagrams.

Therefore, excitation of the Ps continuum gives a small contribution because this is a highly

virtual process (note that the double continuum of the noninteracting positron and electron

is already included in figure 1(a)). We also remind the reader that excitations of the Ps

discrete states above the 1s state are suppressed, since they are too diffuse (see section 2).

In the annihilation problem the value of Zeff is determined by the wavefunction at

zero positron–electron separation, i.e. the interacting positron and electron are necessarily

brought together by the δ-function vertex (like in figure 9 or 10). This enhances the role

of the continuum states distorted by the positron–electron Coulomb attraction. Therefore,

the approximation that the Ps is only formed in the ground state, can produce a substantial

underestimate in the calculation of the annihilation rates. In other words, approximating

the two-particle (positron and electron) Green function by the freely propagating Ps in the

ground state is quite inaccurate when the two particles end up at the same point in space

where they annihilate. One must find a better way of summing the ladder-diagram series,

or approximating the sum, for this problem.

4.2. Other approximations of the higher-order terms

In order to understand the extreme significance of the vertex corrections (Z
(2ab)
eff , Z

(b2)

eff ,

etc), we would like to make a semi-quantitative estimate. If we consider a positron of

momentum k scattering from a fixed unit point charge, the Coulomb interaction enhances

the wavefunction of the positron near the charge by the Sommerfeld factor S∞(k) (see, e.g.,

Landau and Lifshitz 1965):

S∞(k) = |ψk(0)|2
|ψk(∞)|2

= 2π

k(1 − e−2π/k)

≃ 2π

k
(k ≪ 2π) . (16)

This factor corrects the Born-approximation value (Zeff = 1) for positron–electron

annihilation. Equation (16) was derived by assuming that the positron experiences the

Coulomb interaction from infinity. In the case of a positron interacting with an atomic

electron, the Coulomb interaction between them is ‘screened’† by the nucleus, until the

positron comes close to the atom. We have found that this can be described by a modified

Sommerfeld factor

SR(k) ≃ 2π
√

k2 + 2/R
(17)

where R is the distance beyond which the electron–positron Coulomb interaction can be

neglected. It has the magnitude of the atomic radius.

† As the nucleus is heavy it does not screen the Coulomb interaction in the usual sense, but at large positron–atom

distances the nuclear charge does cancel the Coulomb interaction of the positron with atomic electrons.
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The k in the above equations is the relative momentum of the positron–electron pair.

We are considering the annihilation of thermal positrons at about 300 K, so the positron

momentum is very small. The relative momentum of the positron and atomic electron

k, is therefore determined by the momentum distribution of the bound electrons. Thus,

we must integrate the Coulomb enhancement factor over k with the weight given by the

squared Fourier transform of the atomic electron wavefunction. This ‘average’ Coulomb

enhancement of the positron wavefunction at each of the atomic electrons (Sat) may be

written as

Sat =
∫

|a(k)|2S(k) dk

(2π)3
(18)

where a(k) is the Fourier transform of the electron wavefunction. S(k) is either S∞(k) or

SR(k). The positron does not penetrate deep into the atom and the annihilation will mainly

take place with one of the valence electrons. So, one can use the Fourier transform of the

valence electron wavefunction for a(k). We used the analytic electron wavefunctions from

Ratsig and Smirnov (1986) to calculate Sat and took the ‘cut-off’ radius R = 1/I equal

to the classical turning point for the atomic valence electrons in the 1/r ionic field. Note

that if the momenta of atomic electrons were very large (k ≫ 1, S(k) → 1), the atomic

enhancement factor (18) would be equal to 1, which simply follows from the normalization

of a(k).

According to the derivation, Sat is the coefficient which accounts for the enhancement

of Z
(0)
eff due to the Coulomb interaction between the annihilating positron and electron. We

should remind the reader that Zeff
(0), equation (11), contains the product of the positron and

electron wavefunctions and, as such, does not include the electron–positron pair correlations.

The two approximations of Sat are plotted in figure 11 along with the factor required to

bring our Zeff
(0) values into agreement with the accepted experimental values, Zexp/Zeff

(0)

(where Zexp and Zeff
(0) are taken from rows h and c of table 2, respectively). As one would

expect, the value of Sat, when S∞ is used, overestimates the Coulomb enhancement. When

SR is used, a better approximation of the Coulomb enhancement is achieved. This means

that if one has found an accurate solution of the scattering problem and obtained a good

single-particle positron wavefunction, the latter can be used to calculate Z
(0)
eff . Then, after

multiplying Zeff
(0) by Sat, very reasonable values of the annihilation rate are obtained.

