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Quantum many-body scarring (QMBS) – a recently discovered form of weak ergodicity breaking in strongly-

interacting quantum systems – presents opportunities for mitigating thermalization-induced decoherence in

quantum information processsing. However, the existing experimental realizations of QMBS are based on

kinetically-constrained systems where an emergent dynamical symmetry “shields” such states from the ther-

malizing bulk of the spectrum. Here, we experimentally realize a distinct kind of QMBS phenomena by approx-

imately decoupling a part of the many-body Hilbert space in the computational basis. Utilizing a programmable

superconducting processor with 30 qubits and tunable couplings, we realize Hilbert space scarring in a non-

constrained model in different geometries, including a linear chain as well as a quasi-one-dimensional comb

geometry. By performing full quantum state tomography on 4-qubit subsystems, we provide strong evidence for

QMBS states by measuring qubit population dynamics, quantum fidelity and entanglement entropy following

a quench from initial product states. Our experimental findings broaden the realm of QMBS mechanisms and

pave the way to exploiting correlations in QMBS states for applications in quantum information technology.

INTRODUCTION

Strongly-coupled quantum systems provide a wealth of op-

portunities for fundamental physics as well as practical ap-

plications that utilise quantum entanglement, which is natu-

rally abundant in them [1–4]. However, the majority of such

systems, even if they are perfectly isolated from the external

world, undergo chaotic dynamics which gives rise to quan-

tum information scrambling [3, 5–8]. The scrambling in-

variably results in quantum thermalization – the process de-

scribed by the so-called Eigenstate Thermalization Hypoth-

esis (ETH) [9–12]. Thermalization represents a major chal-

lenge that needs to be overcome when such systems are used

for practical applications. Thus, developing methods to defy

the ETH so as to achieve long-lived-dynamic states, thereby

preserving quantum information, has become an important

goal of quantum sciences [13].

Recent discovery of mechanisms for weakly breaking the

ETH, such as quantum many-body scarring (QMBS) [14, 15],

have opened the door to delaying thermalization by preparing

the system in special initial states. This route offers more flex-

ibility for designing non-ergodic dynamics than, for example,

fine tuning the couplings of the systems to make it integrable,

and it avoids the need to strongly disorder the system to drive

it into a many-body localized phase [16–19]. Because of their

ability to suppress thermalization, QMBS states are expected

to be useful for storing quantum information [14], generat-

ing Greenberger–Horne–Zeilinger (GHZ) entangled state [20]

and in quantum-enhanced sensing [21]. However, while there

has been a proliferation of theoretical studies of QMBS in a

variety of models [22–42], the experimental realizations of

QMBS remain in short supply. The existing QMBS exper-

iments remain focused on a single model with kinetic con-

straints – the so-called PXP model [43, 44], which has been

effectively realized using Rydberg atoms [13, 45] and ultra-

cold bosons in optical lattices [46]. More recently, ultra-

cold lithium-7 atoms in an optical lattice, which realize the

Heisenberg spin model, have been explored as a host of non-

thermalizing helix states, reminiscent of QMBS [47].

In this article, we report the experimental observation of

a new class of QMBS states on a superconducting (SC) pro-

cessor. In contrast to previous realizations in kinetically con-

strained Rydberg atom arrays, we design QMBS by weakly

decoupling one part of the Hilbert space in the computational

basis. Our approach is inspired by the topological struc-

ture of the Su-Schrieffer-Heeger model of polyacetylene [48],

which we utilise to create a nearly decoupled subspace with

the structure of the hypercube graph. This subspace gives

rise to emergent QMBS phenomena, including many-body re-

vivals from special initial states residing in the hypercube, as

well as the band of scarred eigenstates. At the same time,

the entire system thermalizes due to weaker cross couplings

between neighboring qubits. One of the advantages of our

SC platform is the tunable XY coupling between qubits (see

Methods section for more details) on a 6 by 6 square lat-

tice configuration, which enables us to emulate many-body

http://arxiv.org/abs/2201.03438v2
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Figure 1. Experimental setup and identification of QMBS states via quantum state tomography. (a) Experimental superconducting

circuit with qubits and couplers in a square geometry. Light gray dashed rectangles represent dimers that constitute the chain with intra

coupling Ja, inter coupling Je, and small cross coupling Jx. (b) Left upper: A schematic illustration of the dynamics of the collective dimer

states |Π〉 and |Π′〉. Left lower: The ratio ∆/Γ as a function of the system size L for different ratios of Ja/Je and for a fixed value of Jx listed

in Fig. S3 of the Supplementary Material. Right: a 4-dimensional hypercube in the Hilbert space. (c)-(d): Quantum state tomography for

the four-qubit fidelity and entanglement entropy in a 30-qubit chain for initial thermalizing states (red and orange) and a QMBS state (green).

Blue dot-dashed curves stand for the dynamics of state |Π′〉 with L = 20 and a higher coupling ratio Ja/Je = 2.5. (c) Fidelity of the subsystem

A as a function of interaction time. The upper left inset illustrates the partition of the many-body system into subsystems A and B, where the

former contains 4 qubits for measuring the entanglement entropy. The right inset shows the Fourier transformation amplitude of the four-qubit

fidelity and ω1/2π ≈ 21 MHz. (d) Time evolution of the entanglement entropy S A. The dotted grey line represents the thermal value 4 ln 2.

systems with both one-dimensional (1D) and quasi-1D sys-

tems with comb shape. We investigate circuits of up to 30

qubits and 29 couplers, with the Hilbert space dimension

C(30, 15) = 155, 117, 520 – far beyond the limits of classical

simulation. Measurements of population dynamics and quan-

tum state tomography for entanglement entropy and quantum

fidelity provide strong evidence of the emergence of robust

QMBS states, as we demonstrate by directly comparing their

slow dynamics against conventional thermalizing states. Our

realization of a new QMBS paradigm in a solid state SC plat-

form paves the way to a systematic exploration of scarring

and other forms of ergodicity breaking in systems with highly

tunable interactions extending beyond one spatial dimension.

EXPERIMENTAL SETUP AND OBSERVATION OF

MANY-BODY SCAR STATES VIA QUANTUM STATE

TOMOGRAPHY

Our experiment utilizes a two-dimensional SC qubit ar-

ray [4, 49], shown in Fig. 1(a), which features high density

integration and high degree of controllability over local cou-

plings [50, 51], allowing to emulate different models in a sin-

gle device. We first consider the “snake”-like qubit layout

in Fig. 1(a). This layout exploits the structure of the Su-

Schrieffer-Heeger chain [48], where the intra-dimer coupling

Ji,i+1/2π = Ja/2π ≃ −9 MHz with i ∈ odd is slightly stronger

than the inter-dimer coupling Ji,i+1/2π = Je/2π ≃ −6 MHz

with i ∈ even.

