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ABSTRACT: Machine learning (ML) based prediction of molecular properties
across chemical compound space is an important and alternative approach to
efficiently estimate the solutions of highly complex many-electron problems in
chemistry and physics. Statistical methods represent molecules as descriptors
that should encode molecular symmetries and interactions between atoms.
Many such descriptors have been proposed; all of them have advantages and
limitations. Here, we propose a set of general two-body and three-body inter-
action descriptors which are invariant to translation, rotation, and atomic indexing.
By adapting the successfully used kernel ridge regression methods of machine
learning, we evaluate our descriptors on predicting several properties of small
organic molecules calculated using density-functional theory. We use two data sets.
The GDB-7 set contains 6868 molecules with up to 7 heavy atoms of type CNO.
The GDB-9 set is composed of 131722 molecules with up to 9 heavy atoms
containing CNO. When trained on 5000 random molecules, our best model achieves an accuracy of 0.8 kcal/mol (on the remaining
1868 molecules of GDB-7) and 1.5 kcal/mol (on the remaining 126722 molecules of GDB-9) respectively. Applying a linear
regression model on our novel many-body descriptors performs almost equal to a nonlinear kernelized model. Linear models are
readily interpretable: a feature importance ranking measure helps to obtain qualitative and quantitative insights on the importance of
two- and three-body molecular interactions for predicting molecular properties computed with quantum-mechanical methods.

■ INTRODUCTION

Recently, machine learning has been ubiquitously used in the
industry and sciences. The possibility of parallel implementations
using GPU cards in addition to new deep learning architectures
has enabled powerful learning machines which reach and even
surpass human performance in a variety of applications. From
imperfect information games like heads-up no-limit Texas
hold’em poker1 over real-time strategy games like StarCraft,2

the program AlphaGo Zero3 has been trained without human
knowledge and is arguably the strongest Go player in history. ML
approaches reach human performance in human interaction
tasks like speech recognition,4 image recognition,5 and speech
generation.6

In this work, we follow one of the very intriguing applications
of ML in sciences: the prediction of highly complex properties of
quantum mechanical systems. Specifically, we are interested in
the prediction of the properties of intermediate size molecules
and the analysis of the pairwise and three-body interactions.
Before proceeding, we put our work in the context of existing
literature on machine learning of molecular properties.
Recently, machine learning has been successfully used to predict

the atomization energies of small molecules7−13 and molecular

dynamics simulations14−18 as well as for studying properties of
quantum-mechanical densities.19,20 Descriptors of molecules are
constructed to provide an invariant, unique, and efficient represen-
tation as input toMLmodels,21−33 e.g. for the atomization energy, a
popular molecular descriptor is the bag-of-bonds (BOB) model,34

which is an extension of the Coulombmatrix (CM) approach7 and
groups the pairwise distances according to pairs of atom types.
Shapeev et al.35,36 introduce systematically improvable

interatomic potential descriptors based on invariant polynomials.
These moment tensor potentials are invariant with respect to
permutation, rotation, and reflection and have the advantage that
the computational complexity of computing these polynomials
scales like O(n), where n is the number of atoms. One possible
limitation is that these potentials treat all atoms as chemically
equivalent. Shapeev et al. suggest a future extension to alleviate
this issue, namely to let the radial basis functions depend on the
types of atoms.
Faber et al.10 studied a representation using the histogram of

distances, angles, and dihedral angles with kernel ridge regression
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which achieves a mean absolute error of 0.58 kcal/mol on the
GDB-9 set, when trained on 118000 molecules. An angle repre-
sentation based on molecular atomic radial angular distributions
(MARAD) achieves a MAE of 1.2 kcal/mol with kernel ridge
regression and 4.0 kcal/mol with the linear Bayesian ridge
regression model when trained on 118000 molecules.
The recently introduced BAML (bonds angles machine learning)

representation21 can be viewed as a many-body extension of BOB
and constructs arbitrary distance functions between pairwise
distances. BAML reaches a MAE of 1.15 kcal/mol on the GDB-7
set trained on 5000 molecules24 and a MAE of 1.2 kcal/mol on
the GDB-9 set when trained on 118000 molecules.10

Huo et al.24 introduced a many-body tensor representation
which improves on the histogram descriptors of Faber et al. by
“smearing” the histograms of given many-body features. For one
of their best models, a MAE of 0.60 kcal/mol on GDB-7 using
Gaussian kernel ridge regression and a MAE of 0.74 kcal/mol
using a linear model (with many-body interactions) have been
reported.
Recently, even more accurate models for predicting the

atomization energy have been introduced,37,38 which reach an
accuracy of 0.26 kcal/mol37 on 100000 training samples and
0.45 kcal/mol38 on 110000 training samples, respectively.
Most of the above approaches use explicit three-body (e.g.,