We have seen that the first-order correction Z
(2ab)
eff has roughly the same magnitude as

Zeff
(0). This means that the whole ladder-diagram series should be summed. Instead of

using the ground-state Ps approximation, we can evaluate the result by assuming that the

relevant diagrams form a geometric series. Each successive term of the series in figure 8

has an extra Coulomb interaction. Suppose that it effectively multiplies the diagram by a

factor of q. Then we can write the total as a+aq+aq2 +· · · . Summing this infinite series

we obtain instead of equation (12),

Zeff = Z
(a2)

eff

1

(1 − q)2

= Z
(0)
eff Sq . (19)

The value of q can be obtained from the relative magnitude of the first-order correction,

q ≈ Z
(0)
eff /2Z

(2ab)
eff . Using the values from table 2, we can obtain q for each of the atoms

presented. The factor Sq = (1 − q)−2 is plotted in figure 11. This approximation has also

produced reasonable agreement with the enhancement factors required by the experimental

values.

Both of these crude approximations produce similar estimates for the infinite series of

diagrams that correct the electron–positron annihilation vertex. The fact that all the curves in
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Figure 11. Approximations of the higher-order annihilation diagrams. ——, the ratio of the

experimental values to our Z
(0)
eff results; – – –, the Sat factor calculated using S∞; — — —, the

Sat factor calculated using SR ; - - - -, Sq .

figure 11 have the same qualitative features as the full curve suggests that our understanding

of the problem is correct. However, the lack of a rigorous treatment of this series in our

many-body calculations is the reason that we are unable to reproduce the experimental

values.

4.3. Role of the positron–atom virtual levels: the Xe annihilation rate

The behaviour of Zeff versus p for the lighter noble-gas atoms is quite flat in the range

of thermal positron momenta. Therefore, it is sufficient to calculate the value of Zeff

for a positron with thermal energy (p ≈ 0.045). The dependence of Zeff on positron

momentum for Xe is very strong and, therefore, we must average Zeff(p) over the

Maxwellian distribution†. What makes Xe so different from the other noble-gas atoms?

It was understood in Dzuba et al (1993) that the crucial role here is played by the virtual

levels which exist for positrons and heavier noble-gas atoms. So, it is the extremely large

scattering length of Xe (a ≈ 100 au), which determines the typical scale of the dependence

of Zeff on the momentum: p ∼ 1/a ≈ 0.01.

The Zeff value is proportional to the density of the positron wavefunction near the atom.

For small momenta the s wavefunction of the positron just outside the atomic region can

be written as ψ = 1 + (f/r), where f is the scattering amplitude and pr ≪ 1. If a virtual

level exists for the positron the scattering amplitude can be approximated using the formula

for resonant scattering, f = −1/(κ + ip) (Landau and Lifshits 1965), where κ = 1/a is

the reciprocal of the scattering length. In the region of r . ra where the annihilation takes

place the magnitude of the many-particle wavefunction is proportional to the ψ above, as

the two solutions are smoothly joined at the atomic boundary. If the scattering length is

† At this point we assume that in the annihilation rate measurements positrons are thermalized. Interestingly, it

is also in the Xe gas where such thermalization is more difficult to achieve experimentally (Wright et al 1985).
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large, a ≫ ra, the f/r term dominates the positron wavefunction and the p dependence of

Zeff (10) can be approximated by the formula

Zeff(p) = K

κ2 + p2
(20)

where K is a coefficient (Dzuba et al 1993). In principle, one can consider (20) as a formula

for fitting Zeff(p), with K and κ as the fit parameters. Physically, equation (20) shows that if

thermal p are smaller than the virtual state parameter κ the annihilation rate is proportional

to the scattering length squared. This factor explains the rapid growth of the Zeff values

for the heavier noble gases, as we move from the Hartree–Fock values to those obtained

with the full positron–atom correlation potential (rows a–c in table 2). Equation (20) fits

the data very well, however, the quality of the fit was not very sensitive to changes in κ .

The value of κ determines the shape of the Zeff(p) curve at very small momenta, where the

accuracy of our solution of the Dyson equation may be insufficient. The values found for

Xe are: K = 0.288 and κ ≈ −0.005 (negative κ corresponds to a virtual level).

