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We theoretically study the quench dynamics for an isolated Heisenberg spin chain with a random on-site
magnetic field, which is one of the paradigmatic models of a many-body localization transition. We use the
time-dependent variational principle as applied to matrix product states, which allows us to controllably study
chains of a length up to L = 100 spins, i.e., much larger than L ≃ 20 that can be treated via exact diagonalization.
For the analysis of the data, three complementary approaches are used: (i) determination of the exponent β which
characterizes the power-law decay of the antiferromagnetic imbalance with time; (ii) similar determination of
the exponent β� which characterizes the decay of a Schmidt gap in the entanglement spectrum; and (iii) machine
learning with the use, as an input, of the time dependence of the spin densities in the whole chain. We find that
the consideration of the larger system sizes substantially increases the estimate for the critical disorder Wc that
separates the ergodic and many-body localized regimes, compared to the values of Wc in the literature. On the
ergodic side of the transition, there is a broad interval of the strength of disorder with slow subdiffusive transport.
In this regime, the exponents β and β� increase, with increasing L, for relatively small L but saturate for L ≃ 50,
indicating that these slow power laws survive in the thermodynamic limit. From a technical perspective, we
develop an adaptation of the “learning by confusion” machine-learning approach that can determine Wc.

DOI: 10.1103/PhysRevB.98.174202

I. INTRODUCTION

Many-body localization (MBL) refers to the localization
of particles by disorder in the presence of interactions at
nonzero energy density (for recent reviews, see [1–3]), as
opposed to the conventional Anderson localization [4] which
describes noninteracting particles in the presence of disorder.
MBL is of fundamental interest for understanding metal-
insulator transitions and disordered superconductors. From a
numerical perspective, MBL is a notoriously difficult problem
to describe because of its many-body nature, sensitivity to
finite-size effects, and the requirement for ensemble averaging
over many realizations of disorder. On a conceptual level, the
study of MBL ties to the thermalization of quantum systems
and the bridge between microscopic dynamics and quantum
statistics [5].

The study of MBL did not begin in earnest until the devel-
opment of landmark theories [6,7] predicting a temperature-
driven transition to a localized phase, now known as an
MBL phase. At the same time, advances in the increase of
computational power and the development of new algorithms
based on tensor networks like matrix product states (MPS)
have dramatically accelerated the numerical study of disor-
dered interacting systems, albeit thus far restricted to ground

*Corresponding author: elmer.doggen@kit.edu

states, short times, boundary-driven systems, or very strong
disorder [8–12]. Experimentally, MBL has been reported in
ultracold atoms [13,14], trapped ions [15], and dipolar spins
in diamond [16]. Analytically, the existence of an MBL region
in the phase diagram of a disordered quantum spin chain
has been proven based on an assumption about energy level
repulsion [17].

In this work, we investigate a Heisenberg chain with
isotropic interactions and a random magnetic field, which has
become one of the paradigmatic models for the investigation
of the MBL-related physics. In particular, Ref. [18] consid-
ered system sizes L from L = 8 to L = 16 and found crossing
points in level statistics and relaxation of spin modulations
plotted as a function of disorder W (in notations of the present
work) for various system sizes. By analogy with the scaling
analysis [19] of the Anderson transition in noninteracting
systems, these crossing points may serve as an indication of
the MBL transition [20]. However, a rather strong drift of
the crossing points was found, from W ≃ 2 to W ≃ 3, as
L increased from 8 to 16, making it difficult to locate the
transition. In a later work [21], systems of larger sizes, up to
L = 22, were investigated via exact diagonalization (for the
current state-of-the-art, see Ref. [22]), and the estimate for
the transition point Wc ≃ 3.7 was obtained, consistent with
the upper bound Wc � 4 found in Ref. [23]. On the other
hand, Ref. [24] used a numerical linked-cluster expansion
for the entanglement entropy in the thermodynamic limit and

2469-9950/2018/98(17)/174202(13) 174202-1 ©2018 American Physical Society
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obtained a lower bound Wc � 4.5 which appears to be in
conflict with the exact-diagonalization results quoted above.

All in all, the current status of the numerically obtained
results is still controversial; simulations of small systems can
easily miss physics relevant at longer length scales even if
ameliorated by finite-size scaling approaches. Most impor-
tantly, the strong dependence of the apparent transition point
on the system size calls for a detailed numerical study of
physical observables characterizing the MBL transition in
systems of size L that is well beyond the reach of exact diag-
onalization. To achieve this goal, we consider the MPS-based
approach, which allows us to controllably study the long-time
quench dynamics around the MBL transition in spin chains
of length up to L = 100. We also apply machine-learning
techniques to further analyze the data obtained from MPS.

Clearly, not only the position of the MBL transition is of
interest but also a more detailed insight into the physics of
phases around it. Previous works on one-dimensional (1D)
systems indicated that a part of the delocalized phase ad-
jacent to the transition is characterized by a slow, subdif-
fusive dynamics [25–29]. However, it was also found [30],
within exact-diagonalization studies of systems with size up to
L = 24, that an apparent exponent characterizing this sub-
diffusive phase changes substantially with the system size.
This poses a question of whether the subdiffusive behavior
is a genuine property of the system in the L → ∞ limit, or
merely a transient feature which characterizes the relatively
small systems. Previously, in larger systems a transition from
diffusive to subdiffusive behavior was reported at relatively
weak disorder W ≈ 0.55 [8]; however, to date numerical re-
sults for large systems at stronger disorder are still lacking. It
is therefore important to numerically study substantially larger
systems in the crossover from the ergodic to the localized
regime, which elucidates the nature of the MBL transition.
This is another motivation for the present investigation of the
MBL physics in a Heisenberg chain within the MPS-based
approach.