angle) or four-body (e.g., dihedral angle) features to construct
the respective representation. In this work, we propose novel
translational, rotational, and atom indexing invariant molecular
descriptors which build on the success of inverse pairwise dis-
tances for predicting the atomization energy.7−9,11,23,34 In partic-
ular, we construct many-body interaction features of arbitrary
order from inverse pairwise distances which helps to alleviate
sorting challenges encountered in e.g. CM. Accordingly, our
model learns e.g. a three-body interatomic potential, which is not
necessarily a function of angle. Our novel descriptors allow for
construction of an invariant two-body and many-body inter-
action representation at a f ixed descriptor size. Note that fixed
sized molecular descriptors are useful in practice as they can be
easily used in combination with kernel ridge regression or deep
neural networks or other models that expect fixed size input data.
Also, such fixed size representations are generally extensible to
large molecules and solids, while incorporating informative higher-
order interaction terms. While missing long-range interactions
(H-bond, van der Waals, etc.), those can be easily built on top of
our proposed short-range models.39,40 Clearly, any such combina-
tion of short-range and long-range models for interatomic
potentials will have to carefully avoid double-counting effects.
Furthermore, when using these novel descriptors we observe that
linear models perform only slightly worse than the nonlinear
methods. The latter is helpful in practice as linear models allow to
simply and easily analyze the importance of the proposed two-,
three-, or many-body interaction features for predicting atom-
ization energies of the molecules. This allows for extracting
insights from the learned model.
We view our new descriptors as an optimal compromise that

allows high-throughput calculations of extensive molecular prop-
erties for equilibrium geometries throughout chemical space.
Our many-body model is complementary to recently developed
deep neural networks and nonlinear kernel methods for esti-
mating molecular properties.10,11,24,34

The paper is structured as follows. The next section defines the
invariant two-body and three-body molecular descriptors. The
following section details the data sets as well as the learning
task and the prediction of several properties of small molecules.

This is followed by the analysis of the importance of the two- and
three-body molecular features and the conclusion.

■ INVARIANT MANY-BODY INTERACTION
DESCRIPTORS

We represent a molecule or material by the respective finite set
from which the molecule or unit cell is constructed.

Figure 1. Illustration of the bag-of-bonds molecule similarity. The
distance between two atoms of the left molecule gets directly compared
to an arbitrary distance of the right molecule corresponding to the same
atom types composing the pairwise interaction.

Figure 2. Illustration of the F2B and F3B molecule similarity. For F2B, the
pairwise distances of the left molecule corresponding to a fixed pair of
atom types are computed into a feature entry, which gets compared to
the same feature entry of the right molecule composed identically for the
same pair of atom types. Similarly, F3B compares three bonded atoms
which have an angle.

Table 1. Prediction Errors of the PBE0 Atomization Energy of
the Molecules of the Set GDB-7 by Various ML Models with
Random 5K Train Molecules and the Remaining 1868
Molecules as Test Seta

method features MAE RMSE MAX. DEV

mean 174 219 1166

RR CM 25 33 134

RR BOB 23 30 144

RR F2B 4.9 12 350

RR F2B + F3B 1.0 8.3 327

KNN CM 80 104 461

KNN BOB 70 102 424

KNN F2B 49 73 230

KNN F2B + F3B 10 28 306

KRR (Gauss) CM 8.6 15 433

KRR (Laplace) CM 3.7 5.8 89

KRR (Gauss) BOB 7.6 10 99

KRR (Laplace) BOB 1.8 3.9 103

KRR (Gauss) F2B 1.9 4.7 155

KRR (Laplace) F2B 4.2 6.1 62

KRR (Gauss) F2B + F3B 0.8 1.5 28

KRR (Laplace) F2B + F3B 2.4 3.8 51
aThe errors are given in kcal/mol. The models used are ridge regression
(RR), kernel ridge regression (KRR), and k-nearest neighbors (KNN).
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Let ri denote the position of the atom i with atomic number Zi

in three-dimensional coordinate space. Then, a physical system
with N atoms is defined by S = {Zi, ri}i=1

N . From this physical
system S, we propose the many-body interaction descriptors

∑ δ= · ···
̅

··· ∈
̅ Z r rf S p Z Z( ) ( ) ( , , , , )

Z Zp
j j G k N

j j j j,
( , , ) ( , )

k

k k

1

1 1

(1)

where Z ≔ (Zj1,···,Zjk), Z̅ is a given k-tuple of k atomic numbers

with k ≤ N, p is a k-body interaction term, and the partial
permutations set G(k, N) consists of the sequences without
repetition of k elements from the set {1,2,···,N} and the
Kronecker delta δZ̅(Z), which equals 1 if and only if the two
k-tuples Z̅ and Z are equal and zero otherwise. The number of

elements of the k-permutations of N set G(k, N) is !

− !

N

N k( )
.

The descriptors in eq 1 are intrinsically invariant to the
indexing of the atoms comprising the system S, as we sum over all
elements of the k-permutations of N set G(k, N). If the k-body
interactions term p satisfies invariance to the translation and
rotation of the atoms of S, this carries over to the descriptors
f Z̅,p(S). In the following, we propose a set of translational and

rotational invariant two-body and three-body interaction terms p,
which will define our invariant many-body interaction descriptors.