Once the calculated Zeff values have been fit by equation (20), we can obtain a thermally

averaged value of Zeff, Z̄eff,

Z̄eff =
∫ ∞

0

Zeff(p)
exp(−p2/2kT )

(2πkT )3/2
4πp2 dp

= K

kT

{

1 −
√

πκ2

2kT
exp(κ2/2kT )

[

1 −8

(
√

κ2

2kT

)]}

≈ K

kT
κ ≪ kT (21)

where 8(x) = 2√
π

∫ x

0
e−t2 dt is the standard error function and k is Boltzman’s constant.

The values of K and κ given above produce the thermally averaged value Z̄eff for Xe

that is shown in table 2. As was discussed above, the κ value is not very well established.

However, even if it is zero, the maximum value that our calculation can produce at room

temperature is Z̄eff = 300.

The two formulae, (20) and (21), should enable one to learn about positron–atom (or

positron–molecule) virtual or loosely bound states by studying the temperature dependence

of the annihilation rate at low gas densities. Generally, if such dependence is strong at room

temperature, the corresponding species must have |κ| < 0.045, i.e. a binding or a virtual

level energy of 25 meV or less.

The experimental determination of the Zeff value of Xe is difficult for two reasons.

Firstly, our calculations reveal that the scattering length of Xe for positron scattering is

about −100 au. If we assume that to observe positron collisions with single atoms, each

atom must occupy a cube of length 100 au, one would infer from this that it is impossible

to obtain experimentally, single-atom behaviour at densities above 0.25 Amagat. It has also

been shown that the presence of positrons promotes the formation of clusters (Dzuba et al

1993) by stabilizing their bound states. Therefore, unless the density is low there will not

only be Xe clusters, but bound positron–atom clusters (Xe2e+,Xe3e+, etc). Therefore,

at densities above 0.25 Amagat, one would expect to see evidence of clustering. In

annihilation experiments this would manifest as a peak in the Zeff versus density behaviour.

Another problem in experimentally determining the Zeff value for Xe also related to its

large scattering length (small κ), is the strong momentum dependence of Zeff. As the

positron momentum goes to zero, the Zeff value gets very large. Since Xe is a mono-atomic

species the thermalization of the positrons is slow. Any positron that is slowed down by
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the elastic collisions will quickly annihilate, thus inhibiting the complete thermalization of

the positrons. Due to the strongly varying behaviour of Zeff with positron momentum,

any deviation of the positron energy distribution from the equilibrium Maxwellian one will

produce a marked difference between the ‘true’ Zeff and the experimental value.

Griffith and Heyland (1978) found that at T = 300 K the Zeff value for pure Xe at gas

densities of 1–6 Amagat is 320±10. Wright et al (1985) increased the rate of thermalization,

by adding small concentrations of diatomic gases. Their results clearly show the peak in

the Zeff versus density curve that is indicative of clustering. However, the data are very

difficult to extrapolate to zero density due to the large and ill-defined slope of the points in

their Zeff versus density graph. These problems aside, if one was to attempt to extrapolate

to zero density, the zero-density value of the Zeff value of Xe is 240 ± 60. This value

appears to be in agreement with our many-body calculations (unlike those for the other

atoms where we obtained smaller Zeff). There have been other calculations (McEachran et

al 1980, Schrader and Svetic 1982) that suggest that the zero-density Zeff value of Xe is

about 200.

Murphy and Surko (1990) measured the Zeff value of Xe in a modified Penning trap. The

value of the density in this experiment is nine orders of magnitude smaller than in the above

experiments and at these densities clustering does not occur (the measured annihilation rate

λ was indeed linear with respect to Xe density). They are able to store the positrons for

up to a minute in a dilute N2 gas and there is no doubt that the positrons are completely

thermalized by the time the annihilation rate is measured. They found a Zeff value for Xe

of 401 ± 20. This result is incompatible with the previous experiments, if we accept that

the peak value of Zeff = 400–450 at about 6 Amagat (Wright et al 1985) is a manifestation

of clustering. A possible reason for this discrepancy could be that the positron momentum

distribution may not be exactly Maxwellian in the trap. Due to the sensitivity of the Zeff

value of Xe to the positron momentum, any deviation from the Maxwellian distribution

would cause a different value of the measured Zeff value. However, in a similar positron-

trap technique, Iwata et al (1995) obtained higher Zeff for Ar and Kr as well. For both atoms

the Zeff(p) is relatively flat at thermal energies, so the discrepancy cannot be explained by

the distorted positron momentum distribution. Thus, it appears that the true rate of positron

annihilation with single Xe atoms is yet to be determined.