II. MODEL AND METHOD

A. Disordered Heisenberg XXZ chain

We consider the Heisenberg XXZ chain with an on-site
random field on a lattice of length L with open boundary
conditions, as described by the Hamiltonian

H =
L

∑

i=1

[

J

2
(S+

i S−
i+1 + S−

i S+
i+1) + �Sz

i S
z
i+1 + hiS

z
i

]

. (1)

Here S+
i , S−

i , and Sz
i are the standard spin-1/2 Pauli op-

erators corresponding to the site i, and the on-site field hi

takes random values according to a uniform distribution hi ∈
[−W,W ]. In the following, we set J, h̄ ≡ 1 as a choice of
units, and put � = 1, i.e., we consider the isotropic Heisen-
berg chain, unless stated otherwise. Using a Jordan-Wigner
transformation, this model can be mapped to the model of
nearest-neighbor interacting hard-core bosons with an on-
site disordered potential. We consider the zero spin sector
∑

i〈S
z
i 〉 = 0, which corresponds to half-filling in the particle

picture. The Anderson model of noninteracting particles in a
disordered potential is retrieved for � = 0.

The model (1) was used to discuss the MBL transition
and the subdiffusive behavior in the delocalized phase (see
the references above). Specifically, in the model (1), an MBL
regime, characterized by area-law entanglement, has been
identified for strong disorder. On the other hand, for weak
disorder an ergodic regime has been reported, described by
the eigenstate thermalization hypothesis (ETH) [31,32] and
exhibiting volume-law entanglement.

B. Time-dependent variational principle

To study the model (1), we employ a recently developed
numerical method for describing the time evolution of 1D
lattice systems, which is based on the Dirac-Frenkel time-
dependent variational principle (TDVP) [33] as applied to
MPS [34,35]. Contrary to traditional time-evolution algo-
rithms, such as the time-dependent density matrix renor-
malization group (t-DMRG) [36,37] or time-evolving block
decimation (TEBD) [38], the TDVP does not rely on a Suzuki-
Trotter decomposition of local Hamiltonian terms. Instead, the
time-dependent wave function |ψ〉(t ) is given by

d|ψ〉
dt

= −iPMPSH|ψ〉, (2)

where PMPS projects the time-evolved wave function back
onto the variational MPS manifold, with a dimension typically
much smaller than the dimension of the complete Hilbert
space 2L.

From the perspective of accuracy of MPS simulations,
the worst-case scenario for a local Hamiltonian is realized
when the von Neumann entanglement entropy for a bipartition
of the chain into two parts grows linearly [39], which is
known as volume-law entanglement and should be contrasted
to the area-law entanglement characteristic of localized sys-
tems [40]. It is well known that in such a worst-case scenario,
the required bond dimension χ (which controls the dimension
of the variational manifold) grows exponentially in time if it
is required that the truncation error is kept below some finite
value. This provides a fundamental limit to the maximum
time reached using MPS simulations under the condition that
〈ψMPS|ψexact〉 ≈ 1 [41].

Within the traditional DMRG framework, recent develop-
ments have extended the maximum possible times signifi-
cantly [42], although the fundamental limit remains. On the
other hand, under certain conditions it is expected [43–45] that
the TDVP can provide reasonable estimates for the transport
properties despite a potentially large truncation error. We
stress, however, that this distinction between the TDVP and
“traditional” MPS methods is only relevant relatively deep in
the ergodic regime. In the MBL phase, the entanglement en-
tropy grows logarithmically with time [25,40,46] and reaches
the cutoff set by the bond dimension at times that are typically
much longer than the simulation time. This renders the “tradi-
tional” MPS methods accurate in the MBL phase [9,47]. Im-
portantly, close to the MBL transition, entanglement growth is
slow even on the ergodic side, and, in this critical regime, the
TDVP is expected to be reliable in a large time window. A key
advantage of the method is that unlike t-DMRG and TEBD, it
conserves the total energy by construction.
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In the present work, we focus on the range of sufficiently
strong disorder W � 2, which includes the whole MBL phase
as well as a part of the delocalized phase. As we have
verified (see detailed explanations in Sec. III below and in
the Appendix), the MPS approach indeed works reliably up
to long times considered in our study not only in the MBL
phase but also in the delocalized phase with W � 2 since the
corresponding dynamics is very slow.

III. NUMERICAL RESULTS (TDVP)

In this section, we will detail results obtained using the
direct analysis of the TDVP data for the quench dynamics in
disordered Heisenberg chains (1) of lengths L = 16, 50, and
100 with disorder strength ranging from W = 2 to W = 8.

A. Imbalance

We follow the time dynamics of an initial unentangled
(product) Néel state |ψ〉 = {↑,↓, . . .}, where we consider
many different realizations R ≫ 1 of disorder. Whether the
system is in the delocalized or localized phase can be quanti-
fied using the imbalance:

I (t ) =
1

L

L
∑

i=1

(−1)i
〈

Sz
i (t )

〉

, (3)

a quantity that measures how much of the initial antiferromag-
netic order remains at time t [49]. By definition, I (0) = 1,
and for a fully ergodic, thermalized state, I (t ) → 0 at long
times on average, which means that the system completely
loses memory of the initial antiferromagnetic order. The dis-
order average is denoted as I (t ) ≡ (1/R)

∑

r Ir (t ), where
r = {1, . . . , R} labels the different realizations.