Invariant Two-Body Interaction Descriptors F2B. We
define the set of translational and rotational invariant two-body
interaction terms

≔ ∥ − ∥−r r r rp Z Z( , , , )
m

m2B
1 1 2 2 1 2 (2)

where ∈ +m . For a given set of n different atomic numbers
An≔ {Zi}i=1

n with Zi≠ Zj ∀ i, j∈ {1, ···, n}, let S2B denote the set of
all tuples (Zi, Zj) with Zi ≤ Zj and Zi, Zj∈ An. LetM2B denote the
set M2B ≔ {1, 2, ···, 15}. For a given physical system S, the
two-body interaction descriptors F2B are now given by

≔
̅ ∈ ̅∈F f S{ ( )}

Z Zp m M S2B , ,
m
2B

2B 2B (3)

Typically, the set Sn contains the atomic numbers present in the
data set. The dimension of the two-body interaction descriptors
is 15 · n · (n + 1)/2.

Invariant Three-Body Interaction Descriptors F3B. We
define the set of translational and rotational invariant three-body
interaction terms

Table 2. Mean Absolute Errors of Predicting Several Ground- and Excited-State Properties by Kernel Ridge Regression Trained on
5000 Random Molecules and Tested on the Remaining 1868 Molecules of the GDB-7 Data Seta

property CM BOB F2B F2B + F3B unit description

ae-pbe0 3.7 1.8 1.9 0.8 kcal/mol atomization energy (DFT/PBE0)

homogw 0.212 0.138 0.167 0.128 eV highest occuppied molecular orbital (GW)

lumo-gw 0.187 0.142 0.155 0.147 eV lowest unoccupied molecular orbital (GW)

homo-pbe0 0.202 0.130 0.156 0.120 eV highest occupied molecular orbital (DFT/PBE0)

lumo-pbe0 0.174 0.108 0.133 0.108 eV lowest unoccupied molecular orbital (DFT/PBE0)

homozindo 0.279 0.144 0.173 0.132 eV highest occupied molecular orbital (ZINDO/s)

lumo-zindo 0.252 0.134 0.168 0.112 eV lowest unoccupied molecular orbital (ZINDO/s)

p-pbe0 0.130 0.083 0.103 0.088 Ångström3 polarizability (DFT/PBE0)

p-scs 0.065 0.042 0.061 0.032 Ångström3 polarizability (self-consistent screening)

e1-zindo 0.37 0.19 0.21 0.15 eV first excitation energy (ZINDO)

ea-zindo 0.29 0.15 0.18 0.13 eV electron affinity (ZINDO/s)

imax-zindo 0.084 0.067 0.074 0.071 au excitation energy at maximal absorption (ZINDO)

emax-zindo 1.47 1.20 1.29 1.26 eV maximal absorption intensity (ZINDO)

ip-zindo 0.32 0.18 0.21 0.18 eV ionization potential (ZINDO/s)
aThe best performing models are marked in bold.

Table 3. Mean Absolute Errors of Predicting Several Properties Calculated at the B3LYP/6-31G(2df,p) Level of Quantum
Chemistry and Predicted by Kernel Ridge Regression Trained on 5000 RandomMolecules and Tested on the Remaining 126722
Molecules of the GDB-9 Data Seta

property CM BOB F2B F2B + F3B unit description

U0 7.9 4.0 4.8 1.5 kcal/mol internal energy at 0 K

U 7.9 4.0 4.8 1.5 kcal/mol internal energy at 298.15 K

H 7.9 4.0 4.8 1.5 kcal/mol enthalpy at 298.15 K

G 7.9 4.0 4.8 1.5 kcal/mol free energy at 298.15 K

HOMO 5.8 4.3 4.7 3.6 kcal/mol energy of highest occupied molecular orbital

LUMO 8.9 5.7 6.0 5.1 kcal/mol energy of lowest occupied molecular orbital

gap 11 6.8 7.9 6.2 kcal/mol gap, difference between LUMO and HOMO

alpha 1.00 0.63 0.72 0.49 Bohr3 isotropic polarizability

mu 0.77 0.65 0.67 0.61 Debye dipole moment

r2 16 8.5 7.3 9.0 Bohr2 electronic spatial extent

zpve 0.33 0.20 0.18 0.10 kcal/mol zero point vibrational energy

A 0.42 0.37 0.40 0.42 GHz rotational constant A

B 0.12 0.10 0.12 0.13 GHz rotational constant B

C 0.052 0.045 0.046 0.050 GHz rotational constant C

cv 0.38 0.20 0.21 0.12 cal/(mol K) heat capacity at 298.15 K
aThe best performing descriptors are marked in bold.
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θ

≔
∥ ∥ ∥ ∥ ∥ ∥

· ∥ ∥ ∥ ∥ ∥ ∥

r r r
r r r

r r r

p Z Z Z

Z Z Z

( , , , , , )
1

( , , , , , )

m m m m m m, ,
3B

1 1 2 2 3 3
12 13 23

1 2 3 12 13 23

1 2 3 1 2 3

(4)

where ∈ +m m m, ,1 2 3 , rij ≔ ri − rj for i, j = {1,2,3}, and the
bond angle indicator