5. Conclusions

We have shown in this paper that the effect of virtual Ps formation is large in low-energy

positron scattering from noble-gas atoms. By including virtual Ps formation as well as the

polarization of the atom, we are now able to calculate accurately the total scattering cross

sections. It would be very interesting to extend our scattering calculations beyond the Ps-

formation threshold (as we have done for Mg in Gribakin and King (1996)). Experiments

(see, e.g., Dababneh et al 1980) report a prominent onset in the total cross section at

E > I − 6.8 eV, which, we believe, is mainly due to the ground-state Ps formation. In

that case our many-body method should be able to reproduce it. It is also our next goal to

perform calculations of the differential cross sections at these energies. This would enable

us to make comparisons with existing experimental data (see, e.g., Kauppila et al 1994), as

well as theoretical values from the optical potential calculations by Bartschat et al (1988,

1990).

The calculation of the Zeff values for atoms has been a more difficult problem. The

inclusion of virtual Ps formation produces a large change in the calculated Zeff values,

however, there is still a significant difference between our full many-body calculation and
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the experimental results. We now understand that the reason for the difficulty is the Coulomb

enhancement of the wavefunction at small electron–positron separations. We have presented

a simple method of approximating the Coulomb enhancement. This method produced good

agreement with the experimental values. The method may be useful in calculating the Zeff

values of molecules. Our approach also elucidated the role of virtual s levels which the

positron forms with heavier noble-gas atoms. Information on such levels can be obtained

by studying the temperature dependence of Zeff. Despite significant efforts, there is still

more experimental and theoretical work to be done before a definite Zeff value of Xe is

determined. However, one must work out a proper approach to sum the electron–positron

ladder-type diagram series to obtain accurate and reliable Zeff values.

We cannot help mentioning that there are even more surprising and puzzling results

in the positron–molecule annihilation rates (see Iwata et al 1995 and references therein).

Extremely large annihilation rates have been obtained for a number of large organic

molecules and no explanations of these values have been suggested so far. The elegant

possibility of modifying organic molecules by fluorination and watching the change of their

Zeff can probably help to understand the mechanisms of positron–molecule annihilation or

at least single out the effect of the virtual- or bound-level position on Zeff. For example,

it would seem reasonable to assume that fluorine atoms are similar to Ne and they attract

positrons weakly (the positron scattering length for Ne is smaller than that for H). Then, if

a particular hydrocarbon molecule possesses a bound state, κ > 0, the binding energy will

become smaller upon fluorination of the species and the bound state would then turn into a

virtual level, κ < 0. This would result in a peaking behaviour of Zeff as a function of the

number of fluorines observed in experiments (Iwata and Surko 1996).

It is easy to prove theoretically that any sufficiently large molecule must form bound

states with positrons (similarly to the emergence of a bound state in a system of zero-radius

potential wells each of which cannot bind the positron, see e.g. Baz’ et al (1971)). This is

the most probable explanation of the high annihilation rate and what should be considered

is the mechanism of capture. Possibly, the positron energy is transferred to vibrational or

electronic degrees of freedom and very long lived resonances are formed. This is reminiscent

of resonances in compound nuclei excited in neutron scattering. The energy of the neutron

is distributed among different degrees of freedom and the probability is low that it will be

returned to the captured neutron (in our case, positron) to give it a chance to escape. Thus,

the high annihilation rates can be due to the existence of positron–molecule bound states

and dense spectra of vibrational ‘compound resonances’ where the positron is captured.
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Appendix A. Theory of rearrangement collisions

The purpose of this appendix is to show that the Ps-formation amplitude 〈9̃1s,K |V |ni〉,
equation (7), which determines the magnitude of the Ps-formation contribution to the

correlation potential (4), can be derived using the rearrangement collisions theory.
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Massey and Mohr (1954) give the matrix element for Ps formation in positron–hydrogen

collisions. Let us briefly re-write their derivation for the case when the wavefunction of the

incoming positron is calculated in the static potential of the ground-state hydrogen atom.