The imbalance is appealing from several perspectives. It is
a global characteristic of the system which signifies its degree
of localization, but at the same time it is computed from
purely local quantities (average spins). In view of this locality,
the imbalance can be readily measured in an experimental
setting using cold atoms [13]. We can also compare directly
the localization properties of an interacting system to those of
noninteracting Anderson insulators. The noninteracting value
IA(t ) is obtained by computing the time evolution of the
Néel state through the exact diagonalization of (1) with � = 0
(cf. Ref. [23]). In Fig. 1, we show the dynamics of imbalance
for both the interacting and noninteracting cases using the
parameters L = 100, W = {2, 4, 8}.

For a thermalized system, a power-law decay I (t ) ∝ t−β

is expected [49]. In fact, within the Boltzmann equation,
one would get an exponential decay with time, since the
imbalance corresponds to a mode with a large wave vector
q (namely, q = π ) describing, in contrast to the total spin,
a nonconserved quantity. However, taking into account the
coupling of this mode to the low-q diffusive (or subdiffusive)
mode associated with the spin density spreading suggests a
power-law decay (by analogy with the long-time tails related
to the return probability that are found for other observ-
ables). Indeed, previous numerical results indicated that the
exponent β of the imbalance decay is qualitatively similar to
the subdiffusion exponent found from the return probability,
the mean-square displacement of a spin excitation, and the

low-frequency dependence of the conductivity (see Ref. [49],
and references therein).

In Fig. 2, we show the exponent β computed numerically
using a least-squares fitting algorithm for various values of
W and L from the imbalance at sufficiently long times t ∈
[50, 100]. We choose W = 2 as the weakest disorder to be
considered. This is based on the requirement that the value
χ = 64 of the bond dimension used in our computations is
sufficient to ensure that the value of β is insensitive to a further
increase of χ (see the Appendix). As a further check, we
compute β using a completely independent implementation
of the TEBD algorithm for W = 5, L = 100, χ = 64, finding
agreement within error bars. In addition, for a few values
of W � 4 and for the system size L = 100 we follow the
time evolution until t = 300 using χ = 32 and find good
agreement with β obtained in the window t ∈ [50, 100] (not
shown), as well as checking that for bond dimension up to
χ = 96, β is insensitive to increasing the time window up
to t = 200 for L = 50 and W = 5 (see the Appendix). The
number of different disorder realizations for each choice of W

and L is typically of the order of 500–1000.
For small systems that can be treated by exact diago-

nalization (such as L = 16), we find good agreement with
previous results [29]. Specifically, the value of β, which
continuously decreases with increasing W , vanishes within
error bars at W ≈ 4. However, an increase of the system size
from L = 16 to L = 50 leads to a substantial increase of β,
consistent with a trend observed for relatively small systems
in Ref. [30]. As a result, the value of disorder for which β

vanishes also increases [50]. This is also consistent with the
findings in Ref. [51], which suggest that exact diagonalization
approaches are subject to strong finite-size and boundary
corrections. On the other hand, the results for β obtained for
L = 50 and L = 100 agree within error bars. We have further
diminished finite-size effects by excluding the ten sites on
each far end of the chain for the cases L = 50, 100 for the
computation of I, so that we only consider the bulk of the
system.

We thus conclude that, after the initial increase for L �
50, the exponent β saturates, i.e., essentially reaches its
thermodynamic-limit (L → ∞) value. This implies two im-
portant conclusions. First, the slow, subdiffusive transport
appears to be a genuine property of a long chain on the
ergodic side of the MBL transition and not just a finite-size
effect. Second, the estimated value of the critical disorder is
Wc � 5, i.e., considerably larger than the values suggested
by the exact-diagonalization analysis of small systems. More
precisely, an estimated lower bound is determined by consid-
ering the lower end of our error estimate with two standard
deviations, plus a small systematic error shown as triangle
symbols in Fig. 2 [52], which yields a lower bound of Wc ≈
5.5–5.75 (see the Appendix). Requiring a higher confidence
of 4σ intervals yields Wc ≈ 5. For weaker disorder, we can
confidently conclude the system is ergodic.

In order to understand how representative the average
value of the imbalance is, we have also studied its fluctua-
tions, J (t ) ≡ I (t ) − I (t ). The root-mean-square amplitude

of the fluctuations of the imbalance,
√

J 2(t ), has been found
to be very slowly varying with time for long times. This
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FIG. 1. (a) Spin imbalance (3) as a function of time t for a spin chain of length L = 100 and various disorder strengths W = 2, 4, 8. The
blue line shows the disorder average over R = O(103) realizations and the dotted black line shows the noninteracting case � = 0 using 10 000
independent disorder realizations. The red (green) line shows the most (least) localized single realization. (b) Probability distribution function
of the fluctuations of the imbalance around the average J (t ) ≡ I(t ) − I(t ) for W = 2 (top), W = 8 (bottom), L = 50 (green), and L = 100
(blue) over the time interval t ∈ [50, 100]. The solid (dashed) red line shows a Gaussian fit for L = 100 (L = 50).

allows us to consider the probability density function
P [J (t )], where t ∈ [50, 100]. In this window, J (t ) is, to an
excellent approximation, Gaussian distributed [see Fig. 1(b)],
with a standard deviation σ roughly proportional to 1/

√
L.

This implies self-averaging of the imbalance. A similar behav-
ior is found for a noninteracting, Anderson-localized system.
The wide distributions for smaller system sizes complicate
the accurate determination of β around the transition, so that
considering larger system sizes is very beneficial also from
this point of view.