θ · ≔

< ∧ <

< ∧ <

< ∧ <

⎧

⎨

⎪
⎪

⎩

⎪
⎪

d B Z Z d B Z Z

d B Z Z d B Z Z

d B Z Z d B Z Z
( )

1, ( , ) ( , )

1, ( , ) ( , )

1, ( , ) ( , )

0, otherwise

12 1 2 13 1 3

13 1 3 23 2 3

12 1 2 23 2 3

(5)

where B(Z1, Z2) ≔ 1.1 · L(Z1, Z2), and the values for the bond
length function L are given in Table 6. For a given set of n
different atomic numbers An ≔ {Zi}i=1

n with Zi ≠ Zj ∀ i, j ∈ {1, ···,
n}, let S3B denote the set of all 3-tuples (Zi, Zj, Zk) with Zi ≤ Zk

and Zi, Zj, Zk ∈ An. Let M3B be the set of partial permutations
G(3, 6) as defined above. For a given physical system S, the three-
body interaction descriptors F3B are now given by

≔
̅ ∈ ̅∈F f S{ ( )}

Z Zp m m m M S3B , ( , , ) ,
m m m1, 2, 3

3B
1 2 3 3B 3B (6)

The dimension of the of the three-body interaction descriptors is

· + · !

− !
n n( 1)/22 6

(6 3)
.

The difference between the molecular descriptors BOB, F2B, and
F3B is illustrated in Figures 1 and 2, respectively. The bag-of-bonds
model compares arbitrary pairwise distances with each other,
while for the proposed F2B + F3B descriptors, two- and three-body
features are computed, and corresponding features are compared
with each other.

■ TESTS ON MOLECULAR DATA SETS

We use the following two reference data sets for the evaluation of
the predictive power of ML models with our proposed invariant
many-body interaction descriptors.

GDB-7. The GDB-7 data set is a subset of the freely available
small molecule database GDB-1341with up to seven heavy atoms
CNO. For this data set, electronic ground- and excited-state
properties have been calculated. Hybrid density functional
theory with the Perdew−Burke−Ernzerhof hybrid functional
approximation (PBE0)42,43 has been used to calculate the atomi-
zation energy of the molecules. The electron affinity, ionization
potential, excitation energies, and maximal absorption intensity
have been obtained from ZINDO.44−46 For the static polar-
izability, PBE0 and self-consistent screening (SCS)47 have
been used. The frontier orbital (HOMO and LUMO)
eigenvalues have been calculated using PBE0, SCS, and Hedin’s
GW approximation.48 The SCS, PBE0, and GW calculations have
been performed using FHI-AIMS49 (tight settings/tier2 basis set),
and ZINDO/s calculations are based on the ORCA50 code.

GDB-9. The GDB-9 data set is a subset of the chemical
universe database GDB-1751 of 166 billion organic small mole-
cules. The subset contains molecules with up to nine heavy

Table 4. Prediction Errors of the B3LYP/6-31G(2df,p)
Atomization Energy of the Molecules of the Set GDB-9 by
VariousMLModels with Random 5KTrainMolecules and the
Remaining 126722 Molecules as Test Seta

method features MAE RMSE MAX. DEV

mean 185 235 1544

RR CM 235 308 1289

RR BOB 89 134 653

RR F2B 6.8 10 462

RR F2B + F3B 1.6 2.8 88

KNN CM 239 279 898

KNN BOB 231 272 758

KNN F2B 151 177 556

KNN F2B + F3B 25 42 358

KRR (Gauss) CM 17 22 181

KRR (Laplace) CM 7.9 10 129

KRR (Gauss) BOB 11 16 253

KRR (Laplace) BOB 4.0 6.0 132

KRR (Gauss) F2B 4.8 6.4 45

KRR (Laplace) F2B 8.2 11 190

KRR (Gauss) F2B + F3B 1.5 2.8 96

KRR (Laplace) F2B + F3B 4.5 6.4 147
aThe errors are given in kcal/mol. The models used are ridge regression
(RR), kernel ridge regression (KRR), and k-nearest neighbors (KNN).

Figure 3. Mean absolute errors of several electronic ground- and
excited-state properties of the molecules of the set GDB-7 predicted
with KRR using the descriptors CM, BOB, F2B, and F2B + F3B. For CM
and BOB, the Laplace kernel has been used; for F2B and F2B + F3B, the
Gauss kernel has been used. The MAEs are normalized by the MAE of
the KRR-CM model.