In the limit Ja ≫ Je, each dimer behaves as a nearly free

two-level system, hence the Hilbert space of the SC qubit sys-

tem has the structure of the hypercube graph – see Fig. 1(b).

Such a system supports quantum revivals but they are essen-

tially of a single-particle origin. When Ja and Je are compa-

rable in magnitude, we are in the regime of the SSH model

where quench dynamics from fully polarized and Néel initial

states has recently been investigated in Refs. [52, 53]. While

the Néel state does not display persistent revivals, we will

show below that it is possible to identify, based on the hy-

percube structure, other initial states that do exhibit quantum

revivals in moderate systems with 10-20 qubits. In order to

show that these are bona fide QMBS states, we will confirm
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they are robust to both the increase in system size as well as

the breaking of integrability that allows the system to ther-

malize from most other initial states. Thermalization is our

experimental setup is naturally driven by the cross couplings

Jx/2π ∈ [0.3, 1.2] MHz – the couplings between two next

nearest neighbor qubits with a physical separation distance

ai j =
√

2a0, where a0 ≈ 0.8 mm is the separation distance of

two nearest neighbor qubits. These couplings break the reflec-

tion symmetries of the circuit and make the system thermal-

ize. For example, exact diagonalization confirms that the en-

ergy level spacings follow the Wigner-Dyson distribution with

the level-statistics parameter 〈r〉 ≈ 0.53 for large symmetry-

resolved sectors – see Supplementary Material (SM).

Now we identify QMBS states based on their special lo-

cation in the hypercube. Recall that each dimer has four

states: |d0〉 = |00〉, |d1〉 = |11〉, |d+〉 = |10〉, and |d−〉 = |01〉.
At half filling, i.e., with the number of photons N equal to

half the total number of qubits L, a special class of dimer-

ized states in the computational basis states can be identified.

These states all have a single photon in each dimer (i.e they

only have |d+〉 or |d−〉), and the connectivity between them in

the Hamiltonian forms N = L/2-dimensional hypercube with

equal weight edges. Among these, a pair of collective states

|Π〉 = |d+d−d+d− · · · 〉 and |Π′〉 = |d−d+d−d+ · · · 〉, illustrated in

Fig. 1(b), play a special role. These are located on opposite

corners of the hypercube and have the unique property of only

having intra-dimer couplings (with the exception of the small

Jx couplings). This helps prevent the information in states |Π〉
and |Π′〉 from rapidly leaking into the thermalizing part of the

Hilbert space, with the other product states in the hypercube

playing the role of a “buffer” area. The robustness of |Π〉 and

|Π′〉 is due to the collective many-body effect and enhanced

by the structure-induced potential (Ja > Je). The hypercubic

structure is robust and naturally it does not contain any cross

coupling. Indeed, while the other parts of the Hilbert space are

frustrated by the irregular Jx couplings, no two states within

the hypercube are linked by them. They contribute to the leak-

age of the wavefunction out of the hypercube but do not affect

the dynamics within it.

The sum of the hypercubic thermal couplings (inter dimer

and cross couplings) gives the decay rate Γ of the hypercube

to the thermalized parts. The summation of intra hypercubic

couplings ∆ is given by the number of hypercubic edges, i.e.,

∆ = N2N−1Ja. The ratio between the sums of the inter and

intra hypercubic couplings ∆/Γ converges to a finite value for

different values of Ja/Je (see in Fig. 2 (b)), which shows that

the hypercube is not trivially disconnected from the rest of the

Hilbert space.

With the high-precision control and readouts of our SC pro-

cessor, we are able to perform tomography measurements to

obtain the non-diagonal elements of the reduced density ma-

trix ρA, which determine the time evolution of the fidelity of

the subsystem FA(t) and the entanglement entropy S A(t). The

complexity of such measurements grows rapidly with the size

of the subsystem A and below we consider A to be four qubits,

as schematically illustrated in the inset of Fig. 1(c). The data

points in Fig. 1(c) give, for a 30-qubit chain, the time evolu-

tion of the first four-quit fidelity for a collective state |Π′〉 and

that of a typical thermalizing state. The fidelity of the QMBS

state exhibits remarkable revivals with the period of about 50

ns and the peak value of the first revival can be as high as 0.5,

while no such revivals occur for the thermalizing state.

We emphasize that although we consider a relatively small

subsystem of fixed size here, numerical simulations confirm

that the behavior of the subsystem fidelity closely mirrors that

of the fidelity for the pure state |Ψ(t)〉 of the entire system

(see SM). The revivals are enhanced by increasing the ratio

Ja/Je, which controls the coupling of the hypercube to the

rest of the Hilbert space. As we emphasized above, in the

extreme limit Ja ≫ Je, the dimers are only weakly interacting

with each other and the revival dynamics has a single-particle

origin. Furthermore, the revivals of the states |Π〉 and |Π′〉
become weak if L/2 is an odd integer with a periodic boundary

condition, which is experimentally confirmed (see SM).

In Fig. 1(d) we measure the time evolution of the entangle-

ment entropy for both QMBS and conventional thermalizing

states. The entanglement entropy is defined as the von Neu-

mann entropy S A = −Tr[ρAlogρA], where ρA is the reduced

density matrix of the subsystem A. Fig. 1(d) shows the time

evolution of S A for the state |Π〉 as well as a random ther-

malizing state. The scarred dynamics leads to a slow growth

of entanglement entropy, superposed with oscillations whose

frequency is twice that of fidelity revivals in Fig. 1(c). By con-

trast, for the thermalizing initial state, the entropy rises rapidly

towards the value 4ln(2), which is approximately the maxi-

mum Page entropy for this subsystem. In addition, the scar

features of the states |Π〉 and |Π′〉 can be enhanced by increas-

ing the coupling ratio Ja/Je, as illustrated by the suppressed

entropy growth in Fig. 1(d).

QUBIT DYNAMICS BEYOND THE LIMIT OF CLASSICAL

SIMULATIONS

To further probe the dynamics at the level of individual

qubits, we measure the generalized population imbalance de-

fined as I(t) = (1/L)
∑L

i 〈Sz
i
(0)〉〈Sz

i
(t)〉. The imbalance is de-

termined by the overlaps |〈En|α〉|2 of energy eigenstates |En〉
with the initial state |α〉 and the phase factors exp(−i(En −
Em)t/~), where m, n are eigenstate indices. For a thermaliz-

ing initial state, the phases are essentially random and the ini-

tial state has roughly equal support on all energy eigenstates.