B. Entanglement and Schmidt gap

The entropy of entanglement characterizes the spread of
correlations in the system. On the ergodic side, power laws
have been predicted for the growth of entanglement close to
the transition [29]: S(t ) ∝ tβS . Another quantity of interest

FIG. 2. Power-law exponent β corresponding to the decay of
the imbalance I ∝ t−β over the window t ∈ [50, 100], for various
system sizes L. For the cases L = 50 and 100, the ten sites near each
edge of the chain were not considered. The square symbol shows
the result for an independent implementation of the time-evolving
block decimation (TEBD) algorithm [48]. Triangles indicate a weak
finite-time decay of IA for the noninteracting case � = 0, L = 100.
Error bars are 1σ intervals based on a bootstrapping procedure.

is the so-called Schmidt gap �, which is defined as the
difference between the two largest values of the entangle-
ment spectrum (see Ref. [40], and references therein) for
a bipartition of the system into subsystems A and B: � =
λ1 − λ2. Here the entanglement eigenvalues λi � 0 [53] are
the eigenvalues of the effective entanglement Hamiltonian
He defined through the reduced density matrix of the system
after tracing out the degrees of freedom of the subsystem B:
He = − ln TrBρ [54].

To explain the connection between the Schmidt gap and the
more frequently used von Neumann entropy of entanglement,
we recall that the latter can be expressed in terms of the
entanglement eigenvalues λi as follows:

S = −
∑

i

λi log2 λi ≃ −
χ

∑

i=1

λi log2 λi . (4)

Here the eigenvalues λi are ordered in a descending way by
convention. The approximate equality holds as long as the
entanglement remains relatively low. For our problem, we
find that the effect of the cutoff by the bond dimension χ is
negligible for W � 4 from the perspective of S (see Fig. 3).

Contrary to the entanglement entropy, the evaluation of
the Schmidt gap requires knowledge of only the first two
entanglement eigenvalues and hence is less sensitive to the
value of the bond dimension. A further appealing property of
this quantity is that, for a thermalized system, �(t ) → 0 for
t → ∞, while for a localized system it is expected that the
Schmidt gap remains finite in the long-time limit, �(t ) →
O(1), or at most decays logarithmically. In this sense, the
t → ∞ behavior of the Schmidt gap allows one to distinguish
between the localized and delocalized phases in the same way
as for the imbalance.

The entanglement entropy and Schmidt gap for L = 100
and representative choices of W are depicted in Figs. 3
and 4, respectively, which also show the distributions of
these quantities close to the final time t = 100 considered
here. The shape of the distributions found for the entropy
of entanglement is in qualitative agreement with a detailed
study of such distributions for eigenstates of small systems
using exact diagonalization [55]. That these distributions are
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FIG. 3. (a) The von Neumann entropy of entanglement S as a function of time for the same parameters as in Fig. 1. (b) Distributions of S

over the interval t ∈ [95, 100]. The blue (green) lines show the result for L = 100 (L = 50).

converged with respect to system size reflects the slow spread
of entanglement close to the transition (even on the ergodic
side). The entanglement itself is thus not suitable for de-
termining the location of the transition, since it is slowly
growing on both sides of it. The Schmidt gap, however, is
more promising in this regard.

We have determined the Schmidt gap by using a bipartition
in the middle of the chain. Interestingly, we find that the
averaged Schmidt gap shows in the delocalized phase a power-
law decay similar to that as I (t ). The corresponding power-
law exponent β� is shown in Fig. 5. The results demonstrate
a striking qualitative similarity to those for the imbalance
exponent β, Fig. 2. However, the found large-L values of β�

are somewhat above those for β. The corresponding estimate
for the critical disorder of the MBL transition obtained as a
point where the Schmidt gap exponent β� vanishes within
error bars is Wc ≃ 6, i.e., even larger than Wc ≃ 5 found
from results for the imbalance. We note that a recent study of
the Schmidt gap in relatively short chains up to L = 20 [56]
also found evidence for an increase of the critical disorder
compared to other methods. This is consistent with Fig. 5,
where we show that β� is less sensitive to system size than
β. For the entropy of entanglement S, however, we clearly
see the effect of the cutoff at S = 6 imposed by the bond
dimension χ = 64 [see Fig. 4(a), left panel], where the power-
law behavior is disturbed around t ≈ 30. Considering that

the transport properties have nonetheless converged with χ ,
this indicates that the TDVP can indeed provide reasonable
results even if there are significant cutoff effects in terms of
the entropy. Moreover, the Schmidt gap, which still shows
a clean power-law behavior at W = 2, appears to be less
sensitive to this numerical cutoff. This can be understood
as a consequence of the fact that the Schmidt gap is not
directly affected by the cutoff of the entanglement spectrum
[see Eq. (4)], whereas the entropy is. Note, however, that the
choice of bond dimension and the minimum W = 2 is based
on transport properties (see the Appendix).

IV. MACHINE LEARNING

To further corroborate our analysis, we apply methods
from machine learning [57], which has emerged recently as
a powerful tool to analyze localization phenomena [58–63],
to our data obtained using the TDVP. We use two algo-
rithms: a partially supervised approach that has previously
been employed in Ref. [58], and a fully unsupervised method
based on the “learning by confusion” scheme introduced in
Ref. [64]. The combination of traditional numerical analysis
and machine learning is mutually reinforcing: understanding
localization though machine learning amounts to learning
machine learning through localization.