Figure 4.Mean absolute errors of several properties of the molecules of
the set GDB-9 calculated at the B3LYP/6-31G(2df,p) level of quantum
chemistry and predicted with KRR using the descriptors CM, BOB,
F2B, and F2B + F3B. For CM and BOB, the Laplace kernel has been used;
for F2B and F2B + F3B, the Gauss kernel has been used. The MAEs are
normalized by the MAE of the KRR-CM model.
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atoms CNO with corresponding harmonic frequencies, dipole
moments, and polarizabilities, along with energies, enthalpies,
and free energies of atomization, all calculated at the B3LYP/
6-31G(2df,p) level of quantum chemistry.52

We evaluate the performance of predicting the properties of
the molecules of these two data sets by using our proposed
invariant many-body interaction descriptors F2B and F2B + F3B.
Additionally, we computed the sorted Coulomb matrices (CM)8

and the popular bag-of-bonds (BOB)34 molecular representa-
tions. For the atomization energy, we use the models kernel ridge
regression (KRR) (see e.g. Hansen et al.8 and Müller et al.53),

ridge regression (RR),54 k-nearest neighbors (KNN),55 and the
mean predictor (MEAN), see Appendix A. For the other
properties, we use kernel ridge regression with the Laplace kernel
for CM and BOB which works better compared to the Gauss
kernel for these descriptors8 and the Gauss kernel in combina-
tion with the F2B and F2B + F3B descriptors, respectively. To fit the
model parameters (hyperparameters), we use 10-fold cross-
validation,56 see ref 8 for details. Unless otherwise noted, the
models are trained on 5000 randommolecules. The performance
is evaluated on the remaining molecules of the respective set,
by the mean absolute error (MAE), the root-mean-square

Figure 5. Prediction versus DFT reference of several electronic ground- and excited-state properties of the molecules of the set GDB-7 predicted with
KRR using the Gauss kernel and the descriptors F2B + F3B.

Figure 6. Prediction versus DFT reference of several properties of the molecules of the set GDB-9 calculated at the B3LYP/6-31G(2df,p) level of
quantum chemistry and predicted with KRR using the Gauss kernel and the descriptors F2B + F3B.
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error (RMSE), and the maximum deviation (MAX. DEV),
respectively.
For the atomization energy, the results of the ML models are

given in Tables 1 and 4. The results for predicting diverse
quantum mechanical properties are given in Tables 2 and 3,
respectively. Figures 3 and 4 show the MAE of the models
normalized by the mean absolute error of the CM model. From
these results it is not clear how good a specific molecular property
can be predicted. Therefore, Figures 5 and 6 show the predicted
properties relative to the reference results. The MAE in depen-
dence of the number of training samples is shown in Figures 7
and 8, respectively.
The F2B + F3B model outperforms the BOB descriptor in

the prediction of the static polarizability computed with self-
consistent screening (20% improvement), the first excitation
energy (20% improvement), and the atomization energy

(50% improvement) of the molecules of the GDB-7 set.
Additionally, the prediction errors of the electron affinity
and the HOMO eigenvalues are improved by 5%. The largest
correlation between prediction and reference is achieved for the
static polarizability computed with SCS as well as the atomization
energy.
The F2B + F3B model outperforms the BOB descriptor in the

prediction of the heat capacity (40% improvement), the zero
point vibrational energy (50% improvement), the isotropic
polarizability (30% improvement), and the atomization energies
(60% improvement) of the molecules of the GDB-9 set.
Additionally, the prediction errors of the HOMO and LUMO
eigenvalues as well as the gap are improved by 15%, 10%, and 9%,
respectively. The largest correlation between prediction and
reference is achieved for the electronic spatial extent, zero point
vibrational energy, the heat capacity, the isotropic polarizability,
and the atomization energies.
The three-body descriptors F3B are local in the sense that they

include pairs of bonded atoms which have an angle. This locality
suggests an applicability of our descriptors to predict quantum
mechanical properties of much larger molecules. In a first
attempt to justify such transferability, we conducted an additional
experiment where we predict the atomization energy of a set of
large molecules when trained on a set of small molecules and vice
versa. To this end, we select a set of small molecules composed of
3000 randommolecules of the GDB9 set with a number of atoms
smaller than 14. Similarly, the set of larger molecules consists of
3000 randommolecules of the GDB9 set with a number of atoms
larger than 22. The results of training and testing a kernel ridge
regression model in combination with the CM, BOB, and F2B +
F3B descriptors using all combinations of small and large
molecule sets are shown in Table 5. The CM and BOB models
show poor performance when predicting the atomization energy
of the larger molecule set from the small molecule set and vice

Figure 7. Mean absolute error of predicting the PBE0 atomization
energy of the molecules of the set GDB-7 with KRR in dependence of
the number of training samples. The errors are given in kcal/mol. For
CM and BOB, the Laplace kernel has been used; for F2B and F2B + F3B,
the Gauss kernel has been used. The model hyperparameters have been
determined by 10-fold cross-validation.

Figure 8. Mean absolute error of predicting the B3LYP/6-31G(2df,p)
atomization energy of the molecules of the set GDB-9 with KRR in
dependence of the number of training samples. The errors are given in
kcal/mol. For CM and BOB, the Laplace kernel has been used; for
F2B and F2B + F3B, the Gauss kernel has been used. The model
hyperparameters have been determined by 10-fold cross-validation.