Thus, any imbalance present in the initial state will rapidly

diffuse to a value exponentially small in the system size and it

cannot be detected via local operators at late times. By con-

trast, a QMBS initial state has appreciable overlap only on a

few eigenstates with phases set to integer multiples of a single

dominant frequency. This allows a QMBS state to display a

persistent quantum revival even at relatively late times.

The evolution of population imbalance for individual qubits

in a 30-qubit chain is shown in Figs. 2(a) and 2(b), which

contrast the evolution of a QMBS state and a typical thermal-
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Figure 2. Experimentally observed qubit dynamics. (a)-(b): Contour diagrams of the experimental qubit population as a function of the

interaction time for a QMBS and a rapid thermalizing state, respectively. (c)-(d): Generalized imbalance I(t) extracted from plots (a)-(b) as a

function of the interaction time. Insets: imbalance dynamics from experiments (dots or circles) and numerical simulations (solid curves) in a

20-qubit chain. (e)-(f): The Fourier transformation amplitude of the imbalance in (c)-(d), which characterizes the squared overlap between the

initial states and the energy eigenstates. The time window for the fast Fourier transform is extended to 4 µs with zero padding. (g) Fourier peak

as a function of the coupling ratio Ja/Je in a chain of L = 20 from experimental measurements (green hexagrams) and numerical simulations

(dashed curve). (h) The squared Fourier amplitude g2
α(ω = ω1) for |α〉 for 120 randomly chosen initial product states, including two QMBS

states (green hexagrams) that are clearly stand out from the rest of thermalizing product states (yellow squares). The simulation parameter

values are Ja/2π = −9.3 MHz, Je/2π = −6.1 MHz and Jx/2π ∈ [0.3, 1.2] MHz.

izing state. QMBS exhibits remarkable oscillations which are

absent in the thermalizing state. The total imbalance I(t) is

plotted in Figs. 2(c) and 2(d), which reveal more clearly the

differences between two initial states. In general, for the ther-

malizing state, after about 30 ns the population is only half

photon in each qubit meaning there is no imbalance.

The distinct features of QMBS states can be further high-

lighted through the overlap between the product states and the

eigenstates |〈α|En〉|2, which can be represented by the Fourier

spectrum of the imbalance, as shown in Figs. 2(e) and 2(f)

for the QMBS and thermalizing states respectively. The peak

value of the squared Fourier spectrum gα(ω) with the first-

order domain eigenstates is ω1/2π ≈ 21 MHz. We test 120

random initial product states and find that the squared Fourier

amplitudes g2
α(ω = ω1) of QMBS states are unambiguously

distinct from those of conventional thermalizing states, as

shown in Fig. 2(h). The variations in the Fourier amplitude

for rapidly thermalizing dynamics become suppressed as sys-

tem size is increased. Note that, for the cases in Figs. 2(a-f), to

carry out the exact simulations is computationally impractical.

To validate the experimental data numerically, it is necessary

to use a smaller system size, say L = 20, whose results are

shown in the insets in Figs. 2 (c-f), where the agreement be-

tween numerical and experimental results is excellent.

The advantage of our experimental system – the tunable ef-

fective couplings between two nearest-neighbor qubits – al-

lows us to systematically probe the stability of QMBS states

as the ratio of intra- and inter-dimer couplings Ja/Je is var-

ied. As shown in Fig. 2(g), both the numerical and ex-

perimental results indicate that QMBS states emerge consis-

tently in the regime of Ja/Je > 1. Also, the finite value of

gΠ(ω1) ≈ 0.008 for Ja/Je = 1 implies that the origin of the

QMBS state is a many-body effect. In the regime of large

coupling (Ja,e/2π > 12 MHz), the effective Hamiltonian in

Eq. (3) is no longer accurate to describe the system due to

the population leakage to couplers. Due to the fast growth of

Hilbert space dimension in this case, we did not explore such

large coupling regime.

To verify the persistence of the QMBS states for differ-

ent system sizes, we perform experimental measurements of

chains of sizes L = 12, 14, 16, 20, 24, 28, and 30. The

time evolution of the imbalance, the entanglement entropy,

and the four-qubit fidelity were found to behave consistently

for different system sizes, thereby establishing the robustness

of scarring in collective states |Π〉 and |Π′〉. The relatively

small variations between the imbalance and the entanglement

entropy for different system sizes are due to the difference in

the cross couplings and the couplers. The Fourier amplitude

gΠ(ω1) and the four-qubit fidelity FA(t1) at the first revival

plateaus for L > 16, as shown in Fig. 3(a), whereas the inverse

of the Hilbert space dimension characterizing the scaling of a

random state shows an expected rapid exponential decrease
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with the system size. The plateaued behavior in the scaling

suggests that QMBS states persist in the regime of large sys-

tem size approaching the thermodynamic limit.

MANY-BODY SCARS ON A COMB

The programmable feature of our SC circuit allows us to

emulate topology beyond one dimension. We have experi-

mentally studied QMBS states in a system with a more com-

plex qubit structure illustrated in Fig. 4(a) – a comb geometry

which consists of a 1D “backbone” decorated with linear “off-

shoots”. Previous studies of quantum comb systems with off-

shoots of random lengths were shown to exhibit localization,

including “compact” localized states for which the localiza-

tion length can vanish along the backbone [33, 54]. In our

realization, we take the offshoots to be of the same length,

and we fix the numbers of qubits and photons to be L = 20

and N = 10. We consider each offshoot to be a dimer and, as

in the 1D case, we set the inter dimer couplings to Je/2π ≃ −6

MHz and the intra dimer ones to Ja/2π ≃ −9 MHz. In con-

trast to the chain geometry, the QMBS states in the comb ge-

ometry are |Θ〉 = |d+d+ · · · 〉 and |Θ′〉 = |d−d− · · · 〉. These

states are also characteristically distinct from the conventional

thermalizing states, as revealed by the squared Fourier ampli-

tude in Fig. 4(b). The striking contrast between a QMBS state

and a thermalizing state can be seen at a more detailed level

from Figs. 4(c-d), which show the time evolution of the im-

balance I(t), four-qubit fidelity, and entanglement entropy for

state |Θ′〉 and a typical thermalizing state.