FIG. 4. (a) The Schmidt gap � as a function of time for the same parameters as in Fig. 1. (b) Distributions of � over the interval t ∈
[95, 100]. The blue (green) lines show the result for L = 100 (L = 50).
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FIG. 5. Power-law exponent β� corresponding to the decay of
the disorder-averaged Schmidt gap � ∝ t−β� over the window t ∈
[50, 100], for various system sizes L. Error bars are 1σ intervals
based on a bootstrapping procedure.

A. Supervised classification algorithm

For the supervised learning approach, we train a feed-
forward neural network to distinguish data at two extremes
of our data set: W = 2 (delocalized) and W = 8 (presumed to
be localized). We choose a single hidden layer network with
a ReLU activation function for the hidden layer (of size ∼10)
and a Softmax activation function for the output layer (of size
2, corresponding to the two classes we are distinguishing). As
input data, we use time series 〈Sz

i (t )〉, i = 1 · · · L, evaluated
at equidistant time steps t ∈ [50, 51, . . . , 100] taken from the
full TDVP time evolution at W = 2 and W = 8. We choose
a simple cross entropy error function with ℓ2 regularization
(cf. Ref. [58]).

After convergence of the training set error, we apply
the trained network on a test set containing data at W = 2
and W = 8, finding a classification accuracy of larger than
99%. We subsequently apply the trained network to a
TDVP time series at intermediate disorder strengths W =
2.25, 2.5, . . . , 7.75, to determine the average confidence C

with which data corresponding to a given disorder strength
is classified as either belonging to the delocalized (W = 2)
or localized (W = 8) class of time series we trained with.
Successful training implies that C = 0 for W = 2 and C = 1
for W = 8, while C ∈ [0, 1] at intermediate disorder strengths
quantifies how similar the time evolution is to the extreme
values W = 2 and W = 8. The results are shown in Fig. 6.

This approach clearly indicates the formation of a plateau
for L = 100, suggesting the presence of a many-body local-
ized phase over a range of disorder strengths, but its thermal
counterpart gives way to an extended crossover region. In
contrast, no plateau or a less pronounced one is present in
the data for system sizes L = 16 and L = 50, respectively,
showing the importance of considering larger systems.

These results can be interpreted in analogy with the anal-
ysis of the power-law exponents β and β�: over a range
of disorder strengths, the imbalance does not decay and the
spin densities “look similar” to the case W = 8, down to
the critical disorder. However, the algorithm can still pick
up differences between a large value of the power law and

a small one, leading to a nonzero C even in the delocalized
regime, so that the behavior of β and 1 − C is qualitatively
similar (see Fig. 6, rightmost panel). The plateau, within error
bars, starts at W � 4.5 [65]. Hence, one should not expect the
shape of the curves to approach a steplike function in the limit
L → ∞ [the sharpening with system size can be associated
with the narrowing distributions J ; see Fig. 1(b)], in contrast
to level statistics [21]. A precise determination of the critical
disorder strength, relying on knowledge of the extent of the
“plateau” in the limit L → ∞, is therefore difficult to obtain
using this approach, and placing the transition for instance
at the midpoint C = 1/2 leads to an underestimate for the
critical disorder [58]. Nonetheless, in the region where β

vanishes within error bars, the supervised learning approach
is consistent with the analysis of the decay of the imbalance in
the sense that in this region (belonging to the MBL plateau, as
defined above) C � 0.99 for L = 100. In the next section, we
will detail an unsupervised method that is able to determine
Wc more precisely.

B. Unsupervised confusion algorithm

In Ref. [64] a scheme called “learning by confusion”
for the unsupervised detection of phase transitions for data
ordered along a one-dimensional parameter space (here, the
strength of disorder W ∈ [Wmin,Wmax]) has been proposed.
For this, an arbitrary parameter W0 is fixed and a feed-
forward neural network is trained (in a supervised fashion) to
distinguish data with W < W0 from data with W > W0. The
accuracy 〈A(W0)〉 of classification that the trained network
achieves when applied to a test set is evaluated. The process is
repeated for different choices of W0. The resulting function
〈A(W0)〉 has two global maxima at W0 = Wmin and W0 =
Wmax, where the accuracy is trivially 1 because all the data
can be classified as belonging to one phase. In Ref. [64] it was
observed that an additional local maximum of 〈A(W0)〉 occurs
when W0 equals the location of a phase transition Wc, as it
would be easiest for the network to classify the data into two
sets for this choice of separation. Thus, in the presence of a
single phase transition as a function of W0, the curve 〈A(W0)〉
is expected to take a W shape.

We apply this algorithm, using the same neural network
architecture and the same type of input data as in the su-
pervised case, while dividing the training data by W0 =
2.25, 2.5, . . . , 8. Each time we determine the average accu-
racy 〈A(W0)〉 as the percentage of correctly classified sets
〈Sz

i (t )〉 (with respect to the division W0) in a test set (which
does not coincide with the training data). We observe that
the results depend strongly on the initial conditions for the
training, i.e., on the random initial choice of weights and
biases for the network. Even for input data from the largest
system sizes L = 100, no consistent W shape emerges in
〈A(W0)〉. This is due to substantial fluctuations of 〈A(W0)〉
for fixed W0 between training runs, in particular around the
putative transition region.