Table 5. Mean Absolute Errors of Predicting the B3LYP/
6-31G(2df,p) Atomization Energy of 3000 Random Small and
Large Molecules with Kernel Ridge Regressiona

train/test set CM BOB F2B + F3B

small/small 7.2 3.5 1.4

small/large 733 493 6.2

large/small 793 797 50

large/large 3.2 1.2 0.5
aThe models are trained on sets of 3000 random small and large
molecules, respectively. The errors are given in kcal/mol. Best results
are marked bold.

Table 6. Bond Lengths in Ångström for All Combinations of
the Elements C, H, N, and Oa

bond-type (Z1, Z2) L(Z1, Z2)

H−H (1, 1) 0.74

H−C (1, 6) 1.08

H−O (1, 8) 0.96

H−N (1, 7) 1.01

C−C (6, 6) 1.51

C−O (6, 8) 1.43

C−N (6, 7) 1.47

O−O (8, 8) 1.48

O−N (8, 7) 1.40

N−N (7, 7) 1.45
aUsed for computing the three-body interaction descriptors F3B.
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versa. Using our F2B + F3B descriptors significantly improves the
prediction accuracy of learning the atomization energy of large
molecules when trained on the set of small molecules. As kernel
ridge regression intrinsically suffers from differing data
distributions of the training and test sets, more accurate models
or those compensating for nonstationarity such as covariate
shift57 using our many-body descriptors can potentially improve
these transferability results.
The prediction of the atomization energy by using the linear

RRmodel is comparable to the KRRmodel. This makes the F2B +
F3B descriptors interesting candidates for alternative linear
regression models such as Bayesian linear regression,58 partial
least-squares,59 or generalized least-squares.60 In this work, we
will utilize this fact to compute a feature ranking measure in the
next section.

■ FEATURE IMPORTANCE OF THE INVARIANT
MANY-BODY INTERACTION DESCRIPTORS

The inclusion of the three-body descriptors F3B increases the
predictive power of the KRRmodel by more than 50% over using
the two-body descriptors F2B for both data sets GDB-7 andGDB-9.
Due to the nonlinear kernels used, it is not obvious how the
three-body features improve the performance. The frequencies
of the bond-types corresponding to three bonded atoms which
have an angle (Figure 9 and Figure 10 top) suggest the top three
most important connections C−C−H, H−C−H, and C−C−C,

respectively. On the other hand, using the F2B descriptors in
combination with the H−C−H subset of F3B features (Figure 9
and Figure 10 bottom) shows a negligible decrease of the mean
absolute error of the KRR model as compared to the inclusion of
the C−C−H and C−C−C subsets.
There are a number of ways to define feature importance61−64

respectively to explain nonlinear models.65−71 Here, we use the
feature importance ranking measure (FIRM),72 which defines
the feature importance according to the standard deviation of a
conditional expected output of the learner. FIRM can be applied
to a broad family of learning machines, and the measure is robust
with respect to perturbation of the problem and invariant with
respect to irrelevant transformations. In general, the computa-
tion of the exact FIRM is infeasible. For the unregularized linear
regression model and normally distributed input features, the
FIRM of a feature f can be computed analytically72 by

σ
≔ · ·f

n f
f yFIRM( )

1 1

( )
cov( , )

(7)

where n is the number of samples, σ(·) is the standard deviation,
y denotes the labels, and cov(·) is the covariance. In the above
formula, FIRM is computed for each feature independently.
To capture the importance of the inclusion of the three-body
descriptors F3B, we propose to use FIRM on the signed deviation
of labels and prediction of the KRR model with the two-body
features F2B

Figure 9. FIRM by eq 7 (second from top), FIRM3B by eq 8 (third from top), and FIRMfreq by (9) (fourth from top) for the F3B descriptors of the
molecules of the set GDB-7. Additionally, the frequency of the corresponding bond-type (top) and the error improvement by using KRR with the F2B
features in combination with the bond-type subset of the F3B descriptors (bottom) are shown.
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σ
≔ · · −f

n f
f y pFIRM ( )

1 1

( )
cov( , )3B 2B (8)

where p2B is the prediction of the KRR model using the F2B
descriptors, see also ref 73. Additionally, we compute the product

of the above FIRM3B of the feature f with the frequency of its
corresponding bond-type

σ
≔ · · · −f f

n f
f y pFIRM ( ) freq( )

1 1

( )
cov( , )freq 2B (9)

Figure 10. FIRM by eq 7 (second from top), FIRM3B by eq 8 (third from top), and FIRMfreq by (9) (fourth from top) for the F3B descriptors of the
molecules of the set GDB-9. Additionally, the frequency of the corresponding bond-type (top) and the error improvement by using KRR with the F2B
features in combination with the bond-type subset of the F3B descriptors (bottom) are shown.