DISCUSSION AND OUTLOOK

In summary, we have experimentally realized QMBS states

in a SC circuit that emulates quantum many-body systems ef-

fectively described by a non-constrained spin-1/2 XY model

with both one- and quasi-one-dimensional geometries. In con-

trast to existing experimental realizations in ultracold atomic

systems [45, 46], our work represents the first experimental

observation of QMBS states in a solid-state device. Moreover,

the underlying mechanism of scarring – approximate decou-

pling of a hypercube subgraph of the Hilbert space in the com-

putational basis – is fundamentally distinct from other QMBS

platforms. Our study provides the first in-depth characteriza-

tion of QMBS using quantum state tomography on large sub-

systems. By observing the population dynamics and entan-

glement entropy, we distinguished the weak ergodicity break-

ing associated with QMBS initial states from the conventional

thermalizing states.

According to “strong” ETH lore, large many-body systems

with Hilbert dimension in the range of tens or hundreds of

millions, should exhibit ergodic dynamics. Our study indi-

cates that QMBS states can arise in the SC processor even

when the system size is this large, opening the door to inves-

tigating QMBS states and other many-body phenomena with

an enormous Hilbert space in a feasible way, e.g., as in classi-

cal programmable computers. Our observation and character-

ization of long-lived quantum states in complex and strongly

interacting solid-state systems with inevitable imperfections

such as cross couplings between qubits, random disorders,

and environment-induced decoherence and dephasing lead to

direct applications. For example, the robustness of QMBS

states in solid-state systems can substantially extend the co-

herence time of specific quantum information operations such

as the generation of GHZ states. Our work points to the need

to further investigate non-thermal states in experimental plat-

forms to generate QMBS states against quantum thermaliza-

tion for quantum information and quantum metrology appli-

cations [55].
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posal for realizing quantum scars in the tilted 1D Fermi-

Hubbard model, Phys. Rev. Lett. 126, 210601 (2021).

[42] J. Ren, C. Liang, and C. Fang, Quasisym-

metry groups and many-body scar dynamics,

Phys. Rev. Lett. 126, 120604 (2021).

[43] P. Fendley, K. Sengupta, and S. Sachdev, Competing

density-wave orders in a one-dimensional hard-boson model,

Phys. Rev. B 69, 075106 (2004).

[44] I. Lesanovsky and H. Katsura, Interacting Fibonacci anyons in

a Rydberg gas, Phys. Rev. A 86, 041601 (2012).

[45] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,

H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
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METHODS

Device–We use a superconducting quantum processor in a

flip-chip package, which hosts a square of 6 × 6 transmon

qubits (Qi) with 60 couplers (Qc), each inserted in-between

two neighboring qubits, as shown in Fig. 1(a). Each qubit

(coupler) is a quantum two-level system with ground state |0〉
and excited state |1〉, whose energy separation can be dynam-

ically tuned in the frequency range 4.3 − 4.8 GHz (4.9 − 6.0

GHz). Each qubit has individual microwave (XY) and flux

(Z) controls and it is capacitively coupled to a readout res-

onator for state discrimination. Each coupler has an individ-

ual flux (Z) control and remains in the ground state during

the experiment. We use high-precision synchronized analog

signals to control the qubits and couplers, with microwave

pulses for qubit XY rotations and state readout, and square

flux pulses for tuning the qubit and coupler frequencies. A

complete experimental sequence consists of three stages: (1)

state preparation where single-qubit π pulses are applied to

half of the qubits, (2) multiqubit interaction stage where the

nearest neighboring qubit couplings are programmed by ad-

justing the couplers’ frequencies, and (3) the measurement

stage where all qubits are jointly read out. The values of the

relevant qubit parameters such as the qubit operation frequen-

cies, energy relaxation times (with mean about 50 µs) and

single-qubit randomized benchmarking fidelities (with mean

about 0.993) can be found in Table S1 of SM.

Effective model–We derive the effective spin-1/2 XY

model for our experimental superconducting processor. The

full Hamiltonian of the superconducting circuit-QED system

with both qubits and couplers is given by [56]

Hfull/~ =

L
∑

i=1

(

ωiS+i S−i +
ηi

2
S+i S+i S−i S−i

)

+

L−1
∑

c=1

(

ωcS+cS−c +
ηc

2
S+cS+cS−cS−c

)

+

L
∑

i, j=1

gi j(S−i S+j + S−jS+i ) −
∑

i,c

gic(S+i S−c + S−i S+c ),

(1)

where ωi (ωc) is the frequency of the ith qubit (c’s coupler),

S+
i

(S−
i
) is the creation (annihilation) operator of Qi, gi j (gic)

is the coupling strength between Qi and Q j (Qc), and the ro-

tating wave approximation is imposed on the qubit-coupler

and qubit-qubit couplings. The subscripts “i, j” and “c” rep-

resent the indices of qubits and couplers respectively. In

experiments, the anharmonicity ηi is much larger than the

couplings between the nearest neighboring qubits (typically

ηi/gi j > 50), so the full Hamiltonian (1) can be reduced to the

spin-1/2 XY Hamiltonian:

H/~ =
L
∑

i=1

ωiS+i S−i +
L−1
∑

c=1

ωcS+cS−c

+

L
∑

i, j=1

gi j(S−i S+j + S−jS+i ) −
∑

i,c

gic(S+i S−c + S−i S+c ).

(2)

We apply the Schrieffer-Wolff transformationU = eW to the

Hamiltonian with

W =
∑

c

∑

i

gic

∆ic

(S+i S−c − S−i S+c ),

since all qubits are far detuned from the couplers with |∆ic| =
|ωi − ωc | ≫ |gic|. The effective Hamiltonian can then be ap-

proximated as

Heff/~ ≈
∑

i, j

Ji j(S−i S+j + S+i S−j ) +
∑

i

ΩiS+i S−i , (3)

where the effective coupling strength and transition frequen-

cies are given by

Ji j = gi j +
∑

c

gicg jc

[ 1

∆ic

+
1

∆ jc

]

, (4)

Ωi = ωi +
∑

c

g2
ic

∆ic

, (5)

respectively. The strength of the indirect coupling can be

tuned by adjusting the coupler frequency, so the net coupling

strength for Qi and Q j can be dynamically tuned over a wide

range, typically from −15 × 2π MHz to 1 × 2π MHz.

Experimental sequence–Experimentally, we prepare a set

of product states as initial states and measure the final states

of all qubits as a function of the interaction time (see pulse

https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1088/1742-5468/ab3413
https://doi.org/10.1103/PhysRevB.95.115135
https://arxiv.org/abs/2104.02727
https://doi.org/10.1126/science.aao4309
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Qubits

Couplers

Figure 5. Experimental sequence with strongly interacting many-

body dynamics, where injecting a π pulse (red wave pulse) serves to

lift the two-level qubit from the ground state to the excited state.

sequence illustrated in Fig. (5). A typical experimental ses-

sion starts by preparing the initial product state of all qubits:

each qubit Qi is biased from its sweet spot to the correspond-

ing idle frequency, where we apply single-qubit XY rotations.