The fluctuations of 〈A(W0)〉 resulting from the initial
conditions of the training are, however, not random. We
claim that they carry information that can be used to locate
the transition. We observe that over a large region of W0,
they follow a bimodal distribution as shown in Fig. 7. We
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FIG. 6. Results of the supervised machine-learning algorithm. Shown is the average confidence C with which time series (spin densities
〈Sz〉 as a function of time) taken from TDVP for a given disorder magnitude are classified as belonging to the localized phase, where we
labeled W = 8 as localized and W = 2 as delocalized. A plateau emerges at large W for L = 100, indicating a transition to the MBL regime.
The rightmost panel shows 1 − C on a semilogarithmic scale. Error bars indicate the standard deviation of the distribution of C and are 1σ

intervals based on 100 independent training sessions (these should be understood as being cut off at C = 0 and C = 1).

interpret the two branches as instances of trained networks
that identify localized and ergodic features, respectively [66].
The transition should then be identified as the position where
both types of networks occur with the same probability, which
happens around W0 ≈ 5. Viewing the ETH-MBL transition as
a crossover (at least from the perspective of the finite-size and
finite-time data that serves as input of the neural network), this
analysis puts W0 ≈ 5.5–6 as an upper bound to the crossover
region. Above this value the distribution of 〈A(W0)〉 becomes
unimodal.

V. SUMMARY AND OUTLOOK

The quench dynamics of large disordered spin chains in
the Heisenberg model has been investigated by means of
the time-dependent variational principle for matrix product
states. We have studied the long-time behavior of the im-
balance and found a regime, occurring in a broad range of
parameters of the system, with slow, yet finite transport.
We find that the average, typical, and median imbalance all
lead to the same power-law exponent β. Our results imply
that the ergodic regime extends (at least) up to disorder

Wc ≃ 5. We observe a substantial shift of the exponent β

(and, as a result, of an estimate for the MBL transition
point Wc) when we go from relatively small systems (that
can be exactly diagonalized) to large systems with L = 50
and 100. On the other hand, we do not see any significant
difference between the results for L = 50 and L = 100,
which indicates saturation of the exponent β. This favors
the conclusion that the subdiffusive behavior is a true long-
time asymptotic behavior. These findings have been supported
by the results for the dynamics of the Schmidt gap in the
entanglement spectrum, which shows a very similar behavior.

Our analysis, demonstrating ergodic behavior in large spin
chains for disorder up to Wc ≃ 5, substantially shifts the
commonly quoted estimate for the MBL transition (Wc ≃
3–4) that was previously obtained (see, e.g., Ref. [21]) by
exact diagonalization of XXZ chains of length up to L ∼ 20.
This advance is not only quantitative, but it also implies an
important qualitative statement concerning the nature of the
MBL transition. Indeed, enhanced ergodicity in larger systems
supports the existence of “non-local” (involving states distant
in real space) delocalizing processes that are not typically
present in small systems.

FIG. 7. Results of the unsupervised machine-learning algorithm, based on “learning by confusion” for input data with L = 16, L = 50,
and L = 100. Shown is the distribution of the accuracy 〈A(W0)〉 over 100 training instances with different initial conditions for each W0. For
system sizes L = 50 and L = 100, the distribution is bimodal in the interval 3.25 < W0 < 5.5 with the two maxima tracing out the red lines
as a function of W0.
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On the methodological side, our results demonstrate the
reliability of the TDVP approach for studying the XXZ model
at not too weak disorder (W � 2 in our case), in agreement
with prior findings [44] concerning the applicability of TDVP
to this model. This range of disorder strength includes both
sides of the MBL transition. In this range of W , the system is
characterized by a slow growth of entanglement with time,
which has allowed us to controllably explore the quench
dynamics in large chains (with lengths inaccessible by exact-
diagonalization methods) within the time window sufficient
to infer the behavior of the system in the thermodynamic
limit. This opens new opportunities for computational studies
of correlated disordered models by means of MPS-based
approaches.

We have complemented a conventional analysis of the data
(with fitting the average values to power laws) by a machine-
learning analysis of the whole time dependences of individual
spins in various realizations of disorder. We have chosen two
approaches, a supervised and a novel unsupervised algorithm.
The latter is based on learning by confusion, but also exploits
the stochastic nature of the learning process. This approach
provides a more accurate way to determine the position of
the transition, and could be useful for wider applications in
determining phase transitions. The results from both the su-
pervised and unsupervised machine-learning methods support
our conclusions concerning the bound for the critical disorder
strength Wc � 5. Thus, we can reinforce machine learning by
combining it with a “traditional” analysis of numerical data,
verifying that machine-learning tools can be reliably applied.

Our results, showing a very slow transport on the ergodic
side of the MBL transition (W < Wc) support the expectation
that the system looks essentially localized at the transition
point (W = Wc) [18]. From this point of view, the MBL
transition has much in common with the Anderson transition
on random regular graphs (RRG) [67]. The latter problem is
viewed as a toy model of the MBL transition, even though this
connection is less precise for short-range interaction models
than for those with power-law interactions [68]. A slow dy-
namics in the RRG model was recently studied numerically
in Ref. [69]. From the perspective of the machine-learning
approaches applied in this work, the notion that the transition
point is localized in character manifests itself in that it is
located near the edge of the plateau characterizing the MBL
phase, rather than at the midpoint between the two regimes.
In terms of the confusion-based algorithm, the transition is
located at the crossing between “delocalized” and “localized”
branches.