Table 7. Frequency of the Bond-Type and the Error
Improvement by Using KRR with the F2B Features in
Combination with the Bond-Type Subset of the F3B
Descriptors for the Set GDB-7

bond-type freq [%] error improvement [%]

C−C−H 38 11.4

H−C−H 17 2.1

C−C−C 13 19.3

N−C−H 6.3 0.3

C−C−N 5.4 4.7

C−C−O 4.9 7.8

O−C−H 4.8 0.5

C−N−H 3.7 0.07

C−N−C 2.0 2.9

C−O−C 1.1 3.4

H−N−H 0.9 0.4

C−O−H 0.8 0.4

C−N−N 0.6 1.6

N−C−O 0.5 5.6

C−N−O 0.4 3.3

Table 8. Frequency of the Bond-Type and the Error
Improvement by Using KRR with the F2B Features in
Combination with the Bond-Type Subset of the F3B
Descriptors for the Set GDB-9

bond-type freq [%] error improvement [%]

C−C−H 34 13.5

H−C−H 16 2.1

C−C−C 15 21.3

C−C−O 8.0 6.9

C−C−N 5.3 2.5

O−C−H 5.3 5.8

N−C−H 4.1 2.3

C−N−H 3.1 0.9

C−N−C 2.5 2.5

C−O−C 1.5 5.1

C−O−H 1.5 0.5

N−C−O 1.5 1.3

N−C−N 0.8 0.2

H−N−H 0.6 0.1

O−C−O 0.4 1.0
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where freq( f) is the frequency of the bond-type corresponding to the

feature f. Figure 9 and Figure 10 show the FIRM, FIRM3B, and

FIRMfreq for the three-body descriptors F3B for both data sets GDB-7

and GDB-9. Additionally, we show the frequency of the bond-type

corresponding to the feature f and the error improvement of using

the KRR model with the F2B features augmented with the corre-

sponding subset of three-body features F3B. The frequencies and

error improvements are shown in Tables 7 and 8, respectively.

Figure 11.Molecules of the set GDB-7 with the largest difference of themean absolute error of KRR using the F2B and F2B + F3B descriptors, respectively.
The MAE in kcal/mol is shown for CM (top left), BOB, (left middle), F2B (left bottom), F2B + F3B (top right), and the F2B + C−C−C subset of F3B
(right bottom), respectively.

Figure 12.Molecules of the set GDB-9 with the largest difference of themean absolute error of KRR using the F2B and F2B + F3B descriptors, respectively.
The MAE in kcal/mol is shown for CM (top left), BOB, (left middle), F2B (left bottom), F2B + F3B (top right) and the F2B + C−C−C subset of F3B
(right bottom), respectively.

Figure 13. E3B by eq 10 in dependence of the bond angle for the dominant bond-types of the molecules of the set GDB-7 along with the distribution of
angles.
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The FIRM3B indicates low importance of the H−C−H and
increased importance of the C−C−C features, which correlates
with the error improvement by using these features in combi-
nation with the F2B descriptors. This indicates that three-body
interactions relevant for prediction improvement are more
dominant for the C−C−Cbond-type as compared to theH−C−H
bond-type, where the correlation with the atomization energy
can be captured by using the corresponding two-body features
F2B. Figure 11 and Figure 12 show the molecules with the largest
difference of absolute errors of the KRR F2B and F2B + F3B
models. For these molecules, using the combination of the F2B
descriptors with the subset of C−C−C three-body features
significantly improves the predictive performance of the KRR
model using the F2B features.
The measure FIRM3B reduces the importance of the hydrogen

type bonds in favor of the non-hydrogen features, as compared to
FIRM. The correlation of a molecular descriptor with the target
(atomization energy) is not necessarily a good predictor variable
in the presence of other features. In this sense, FIRM3B captures
the importance of the three-body descriptors F3B in the presence
of the two-body interactions modeled by the two-body
descriptors F2B. For the non-hydrogen type three-body features,

FIRM indicates approximately equal importance of the C−C−C,
C−C−N, and N−C−O bonds, in contrast to FIRM3B, which lifts
the C−C−C importance. This shows, that for non-hydrogen
bonds, our set of descriptors is better able to capture three-body
interactions of the C−C−C type as compared to the other bond-
types. In view of the 5 times lower frequency of the N−C−O
bond compared to C−C−N, both, the error improvement and
FIRM3B show approximately equal importance of these three-
body interactions.
For the three-body features, we can use the parameters of the

linear RR model to compute the energy of a given bond-type

∑ δ≔ · ·
=

E b i c f( ) (bond( ))
i

N

b i i3B

1 (10)

where ci are the coefficients of the trained RR model, f i are the
three-body features, N is the number of three-body features, b is
the bond-type under examination, and bond(i) indicates the
bond-type corresponding to the feature f i. Figure 13 and Figure 14
show E3B in dependence of the bond angle for the 15 predominant
bond-types of the GDB-7 and GDB-9 set, respectively.