To prepare a high-fidelity state, during this period the cou-

plers are tuned such that the net couplings between neighbor-

ing qubits are turned off. To switch on the interactions among

the qubits, we bias all qubits to the interaction frequency and

tune the coupler frequencies to turn on the couplings between

neighboring qubits. After the interaction process, we bias all

qubits to their readout frequencies for measurements. All di-

rectly measured qubit occupation probabilities are corrected

to eliminate the measurement errors.
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Supplementary Materials

EXPERIMENTAL DETAILS

Device information. The superconducting quantum pro-

cessor is composed of 6 × 6 transmon qubits with tunable

couplers between adjacent qubits in rows and columns. Each

qubit has individual microwave (XY) and flux (Z) controls,

and is capacitively coupled to its corresponding readout res-

onator for state discrimination. Each coupler has an individual

flux (Z) control and remains in the ground state during an ex-

periment. All qubits and couplers are located on a sapphire

substrate (top chip), and most portion of the control/readout

lines and readout resonators are located on a silicon substrate

(bottom chip). Both chips have lithographically defined base

wirings made of tantalum, and are galvanically connected

via 9 µm-tall indium bumps directly deposited on tantalum.

The indium bumps are not only for ground connectivity, but

also for passing through control signals from the bottom chip,

which connects to external circuitry via aluminum bonding

wires, to the top chip where the qubits and couplers are lo-

cated.

Experiments are carried out using systems of up to 30

transmon qubits and 29 transmon-type couplers. Parameters

benchmarking the single-qubit performances are listed in Ta-

ble S1. The couplers are used to tune the coupling strength

between two neighboring qubits, where the tunable coupling

value is characterized by the pairwise one-photon swapping

dynamics. Figure S2 shows an example of adjusting this cou-

pling by tuning the coupler’s frequency.

We also measure all dominant cross couplings Jx between

qubits with separation distance
√

2a0. Most values of Jx/2π

fall in the range [0.3, 1.2] MHz, as shown in Fig. S3.

NUMERICAL PREDICTION OF QMBS IN SMALL

SYSTEMS

Quantum thermalization in isolated many-body systems is

associated with the properties of their energy eigenstates. If

the system obeys the Eigenstate Thermalization Hypothesis

(ETH), all eigenstates away from the edges of the spectrum

will behave similarly to thermal ensembles. For example,

the expection value of any generic observable with respect

to an eigenstate will only depend on its energy, and will

match the prediction of the micro-canonical ensemble in the

thermodynamic limit. As a consequence, quenching from a

generic quantum state will lead to fast thermalization of this

observable. Integrable systems such as the 1D spin-1/2 XY

model or the SSH chain strongly violates the ETH due to

their extensive number of conserved quantities. However, in-

tegrability is very fragile and will be broken in our SC de-

vice due to the presence of uneven cross couplings between

non-nearest-neighbor spins, even if these are much smaller in

strength that nearest-neighbor couplings. Here we numeri-

cally demonstrate that this leads to thermalization of the sys-

tem for the overwhelming majority of states. However, a few

special eigenstates are still violating the ETH, and this causes

non-ergodic dynamics from a small set of basis states. We

present numerical predictions of these QMBS states in sys-

tems of chain topology with regular (Jnn) and irregular (Jx)

non nearest-neighbor couplings as well as a comb tensor sys-

tem with irregular couplings Jx.

Quantum fidelity for scarred dynamics. The dynami-

cal evolution of a quantum state can be written as |Ψ(t)〉 =
∑

n〈En|Ψ(0)〉e−iEnt |En〉, where En and |En〉 =
∑

α cn,α|α〉 are

the eigenenergy and eigenvector of the n-th eigenstate, respec-

tively, and |α〉 labels the computational basis states.

In a conventional thermalizing system, for any physical ini-

tial state (e.g., chosen to be one of the product states |α〉),
its squared overlap with the energy eigenstates |〈En|Ψ(0)〉|2
is homogeneously distributed. Time evolution of the fidelity,

defined as F(t) = |〈Ψ(0)|Ψ(t)〉|2 = ∑n |〈Ψ|En〉|2e−iEn t, will

rapidly decay to zero as the phases are essentially random,

with tiny fluctuations proportional to the inverse Hilbert space

dimension. This means that the initial information encoded

in |Ψ(0)〉will uniformly diffuse across the entire Hilbert space

and, at late times, it cannot be measured by any local operator.

On the contrary, for the slowly thermalizing QMBS state,

the squared overlap |〈En|Ψ(0)〉|2 is appreciable only for a few

special scarred eigenstates which are effectively evenly spaced

in energy. In this case, the time evolution of the fidelity can

be approximated by only taking into account these states as

F(t) ≈ ∑sk
|〈Esk
|Ψ(0)〉|2e−iEsk

t, where Esk
denotes the eigenen-

ergy of the kth scarred eigenstate. Due to the approximately

equal energy spacing ∆E, the phases will be coherent again

after a time t = 2π/∆E, leading to revivals of the wavefunc-

tion.

To illustrate these points, in Fig. S1 we present exact diago-

nalization study of scarred eigenstates and fidelity dynamics,

contrasting them with thermalizing states. We consider a lin-

ear array of L qubits at half filling, N = L/2, with the intra-

and inter-qubit couplings in ratio Ja/Je = 1.5. We also include

next-nearest neighbor couplings Jx which lead to the thermal-

ization of the system. The support of energy eigenstates on

product states, shown in Fig. S1(a), reveals a concentration of

a QMBS eigenstate on few computational basis states. In con-

trast, a typical thermalizing state is uniformly spread across

the Hilbert space. Moreover, as explained in the main text,

the QMBS eigenstates can be probed by quenching the system

from the initial state |Π〉, which is a product state of dimers al-

ternating between 01 and 10 local configurations. For such an

initial state, quench dynamics leads to revivals in the quantum

fidelity [Fig. S1(b)] which are absent for thermalizing initial

states [inset of Fig. S1(b)].