The total interaction in the system is

W = − 1

r1
+ 1

r
− 1

|r − r1|
(A1)

where r and r1 are the coordinates of the positron and electron, respectively. The interaction

taken into account in the initial state of the process 9in = ψ1s(r1)ψ(r) is

Win = − 1

r1
+ 1

r
− 〈1s| 1

|r − r′| |1s〉 (A2)

where integration over r′ is assumed in the last term, which gives the electrostatic potential

of the 1s electron V1s(r) as experienced by the positron. The transition to the final state

9out ≡ 91s,K = ϕ1s(r − r1) exp[iK · (r + r1)/2] is caused by the difference W −Win and

in the lowest order the corresponding amplitude is given by

〈9out|W −Win|9in〉 =
∫

9∗
1s,K(r, r1)

[

− 1

|r − r1|
− V1s(r)

]

ψ1s(r1)ψ(r) dr dr1 (A3)

=
∫

9̃∗
1s,K(r, r1)

(

− 1

|r − r1|

)

ψ1s(r1)ψ(r) dr dr1 (A4)

where

9̃1s,K(r, r1) = 91s,K(r, r1)− ψ1s(r1)

∫

ψ∗
1s(r

′)91s,K(r, r
′) dr′ (A5)

is the final-state wavefunction orthogonalized to the 1s hydrogen state, |9̃1s,K〉 =
(1 − |1s〉〈1s|) |91s,K〉. Therefore, by starting from the rearrangement collisions theory we

have arrived at the Ps-formation amplitude (7), written on the many-body theory grounds.

Suppose we now consider positron impact with an N -electron atom. The total interaction

is now

W = −
N
∑

i=1

Z

ri
+ Z

r
+

N
∑

i<j

1

|ri − rj |
−

N
∑

i=1

1

|r − ri |
. (A6)

In many-body theory the Hartree–Fock approximation is used to describe the ground state

of the atom. The wavefunction of the initial state

9in = 9N (r1, r2, . . . , rN )ψ(r) (A7)

is the product of the Slater determinant 9N of the N atomic electrons and the positron

wavefunction calculated in the static field of the Hartree–Fock atomic ground state. The

above wavefunction corresponds to the initial-state interaction

Win = −
N
∑

i=1

Z

ri
+ Z

r
+

N
∑

i=1

[Vdir(ri)− Vexch(ri)] − Vdir(r) (A8)

where Vdir and V̂exch are the direct and exchange potentials of the ground-state atom,

Vdir(ri) =
∑N

ν=1〈ν|1/|ri − r′||ν〉, Vexch(ri)|µ〉 =
∑N

ν=1 ψν(ri)〈ν|1/|ri − r′||µ〉 and ν runs

over all electron orbitals occupied in the atomic ground state. The final state for Ps formation

is now

9n
out = 9n

N−1(r1, r2, . . . , rN−1)91s,K(r, rN ) (A9)



Positron scattering and annihilation 3173

where 9n
N−1 is the Slater determinant of the final ionic state obtained from 9N by removing

an electron from a certain orbital n. Note that one does not have to antisymmetrize the 9out

state with respect to swapping of rN and rk (k < N ), as long as 9in is asymmetric with

respect to all electron coordinates and bothW andWin are symmetric. Using equations (A6)–

(A9) and integrating over the N − 1 electron coordinates one will arrive at the following

answer for the Ps-formation amplitude:

〈9n
out|W −Win|9in〉 =

∫

9̃∗
1s,K(r, rN )

(

− 1

|r − rN |

)

ψn(rN )ψ(r) dr drN (A10)

where

9̃1s,K(r, rN ) = 91s,K(r, rN )−
∑

ν

ψν(rN )

∫

ψ∗
ν (r

′)91s,K(r, r
′) dr′ . (A11)

The two equations above are identical to expression (7).

Appendix B. Calculation of the Ps-formation contribution

The evaluation of equation (8) is done by expanding the atomic electron and positron

wavefunctions, the Ps wavefunction and the electron–positron Coulomb interaction in terms

of radial functions and spherical harmonics with respect to the nucleus. The Coulomb

interaction is expanded as

1

|r − r1|
= 4π

∞
∑

l=0

r l<

r l+1
>

1

2l + 1

l
∑

m=−l
Y ∗
lm(�)Ylm(�1) (B1)

the Ps centre-of-mass wavefunction may be expanded using the formula

eiK·r/2 = 4π

√

π

Kr

∞
∑

l=0

ilJl+ 1
2
(Kr/2)Y ∗

lm(�K)Ylm(�) (B2)

and it is also useful to expand the product of the hydrogen-like wavefunction of the Ps atom

and the Coulomb interaction as

e−γ |r−r1|

|r − r1|
= 4π

√
rr1

∞
∑

l=0

Il+ 1
2
(γ r<)Kl+ 1

2
(γ r>)

l
∑

m=−l
Y ∗
lm(�)Ylm(�1) (B3)

where γ = 1
2
. The last expansion needed is the one for the 1s Ps wavefunction itself. It can

be obtained from equation (B3) by calculating the derivative over γ and using the recursion

relationships of Bessel functions:

e−γ |r−r1| = 4π
√
rr1

∞
∑

l=0

8l(r, r1)

l
∑

m=−l
Y ∗
lm(�)Ylm(�1) (B4)

where

8l(r, r1) = r>Il+ 1
2
(γ r<)