Figure 14. E3B by eq 10 in dependence of the bond angle for the dominant bond-types of the molecules of the set GDB-9 along with the distribution of
angles.
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Physically, these results indicate, that for intermediate size
molecules, the interaction of the hydrogen atom with all other
atoms (of type C, N, O) can be captured effectively by pairwise
interactions. In fact, if we use the F2B features in combination
with the non-hydrogen subset of F3B, we get a mean absolute
error of 0.9 kcal/mol for the GDB-7 set and 1.8 kcal/mol for the
GDB-9 set on the rest of the molecules, respectively. In view of
the fact that the hydrogen atom constitutes by far the dominant
atom type for both data sets, the errors degrade by 13% and 20%
as compared to the full F2B + F3B descriptors, respectively. This
intriguing result lets us formulate the following conjecture:
For the accurate prediction of the atomization energy of

intermediate size molecules, the interaction potential of the hydrogen
atom with all other atoms can be ef fectively approxi-
mated as a pairwise interaction potential.
The interatomic interaction between non-hydrogen atoms

goes beyond pairwise interactions. Interestingly, for the C−C−C
bond-type, the energy E3B shows a clear dependence of the bond
angle, as compared to the other bond-types. This result indicates
that there is a simple relation between the angle at the C atom of
the C−C−C bond-type and the atomization energy. Between the
angles π/4 and π/2, there exist two branches of the dependence
of the atomization energy of the angle. This indicates, that for
C−C−C, ourmodel learns two angle-type functions, distinguishing
single−double and single−single C−C−C bonds, see the C−C−C
angle dependence of E3B in Figures 13 and 14, respectively.

■ CONCLUSION

We developed a new set of translation, rotation, and atomic
indexing invariant many-body interaction descriptors which
avoid the perhaps somewhat artificial sorting of the feature
entries. With our two- and three-body invariant molecular repre-
sentation, the atomization energy and polarizability of small
organic molecules can be accurately predicted. Using our descrip-
tors, the performance of the linear regularized ridge regression
model is comparable to the nonlinear kernel methods. Applying a
feature importance ranking measure, we show that the C−C−C
bond-type is - as to be expected - the most important three-body
interaction for predicting the atomization energy. In addition, the
bonds involving hydrogens and heavier atoms can be captured
effectively by pairwise interatomic potentials.

■ APPENDIX A: MACHINE LEARNING MODELS

Ridge Regression (RR)
GivenN samples of dimension D, the data can be represented by

the design matrix ∈ ×X
N D. In ridge regression, the predictions

are given by

=p wX (11)

The weights w are computed by minimizing the objective

λ− + ·y w w wX( )2 T
(12)

with the labels y. The solution for w is given by

λ= · + −w yI X X X( )T 1 T
(13)

where λ is the regularization parameter, which can be determined
by grid search and cross-validation to prevent overfitting.

Kernel Ridge Regression (KRR)
In kernel ridge regression, a kernel is used as similarity measure
between two molecules. From this similarity measure, the
prediction of the atomization energy of a new molecule x is
obtained by

∑ α= ·
=

x xE K( , )
i

N

i i

1 (14)

where the αi denote the weighting coefficients obtained by
training the model, andN is the number of training molecules xi.
Training the model involves a set of molecules with known labels
{xi, Ei} from which the α is obtained by solving a regularized
system of linear equations

αλ· + · = EI K( ) (15)

where Kij ≔ K(xi, xj), and λ is the regularization parameter.
Popular choices of kernels include the Gaussian kernel

≔ σ−∥ − ∥x yK e( , ) x y
Gauss

/(2 )2
2 2

(16)

where the distance measure is the scaled squared Euclidean
l2-distance between the features of the molecules, and the
Laplace kernel

≔ σ−∥ − ∥x yK e( , ) x y
Laplace

/1
(17)

where the distance measure is the scaled absolute difference.
Both of these kernels contain a scaling hyperparameter σ, which,
together with the regularization parameter λ, we determine by
grid search and cross-validation to prevent overfitting.

k-Nearest Neighbors (KNN)
In KNN regression, the output of a sample x is the average of the
values of its k-nearest neighbors, where k is a hyperparameter
which can be determined by cross-validation. In analogy to the
KRR case, we use the l1-distance for BOB and CM and the
l2-distance for our F2B and F3B descriptors.

Mean Predictor (MEAN)
For theMEAN predictor, the output is constant for all samples in
the test set. This constant is given by the average value of the
output of the samples in the training set.

■ APPENDIX B: BOND LENGTHS

Table 6 lists the bond lengths in Ångström for all combinations of
the elements C, H, N, and O used to compute the three-body
interaction descriptors F3B.

■ APPENDIX C: FREQUENCIES OF THREE-BODY
BONDS

Table 7 and Table 8 list the frequency of the three-body bond-
type and the error improvement by using KRR with the F2B
features in combination with the bond-type subset of the F3B
descriptors for the set GDB-7 and GDB-9, respectively.
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(17) Bartoḱ, A. P.; Gillan, M. J.; Manby, F. R.; Csańyi, G. Machine-
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Munteanu, C. R.; Orbegozo-Medina, R. A.; Pazos, A. ANN Multiscale
Model of Anti-HIV Drugs Activity vs AIDS Prevalence in the US at
County Level Based on Information Indices of Molecular Graphs and
Social Networks. J. Chem. Inf. Model. 2014, 54, 744−755.
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Importance Ranking Measure. Machine Learning and Knowledge
Discovery in Databases. Berlin, Heidelberg, 2009; pp 694−709.
(73) Haufe, S.; Meinecke, F.; Görgen, K.; Daḧne, S.; Haynes, J.-D.;
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