QMBS states in a chain system subject to regular per-

turbations. As cross couplings in our SC device are irregular

in strength, in our numerical simulations we choose them to be

random in value in an experimentally–relevant range. How-

ever, to show that there is no need to add randomness to break

integrability and see the appearance of scarring, we will first
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Figure S1. (a) Visualizing a selected scarred eigenstate and an er-

godic eigenstate in the computational basis. Each vertex represents

a computational basis state |α〉, with the color denoting its contribu-

tion to the given eigenstate, |〈α|E〉|2 . One observes that the QMBS

state is strongly concentrated on a few basis states, with the high-

est overlap on the two QMBS states |Π〉 and |Π′〉 indicated by hexa-

grams. In contrast, the ergodic eigenstate is uniformly spread across

all basis states. The eigenstates are obtained for the chain geometry

with photon number N = L/2 = 4 and coupling ratio Ja/Je = 1.5.

Light gray line segments represent the various inter-qubit couplings

Ji j. (b) Simulated time evolution of the fidelity of the QMBS state

|Π〉 for N = L/2 = 7, where the thermalization process is much

slower than that of a random initial basis state (inset). Top row:

squared overlap between the initial product state and the eigenstates

|〈α|En〉|2. Coupling parameter values are Ja/2π = −9, Je/2π = −6,

and Jx/2π ∈ [0.3, 1.2] MHz.

ignore the cross coupling and a regular longer-range pertur-

bation instead. We thus apply the next-next-nearest-neighbor

couplings Jnn = Ji,i+3 that preserve the reflection symmetry.

We consider the chain structure of L = 18 and N = 9 with

open boundary conditions for the following parameter values:

Ja/2π = 1.5Ja/2π = −6 and Jnn/2π = 0.6 MHz. The collec-

tive dimerized states |Π〉 and |Π′〉 specified in Fig. 1(b) of the

main text have a large overlap with a set of special eigenstates

marked by red hexagrams in Figs. S4(a) and S4(b). These

eigenstates possess lower entanglement entropy than the con-

ventional states whose entropy obeys the volume law. The

time evolution of the fidelity, imbalance, and entanglement

entropy of the state |Π〉 and other randomly chosen initial

product states are also shown in Figs. S4(c-e). It can be seen

that the state |Π〉 is dynamically long-lived in comparison with

other initial states.

On top of the Jnn couplings, one can also add some pertur-

bations on the frequency term Ωi. These can take the form of

impurities located at the end of the chainΩL/2π = ΩL−1/2π =

3 MHZ, or of a staircase potential Ω2n−1/2π = Ω2n/2π = 0.8n

MHz with n = 1, 2, · · · ,N. In both cases, the perturbation is

constant within each dimer and we expect it to leave the |Π〉
state and all dimerized states unaffected. However, because

of the difference between dimers, it should lead to faster ther-

malization in the rest of the Hilbert space. This is confirmed

by our numerical simulation, as shown in Fig. S5.

QMBS states in a chain subject to irregular perturba-

tions. In the experimental superconducting circuit in Fig. 1(a)

of the main text, cross couplings Jx are the ones that break

the reflection symmetry as well as the integrability of the SSH

chain. Due to their variability of their strengths, we consider

these to be random in value within the range 2π × [0.3, 1.2]

MHz, which matches what we measure in the actual experi-

ment. We investigate the QMBS states in chain systems with

the SSH topology based on the effective Hamiltonian – Eq. (3)

in the main text – with the experimental parameter values

Ja/2π = Je/2π = −6 MHz. The numerical results for L = 18

and N = 9 are summarized in Fig. S6. The observed Wigner-

Dyson distribution of the level spacing indicates the “quantum

chaotic” nature of the system with a Gaussian distribution of

the density of states (DOS), as shown in Fig. S6(a). The val-

ues of the entanglement entropy of all the eigenstates is con-

sistent with a volume law, as it approaches the approximate

Page value L/2ln2 − 1/2 near the middle of the spectrum, as

shown in Fig. S6(b). The squared overlap between the col-

lective dimerized state |Π〉 and the eigenstates |En〉 is shown

in Fig. S6(c). On top of the bulk of thermal states, several

towers of states with a higher overlap with the |Π〉 states are

clearly visible. These are approximately equally spaced in en-

ergy, leading to the oscillatory dynamics that can be seen in

the fidelity and imbalance when starting from the |Π〉 state,

as shown in Figs. S6(d) and S6(e) respectively. The entan-

glement entropy of the scarred product state increases with

time more slowly than for conventional states, as shown in

Fig. S6(f). Figure S6(g) shows the scaling of the fidelity den-

sity of the scarred state, defined as (1/L)lnF(t = t1), where

t1 is the time of the first fidelity revival. The fidelity den-

sity converges to a constant value of about −0.09, which is

much higher than the scaling of 1/D (with D the dimension of

the Hilbert space at half-filling) expected from random states.

In addition, the revival behavior of the fidelity can be en-

hanced by increasing the coupling ratio Ja/Je. For example,

for Ja/Je = 2 and 2.5, the peak values of the fidelity and im-

balance become much larger than that for Ja/Je = 1.5. Simul-

taneously, the entanglement entropy is smaller, as shown by

the light green curves in Fig. S6(f).
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QMBS states in a comb tensor system subject to irregu-

lar perturbations. The comb tensor system has a quasi-one-

dimensional topology. Figure S7 shows the simulation results

for Ja/2π = 1.5Je/2π = −9 MHz and Jx/2π ∈ [0.3, 1.2] MHz,

which are similar to those of the 1D system. A difference is

that the collective dimer states in the comb tensor system are

|Θ〉 = |101010 · · · 〉 and |Θ′〉 = |010101 · · · 〉. Such a system

is ergodic even without cross coupling and the level-spacing

distribution in each symmetry sector is of the Wigner-Dyson

type.

POPULATION DYNAMICS ASSOCIATED WITH

SCARRING STATES

The revival fidelity over time can be expressed in term of

the overlap between the initial state and the eigenstates of the

system as,

F(t) = |〈ψ(t)|ψ(0)〉|2 =
∑

n

|cψn|2e−iEn t, (S1)

where cψn = 〈ψ(0)|En〉 and the time evolution of the wave-

function is given by

|ψ(t)〉 =
∑

n

cψ,ne−iEn t|En〉.

Because of the difficulty in directly measuring the fidelity,

we use an experimentally feasible quantity known as the im-

balance I(t) to replace the fidelity, which is defined as

I(t) =
1

L

L
∑

i=1

〈Sz
i
(0)〉〈Sz

i
(t)〉, (S2)

where 〈Sz
i
(t)〉 = 2ni(t)−1 with ni(t) being the population of Qi.

Here, we consider for the initial states the set of basis states

|α〉, where α = 1, 2, · · · ,D with D being the dimension of the

Hilbert space. The n-th eigenstate can be written in this basis

as |En〉 = cnα|α〉. The time evolution of the initial product state

is determined by |α(t)〉 = U(t)|α〉, where

U(t) = e−iH t =
∑

n

e−iEn t |En〉〈En|.