A slow dynamics near the transition and a localized char-
acter of the critical point are also qualitatively consistent with
the avalanche mechanism of the transition developed recently
in Refs. [70–73]. This scenario predicts an extended weakly
delocalized regime above the “nominal” threshold W (0)

c and
implies that previous numerical results might be tainted by
finite-size effects. Specifically, within this scenario, static “er-
godic spots” (spatial regions with anomalously weak disorder)
embedded in the nominally localized phase [74] thermalize
the rest of the system below the true MBL transition at Wc >

W (0)
c . In small systems, such spots are typically not found and

the chains appear to be localized for W > W (0)
c ; however, with

increasing L the probability of finding ergodic spots increases

and the true transition at Wc becomes well resolved. This is in
line with the aforementioned importance of nonlocality.

Indeed, we find that considering larger systems leads to
a substantial increase in delocalization, in agreement with
the avalanche scenario. Moreover, the unsupervised machine-
learning analysis, showing the coexistence of localizing and
delocalizing realizations of disorder in the range 3.5 � W �
5.5 (see Fig. 7), may also be interpreted in terms of the
avalanche-induced delocalization. Further, consistent with
the prediction of Thiery et al. [71,72], the system “looks
localized” near the transition, as evidenced by the strong
similarity between the spin dynamics for the noninteracting
case � = 0 and the interacting case close to our lower bound
for the MBL transition. However, at the present stage, we
cannot explicitly confirm (or falsify) this mechanism, as this
would require a specific analysis of observables that would
have a distinct behavior within this mechanism. Another
possibility consistent with our results is the existence of a
glasslike crossover regime [69].

Future work inspired by our results could focus on different
energy densities in addition to just the center of the band that
has been considered here, in order to map the transition line
in the energy-disorder plane on the basis of data for large
systems. Further, it is also interesting and instructive to ana-
lyze the phase diagram of long XXZ chains in the interaction-
disorder plane. Clearly, a better analytical understanding of
the slow dynamics near the MBL transition would be very
important. In this context, it is interesting to note that a similar
slow transport near the transition (or, more accurately, appar-
ent transition) is also found for quasiperiodic systems [13] as
well as in two-dimensional disordered systems [75], where the
influence of rare bottlenecks is expected to be negligible. It
remains to be seen whether this slow transport has a common
origin in all these situations.

A so-called “dreaming” protocol within the neural-network
framework, which generates the configurations that are repre-
sentative for given phases, could be very useful for developing
the analytical theories of the subdiffusive phase. Furthermore,
this type of machine-learning approach can be envisaged to
simulate the dynamics at much longer times (and, perhaps,
in much larger systems), which is currently inaccessible by
the most advanced numerical tools. Finally, a hotly debated
question is the very existence of the true (L → ∞) MBL
transition in various models. We hope that our work will pave
the way for numerical investigations of the physics associated
with the MBL transition on large systems, which is of obvious
importance for shedding light on this issue.

Note added. Recently, a study of the applicability and
reliability of the one-site and two-site TDVP algorithms in
various other systems appeared [82]. In that work, it is shown
that the one-site algorithm is typically better suited for the
time evolution after a quench in nonintegrable models, even
in the case of relatively strong entanglement growth, as in
the models studied therein (where the entanglement growth is
faster than in the case of our moderately to strongly disordered
system). In the language of Ref. [82], our implementation
consists of a hybrid approach, where the initial product state’s
MPS manifold, with χ = 1, is quickly expanded at each time
step, after which we use the one-site algorithm with a fixed
bond dimension.
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APPENDIX: NUMERICAL DETAILS

Since the TDVP truncates the entanglement spectrum, it is
of interest to investigate the convergence with respect to bond
dimension [44]. We perform four distinct benchmarks.

First, we compare the time evolution of the imbalance
obtained within the TDVP approach to numerically exact
simulations for a small system L = 16. Here, we consider the
disorder average of independent disorder samples, since we
are interested in convergence at the level of this average, rather
than at the level of individual realizations. The exact numerics
are obtained simply by performing TDVP time evolution with
an unrestricted bond dimension. For a system of size L = 16
an MPS with maximum bond dimension χ = 256 captures the
time evolution exactly (for a system of size L, nontruncated
MPS have a maximum bond dimension of 2L/2 in the center
of the chain). The result is shown in Fig. 8, which shows
the time evolution of the initial state up to times t = 300.
Recall that in the main body of the paper, we considered times
only up to t = 100. We observe that even for the weakest
disorder considered in the paper (W = 2), the evolution of
imbalance at χ = 64 is essentially indistinguishable from the
exact evolution in the time window of interest.

Second, we consider a larger system L = 50 and analyze
whether the result converges with bond dimension, where
we consider times up to t = 200 and bond dimensions up
to χ = 96, higher than in the main body of the paper. The
result is shown in Fig. 9. The difference between the values
of β extracted from the curves for χ = 64 and χ = 96 is
within the statistical error bars of Fig. 11 for all three values
of W (recall that different disorder realizations were used for
different bond dimensions).

FIG. 8. Time evolution of the disorder-averaged imbalance (3) as
computed by the TDVP with a truncated bond dimension χ = 32, 64
and by exact numerics χ = 256 for a small system L = 16, up to
t = 300. We consider several hundred independent realizations of
disorder. For the sake of comparison, also the noninteracting case
� = 0 is shown.