[

Kl− 1
2
(γ r>)+ (2l + 1)

γ r>
Kl+ 1

2
(γ r>)

]

−r<Kl+ 1
2
(γ r>)

[

Il− 1
2
(γ r<)− (2l + 1)

γ r<
Il+ 1

2
(γ r<)

]

. (B5)

After this is done the angular integrals can be evaluated analytically. Equation (B6)

below then must be evaluated numerically. This is a straightforward procedure except that

the convergence of the sums over angular momentum is slow. Bray and Stelbovics (1993)

encountered a similar problem in their convergent close-coupling calculation of low-energy
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positron–atomic hydrogen scattering. In our calculations we included the values up to l = 7

in the expansions. The integration over the Ps centre-of-mass momentum K employed a

grid of about 50 points with δK = 0.1. It was sufficient to include only the outer subshell

in the sum over the hole orbitals nl, whereas we had to include two or three outer subshells

in the orthogonalization sums over νlν , ν
′l′ν .

The final expression used to obtain the radial Ps-formation potential for the positron

with the angular momentum li is

6Ps
E (r, r

′) = 2π
∑

n

∫ ∞

0

dK

E + εn − E1s −K2/4 + iδ

∑

acαa′c′α′
(−1)(α+α′−c−c′)/2(2l + 1)

×(2c + 1)(2a + 1)(2α + 1)(2c′ + 1)(2a′ + 1)(2α′ + 1)

×
∑

L

(2L+ 1)

(

c

0

α

0

L

0

)(

L

0

α′

0

c′

0

)

×
{(

li

0

a

0

c

0

)(

l

0

a

0

α

0

)(

li

0

a′

0

c′

0

)(

l

0

a′

0

α′

0

){

li

α

L

a

l

c

}{

li

α′
L

a′
l

c′

}

×Rn(a, c, α,K, r)Rn(a′, c′, α′,K, r ′)

−
∑

νλL′
(2lν + 1)(2L′ + 1)(−1)λ+lν+L

′
(

L′

0

λ

0

li

0

)(

lν

0

λ

0

l

0

)(

a′

0

c′

0

L′

0

)

×
(

lν

0

a

0

α

0

)(

li

0

a

0

c

0

)(

l

0

a

0

α

0

){

li

α

L

a

l

c

}{

li

α′
L

a′
l

c′

}{

L′

α′
L

a′
lν

c′

}

×[Rn(a, c, α,K, r)Qnν(a
′, c′, α′,K, r ′, λ)

+Rn(a, c, α,K, r ′)Qnν(a
′, c′, α′,K, r, λ)]

+
∑

νλL′

∑

ν ′λ′L′
(2lν + 1)(2L′ + 1)(2l′ν + 1)(2L′ + 1)(−1)λ+λ

′+lν+l′ν+L′+L′

×
(

li

0

λ

0

L′

0

)(

L′

0

a

0

c

0

)(

l

0

λ

0

lν

0

)(

lν

0

a

0

α

0

)(

li

0

λ′

0

L′

0

)(

L′

0

a′

0

c′

0

)

×
(

l

0

λ′

0

l′ν
0

)(

l′ν
0

a′

0

α′

0

){

L′

α

L

a

lν

c

}{

li

lν

L

λ

l

L′

}{

L′

α′
L

a′
l′ν
c′

}{

li

l′ν

L

λ′
l

L′

}

×Qnν(a, c, α,K, r, λ)Qnν ′(a′, c′, α′,K, r, λ)

}

(B6)

where

Rn(a, c, α,K, r) = Jc+ 1
2

(

Kr

2

)∫ ∞

0

Pnl(r1)Ia+ 1
2

( r>

2

)

Ka+ 1
2

( r<

2

)

Jα+ 1
2

(

Kr1

2

)

dr1

Qnν(a, c, α,K, r, λ) = Jc+ 1
2

(

Kr

2

)

V (λ)nν (r)

∫ ∞

0

Pνlν (r1)8a(r, r1)Jα+ 1
2

(

Kr1

2

)

dr1

and

V (λ)nν (r) =
∫ ∞

0

Pνlν (r1)
rλ<

rλ+1
>

Pnl(r1) dr1 .
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