We get

〈Sz
i
(t)〉 = 〈α(t)|Sz

i
|α(t)〉

=
∑

n

∑

m

c∗αncαme−i(Em−En)t〈En|Sz
i
|Em〉

=
∑

n

∑

m

c∗αncαme−i(Em−En)t
∑

β

∑

γ

c∗γncβm〈γ|Sz
i
|β〉

=
∑

n

∑

m

∑

β

sβ,ic
∗
αncαmc∗βncβme−i(Em−En)t,

(S3)

where sβ,i = 1 or −1 for states |1〉i or |0〉i. The imbalance is

thus given by

I(t) =
1

L

L
∑

i=1

∑

n

∑

m

∑

β

sα,i sβ,i
(

c∗αncαmc∗βncβm

)

e−i(Em−En)t,

(S4)

where the subscripts i, j, n,m, and α, β, γ are the qubit, eigen-

state and basis state indices, respectively.

The imbalance dynamics of the scarred states is dominated

by a set of specific eigenstates, such as those indicated by the

red crosses in Fig. S6(d). As shown in Figs. S6(c) and S6(d),

the squared overlap of the eigenstates with the scarred state

|Π〉 exhibits L/2+1 peaks with a constant energy interval ∆E,

while a conventional thermalizing state has a uniform overlap

with the eigenstates. For example, for the system of size L =

14 with 8 specific eigenstates, the squared overlaps denoted

as a2
1
, a2

2
, a2

3
, and a2

4
with the respective eigenenergies ±∆/2,

±3∆/2, ±5∆/2, and ±7∆/2 satisfy the inequality a2
±1
> a2

±2
>

a2
±3
> · · · .

The main terms in the overlap can be estimated from the

formula of imbalance that can be written as

I(t) ≈ I0 +

4
∑

k,l=−4

a2
ka2

l e−i(k−l)∆Et , (S5)

where I0 is the contribution from other eigenstates. For a4
±1
≫

a4
±2
≫ a4

±3
≫ a4

±4
and a2

k
= a2

−k
(with k = 1, 2, 3, 4), we have

I(t) − I0 ≈ 2(2a2
4a2

3 + 2a2
3a2

2 + 2a2
2a2

1 + a4
1) cos(∆Et)

+ 2(2a2
1a2

2 + 2a2
3a2

1 + 2a2
2a2

4) cos(2∆Et)

+ 2(2a2
4a2

1 + 2a2
3a2

1 + a4
2) cos(3∆Et)

+ 2(2a2
4a2

1 + 2a2
3a2

2) cos(4∆Et)

+ 2(2a2
4a2

2 + a4
3) cos(5∆Et)

+ 4a2
4a2

3 cos(6∆Et) + 2a4
4 cos(7∆Et)

≈ (4a2
2a2

1 + 2a4
1) cos(∆Et).

(S6)

This example shows that the Fourier transformation of the im-

balance dynamics contains only one peak, as shown in Fig. 2

of the main text, whereas that of the fidelity dynamics has a set

of peaks. The conventional thermalized states are uniformly

distributed over the eigenstates, so their imbalance dynamics

rapidly decay to zero.

COMPARISON BETWEEN EXPERIMENTAL AND

NUMERICAL RESULTS IN SYSTEMS OF VARYING SIZES

Population dynamics at each qubit. Figure S8(a) shows

the experimentally measured and numerically calculated im-

balances versus the interaction time for a chain system of size

L = 20, which agree with each other. The squared Fourier

amplitudes of the scarred states |Π〉 (|Π′〉) are much higher

than those of the conventional thermalizing states, as shown in
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Fig. S8(b). The experimental and numerical population evo-

lution of each qubit in a 20-qubit chain for Ja/Je = 1.5 are

shown in Fig. S8(c).

Size dependence of the characterizing quantities. We

measure the time evolution of the imbalance, fidelity, and

four-qubit entanglement entropy for different system sizes, as

shown in Fig. S9. For the collective dimerized states, these

characterizing quantities exhibit highly consistent behaviors

for sizes ranging from L = 12 to 30. Note that the data here

has been used to generate the synthesized results in Fig. 4 of

the main text.

QMBS STATES WITH PERIODIC BOUNDARY

CONDITIONS

We find scarred features of the collective dimerized states

become weak with the periodic boundary condition (PBC) for

L/2 ∈ odd, which is confirmed in the experment of 30-qubit

chain with a periodic boundary condition, as shown as the fi-

delity and entanglement entropy in Fig. S10.
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Table S1. Device parameters: ω0
j

is the transition frequency of Q j with zero flux bias, known as the sweet spot; ωi
j is the idle frequency of Q j

where single-qubit XY rotations are applied and the average single-qubit gate error esq is measured via randomized benchmarking. All qubits

are flux (Z) biased to ωI/2π ≈ 4.375 GHz to activate the interaction, where the energy relaxation time T1, j and the Ramsey dephasing time T ∗
2, j

of each qubit Q j are measured.

ω0
j
/2π (GHz) ωi

j/2π (GHz) esq (%) T1, j (µs) T ∗
2, j

(µs)

Q1 4.826 4.795 0.26 71.5 2.2

Q2 4.880 4.420 0.18 75.5 2.3

Q3 5.025 4.370 0.62 78.0 2.0

Q4 4.984 4.310 0.69 62.5 1.8

Q5 4.906 4.285 0.61 53.3 1.9

Q6 4.936 4.810 0.58 37.1 2.9

Q7 4.963 4.375 0.80 70.7 1.9

Q8 4.949 4.305 0.69 43.5 2.4

Q9 4.992 4.695 0.60 56.8 2.0

Q10 4.856 4.745 0.40 60.2 2.0

Q11 4.855 4.360 0.70 63.4 2.0

Q12 4.825 4.490 0.48 60.6 2.4

Q13 4.875 4.772 0.55 55.9 2.4

Q14 4.845 4.720 0.70 48.6 2.3

Q15 4.904 4.350 1.94 48.4 1.2

Q16 5.043 4.320 0.74 49.9 2.0

Q17 5.012 4.660 1.31 53.8 2.2

Q18 5.025 4.758 0.43 55.9 1.2

Q19 4.984 4.436 0.73 35.6 1.2

Q20 4.975 4.800 0.49 34.9 1.7

Q21 4.976 4.655 0.48 35.7 1.3

Q22 4.927 4.353 0.71 45.9 1.5

Q23 4.947 4.749 0.74 49.7 1.8

Q24 4.975 4.625 0.73 52.2 2.0

Q25 4.974 4.801 0.76 37.0 1.7

Q26 4.916 4.340 0.92 50.1 1.8

Q27 4.890 4.430 0.56 50.9 1.2

Q28 4.920 4.640 0.72 47.9 1.3

Q29 4.874 4.710 0.40 46.2 1.5

Q30 4.844 4.330 0.40 70.3 2.5

Average - - 0.66 53.4 1.9
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Figure S2. Effective coupling between two nearest-neighbor qubits as a function of the amplitude of the flux (Z) bias on the coupler. We start

by preparing Q11-Q12 in |10〉, then turn on the effective coupling by applying the flux (Z) bias to position the coupler at ∼ 5 GHz (originally

idling at ∼ 6 GHz) for the interaction time, and finally measure the resulting probability P|01〉 for the two qubits to be in the state |01〉. (a)