Third, we consider the effect of reducing the bond di-
mension in long chains (L = 100) for the “worst case” of
the weakest disorder used in the paper (W = 2) and for
relatively strong disorder (W = 5) that corresponds to the
vicinity of the MBL transition. We also present the TDVP
results for the noninteracting case � = 0 (in the main body
of the paper, the results presented for � = 0 are obtained by
exact diagonalization). In addition, we show the entanglement
entropy as a function of time, to illustrate that the truncation
of the entanglement spectrum for our choice of the bond
dimension is only relevant deeper into the ergodic regime.
These results are shown in Fig. 10. We observe that reducing
the bond dimension both at W = 2 and at W = 5 from χ = 64
even to χ = 16 does not significantly affect the evolution
of the imbalance, with the corresponding values of β again
falling within the statistical error bars. The entropy itself is
more sensitive to the bond dimension, which is related to the
broad distribution of this quantity [see Fig. 3(b) in the main
text]. Nevertheless, we find agreement within error bars (see
Fig. 10, lower panels) in the case W = 5 between χ = 32 and
χ = 64, so that in this case even the entanglement entropy has
converged with bond dimension, and the entropy never gets
close to the cutoff value log2 χ . This is in contrast to the case
W = 2, where convergence is observed in the imbalance, but
not the entropy, where clear cutoff effects occur (dashed lines
in the lower left panel).

As a final benchmark, the TDVP simulation of the non-
interacting chain (� = 0) at W = 2 and W = 5 does not
show any delocalization trend within our time interval (see
Fig. 10, black lines). This should be contrasted with the TDVP
result of Ref. [44] obtained for the XX model at weaker
disorder (W = 1), where the truncation at χ = 64 introduced
diffusionlike departure from Anderson localization already
for t < 100. Hence, in our model, for W � 2 (and possibly
smaller W ), there is no spurious dephasing induced by the
entanglement truncation procedure (at least, within our time
window).
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FIG. 9. Time evolution of the disorder-averaged imbalance (3) as computed by the TDVP with bond dimension χ = 32, 64, 96 for a
moderately large system L = 50 up to t = 200 and choices of disorder strength W = 2, 3, 5. For comparison, also the noninteracting case
� = 0 is shown. The fitted coefficients for the power-law decay of the imbalance in the window t ∈ [100, 200] for W = 5 are β(χ = 32) =
0.025 ± 0.005, β(χ = 64) = 0.020 ± 0.005, β(χ = 96) = 0.020 ± 0.004, which is in good agreement (within error bars) with the value
found for t ∈ [50, 100] as presented in the main text. Insets show a zoomed region in the time window t ∈ [50, 200] on a log-log scale.

From these approaches, we conclude that for the times
we consider (up to t = 100), a bond dimension of χ = 64
provides an excellent approximation for not too weak disorder
W � 2; an approximation that only improves with increasing
disorder. This conclusion is in agreement with the findings of
Ref. [44] concerning the reliability of the TDVP approach for
studying transport properties of a disordered XXZ model. In
that paper, the short- and long-time behavior of the subdif-
fusive spreading of spin configurations agreed very well for
the range of bond dimensions 32 � χ � 128 for even weaker
disorder (W = 1.5) than used in our work (W � 2).

Our conclusion is further corroborated by comparison
with a completely independent implementation of the time-
evolving block decimation method, for which we compute
the power-law decay coefficient β for W = 5, finding excel-
lent agreement with the TDVP (see Fig. 2). Therefore, our
numerical results are certainly accurate in the disorder and
time window we have considered in this work. Moreover, in
the moderately strongly disordered case W = 5 we find good
agreement between power laws obtained in the window t ∈
[50, 100] and those in the window t ∈ [100, 200], providing
evidence for the survival of these power laws in the long-time

FIG. 10. Top: time evolution of the disorder-averaged imbalance (3) in the case of L = 100, W = 2 (left), and W = 5 (right), for various
choices of the bond dimension χ . We consider several hundred independent realizations of disorder. For the sake of comparison, also
the noninteracting case � = 0 is shown, computed both using the TDVP as well as using exact diagonalization. Bottom: time evolution
of the disorder-averaged entropy for the same parameter choices. The horizontal dashed lines indicate the cutoff of the entropy Scutoff = log2 χ .
The shaded region indicates the error (2σ intervals) in the average entropy computed from the standard deviation of the data for the case
χ = 64.
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FIG. 11. Power-law exponent β corresponding to the decay of
the imbalance I ∝ t−β over the window t ∈ [50, 100], for L =
100. Both the average and typical values are considered. Triangles
indicate a weak finite-time decay of IA for the noninteracting case
� = 0, L = 100. Error bars are 2σ intervals based on a boot-
strapping procedure. The vertical gray line indicates the putative
transition from the ergodic to many-body localized regime based on
the vanishing of β within 2σ , subtracting the systematic error.

limit. In addition, at this value of W the bond dimension can
be substantially reduced before noticeable deviations occur.

Finally, in addition to benchmarking TDVP results, we
present a more detailed look at the power-law coefficient β

as determined from the decay of the imbalance. In Fig. 11
we show β as determined from the average as well as the
typical (the exponential of the averaged logarithm) imbalance.
If these two quantities are equal, then both the average and
typical values of β are representative. Deeper in the ergodic
regime, these results differ slightly, indicating that the dis-
tributions in this regime deviate somewhat from a Gaussian.
For W � 3 the results overlap, showing that the average and
typical values are well behaved closer to the transition. In
Fig. 11 we also mark the bound for the ergodic phase based
on the prescription described in the main text.

Summarizing, the above benchmarks demonstrate that our
numerical results are reliable in the disorder and time win-
dows we have considered in the main text, and the ap-
proximate nature of the TDVP deeper in the subdiffusive
regime certainly does not affect the reliability of our esti-
mate of the extent of the ergodic region as determined by a
vanishing β.
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