P|01〉 as a function of both the Z bias amplitude and the interaction time. (b) Effective coupling strength between Q11 and Q12 versus the

Z bias amplitude, obtained by Fourier transform of the data in (a). The schematic inset displays a qubit-coupler-qubit structure during the

measurement.

a b

Figure S3. The dominant cross coupling Jx/2π [Hz] value from experimental measurements.
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Figure S4. Example of QMBS in a chain. The chain parameters are L = 18, N = 9, Ja/2π = −6, Je/2π = −4, and Jnn/2π = 0.72 MHz. (a)

Level-spacing statistics after resolving the inversion symmetry. The black circles show the numerical data, while the dotted lines show the

expected distributions for an integrable (Poisson) and a chaotic (Wigner-Dyson) model. The inset shows the density of states. (b) Entanglement

entropy of all eigenstates, with the horizontal dashed line showing the approximate Page value (L/2)ln2 − 1/2. (c) Squared overlap between

the collective dimerized state |Π〉 and the eigenstates |En〉. In (b) and (c), the red hexagrams mark the major eigenstates that contribute to the

scarring dynamics. (d-f) Time evolution of fidelity, imbalance, and entanglement entropy for the collective dimerized state (green) and other

random states (light orange).
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Figure S5. Example of QMBS in a chain. The chain parameters are L = 18, N = 9, Ja/2π = −6, and Je/2π = −4 MHz. (a-c) Squared overlap

between the collective dimerized state |Π〉 and the eigenstates |En〉, time evolution of fidelity, and entanglement entropy for the collective

dimerized state (green) and other randomly chosen product states (light orange) for Jnn/2π = 0.7 MHz and impurities ΩL/2π = ΩL−1/2π = 3

MHz. (d-f) Similar to (a-c), but with a staircase perturbation Ω2n−1/2π = Ω2n/2π = 0.8n MHz with n = 1, 2, · · · ,N.
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Figure S6. QMBS with random cross couplings. The chain parameters are L = 18, N = 9, Ja/2π = −6, Je/2π = −4, and Jx/2π ∈ [0.3, 1.2]

MHz. (a) Level-spacing statistics, the black circles show the numerical data, while the dotted lines show the expected distributions for an

integrable (Poisson) and a chaotic (Wigner-Dyson) model. The inset shows the density of states. (b) Entanglement entropy of all eigenstates,

with the horizontal dashed line showing the approximate Page value (L/2)ln2−1/2. (c) Squared overlap between the collective dimerized state

|Π〉 and the eigenstates |En〉. In (b) and (c), the red hexagrams mark the major eigenstates that contribute to the scarring dynamics. (d-f) Time

evolution of fidelity, imbalance, and entanglement entropy for the collective dimerized state (green) and other random states (light orange).

(g) Fidelity density of the QMBS state |Π〉 and inverse Hilbert space dimension 1/D as a function of 1/L. For the cases with coupling ratio

Ja/Je = 2 and 2.5, Je/2π = −4 MHz and Jx/2π ∈ [0.3, 1.2] MHz are fixed and Ja/2π is increased to −8 and −10 MHz respectively.



19

0 1 2 3 4 5
0

0.5

1

WD
Possion
Num.

0

2

4

6

-15 -10 -5 0 5 10 15

-10

-5

0

0 50 100 150 200 250 300 350 400
0

0.5

1

0 50 100 150 200 250 300 350 400
0

0.5

1

0 50 100 150 200 250 300 350 400
0

2

4

6

0.05 0.1 0.15
-0.7

0

Scar
1/D

a

b

c

d

e

f

Figure S7. QMBS in a comb tensor configuration. The system parameters are L = 18 and N = 9, Ja/2π = 1.5Je/2π = −9 MHz and

Jx/2π ∈ [0.3, 1.2] MHz,. (a) Level-spacing statistics, the black circles show the numerical data, while the dotted lines show the expected

distributions for an integrable (Poisson) and a chaotic (Wigner-Dyson) model. The inset shows the density of states. (b) Entanglement entropy

of all eigenstates, with the horizontal dashed line showing the approximate Page value (L/2)ln2 − 1/2. (c) Squared overlap between the

collective dimerized state |Θ〉 and the eigenstates |En〉. In (b) and (c), the red hexagrams mark the major eigenstates that contribute to the

scarring dynamics. (d-f) Time evolution of fidelity, imbalance, and entanglement entropy for the collective dimerized state (green) and other

random states (light orange). Inset of (d) shows the fidelity density for the |Θ〉 state and the inverse Hilbert space dimension 1/D as a function

of 1/L.
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Figure S8. Behaviors of imbalance of |Π〉. (a) Imbalance of |Π〉 as a function of the interaction time for L = 20 from experimental measurement

(green hexagrams) and numerical simulation (orange curve). (b) Squared Fourier amplitude at the revival frequency from randomly chosen

initial product states. The green hexagrams show the |Π〉 and |Π′〉 states. (c) Time evolution of qubit population for the 20-qubit chain

from experimental data (green circles) and simulation results (solid orange curves). The numerical parameter values are Ja/2π = −9 MHz,

Je/2π = −6 MHz, and Jx/2π is randomly chosen from the range [0.3, 1.2] MHz.
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Figure S9. Behaviors of imbalance of |Π〉 at different system sizes. (a,b) Experimentally measured and numerically calculated imbalance

versus interaction time for system sizes ranging from L = 12 to 30. (c,d) Experimental and numerical four-qubit entanglement entropy versus

interaction time for the same set of system sizes. For numerical simulations, the maximum size is L = 20 due to computational constraints. (e)

Four-qubit fidelity as a function of interaction time near the first revival.
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Figure S10. Comparison of four-qubit fidelity (upper) and entanglement entropy (lower) of scarred states for PBC and OBC.


