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Many-body localization in a quantum simulator
with programmable random disorder
J. Smith1*, A. Lee1, P. Richerme2, B. Neyenhuis1, P. W. Hess1, P. Hauke3,4, M. Heyl3,4,5, D. A. Huse6

and C. Monroe1

When a system thermalizes it loses all memory of its initial
conditions. Even within a closed quantum system, subsystems
usually thermalize using the rest of the system as a heat bath.
Exceptions to quantum thermalization have been observed,
but typically require inherent symmetries1,2 or noninteracting
particles in the presence of static disorder3–6. However, for
strong interactions and high excitation energy there are cases,
known as many-body localization (MBL), where disordered
quantum systems can fail to thermalize7–10. We experimentally
generate MBL states by applying an Ising Hamiltonian with
long-range interactions and programmable random disorder to
ten spins initialized far from equilibrium. Using experimental
and numerical methods we observe the essential signatures
of MBL: initial-state memory retention, Poissonian distributed
energy level spacings, and evidence of long-time entanglement
growth. Our platform can be scaled to more spins, where a
detailed modelling of MBL becomes impossible.

It is exceedingly rare in nature for systems to localize, or retain
local information about their initial conditions at long times.
In an important counterexample, Anderson demonstrated that
localization can arise due to the presence of disorder, which can
destructively scatter propagating waves and prevent transport of
energy or particles3. Although this interference effect can be applied
to generic quantum systems, most experimental work has been
restricted to the narrow parameter regime of low excitation energies
and no interparticle interactions4–6.

Whether such localization persists in the more general case of
arbitrary excitation energy and non-zero interparticle interactions
was theoretically explored by Anderson3, and more recently by oth-
ers7–10. This MBL phase is predicted to emerge for a broad set of in-
teraction ranges and disorder strengths, although the precise phase
diagram is not well known11 because equilibrium statisticalmechan-
ics breaks down in the MBL phase and numerical simulations are
limited to ∼20 particles8,9. Very recent experiments searching for
MBL havemeasured constrainedmass transport and the breakdown
of ergodicity in disordered atomic systems with interactions12,13.

Here we report the direct observation of MBL in a long-
range transverse field Ising model with programmable, random
disorder. This is a non-integrable model that cannot be mapped to
noninteracting particles (a necessary condition for MBL7) and we
can easily tune the disorder strength and interaction range over a
parameter space that exhibits this phenomenon. Our experiment
is effectively a closed quantum system over the timescales of
interest, because the system localizes approximately 60 times

faster than the coupling rate to the outside environment (see
Supplementary Information).

Each of the effective spin-1/2 particles is encoded in the
2S1/2 |F=0,mF=0〉 and |F=1,mF=0〉 hyperfine ‘clock’ states of
a 171Yb+ ion, denoted |↓〉z and |↑〉z , respectively. We confine a
chain of ten ions in a linear radiofrequency Paul trap and apply
optical dipole forces to generate the effective spin–spin coupling14
of a disordered Ising Hamiltonian:
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∑
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where σ γi (γ = x , z) are the Pauli matrices acting on the ith spin,
Ji,j is the coupling strength between spins i and j, B is a uniform
effective transverse field,Di is a site-dependent disordered potential,
and h̄=1 (see Supplementary Information). After the chain evolves
for some time, we collect the state-dependent fluorescence on
an intensified charge-coupled device camera for site-resolved
imaging. This, in addition to our ability to perform high-fidelity
rotations, allows measurement of the single-site magnetization
〈σ γi 〉(γ =x ,y , z) aswell as arbitrary spin correlation functions along
any direction.

Ji,j is a tunable, long-range coupling that falls off approximately
algebraically as Ji,j ∝ Jmax/|i− j|α (ref. 15), where Jmax is typically
2π (0.5 kHz). Here, we tune α between 0.95 and 1.81, although
for most of the data α≈ 1.13. We directly measure the complete
spin–spin coupling matrix (Fig. 1a), demonstrating the long-range
interactions required to exhibit MBL in this model. Moreover, it has
been shown numerically that (1) exhibits MBL for the experimental
parameters16.

The site-specific programmable disorder termDi is sampled from
a uniform random distribution with Di ∈ [−W ,W ], where W
characterizes the strength of the disorder. The disorder is generated
by site-dependent laser-induced Stark shifts (see Supplementary
Information), which also allow for preparation of the system
into any desired product state. To ensure we observe the general
behaviour of the disordered Hamiltonian, we average over 30
distinct random instances of disorder (Fig. 1b,c), which leads to
a sampling error that is smaller than the features of interest (see
Supplementary Information).

An important signature of the MBL phase is manifested in the
spectral statistics of adjacent energy levels of theHamiltonian. In the
thermalizing phase, the energy levels are given by the eigenvalues of
a random matrix, a matrix whose elements are given by a random
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Figure 1 | An interacting spin model with random disorder. a, Directly measured elements of the spin–spin coupling matrix Jij, equation (1) (increasing
interaction strength from blue to red). The long-range interactions decay as Jmax/r1.13. b, A specific instance of the random disordered field with a
schematic illustration of the long-range interactions. c, Random values of the disordered field for all 30 instances of disorder for several di�erent disorder
strengths and for each ion (red indicates positive values and blue indicates negative values, with values between−0.5 and 0.5). d, Level statistics
calculated from the measured spin–spin coupling matrix in a and applied disorders in c are Poisson-distributed (black line is the expected level spacings for
a Poisson distribution), as predicted for a MBL system.

distribution, due to level repulsion. However, in theMBL phase, this
level repulsion is greatly suppressed because eigenstates typically
differ by multiple spins flips. As a result, the level spacing between
adjacent energy eigenvalues are Poisson-distributed8,9. Using our
directly measured spin–spin couplings and applied realizations for
the strongest experimental disorder W = 8Jmax and B= 4Jmax, we
calculate the distribution of adjacent energy level splittings and find
them to bePoisson-distributed, as expected for aMBL state (Fig. 1d).

Before searching for evidence of localization in the system’s
time evolution, we first find parameters that cause the measured
state to thermalize in the absence of disorder. We increase the
transverse fieldB and look for conditions that result in the single-site
magnetization along two orthogonal directions approaching and
remaining at their thermal equilibrium values (see Supplementary
Information).

Figure 2a shows the measured dynamics of 〈σ z
i 〉 for B= 4Jmax

and Di = 0 with the spins initialized in the Néel ordered state,
|↑↓↑↓↑↓↑↓↑↓〉z along the z direction. This configuration has an
energy equivalent to an infinite temperature thermal state, because
the expectation value of the Hamiltonian is zero. At long times, each
expectation value 〈σ z

i 〉 approaches zero, losingmemory of the initial
ordering. As the transverse field B is increased, the system appears
to thermalize more quickly and the level statistics approach those of
random matrices rather than Poissonians, as expected for a generic
thermodynamic system (see Supplementary Information).

When B� J , the Hamiltonian is effectively an XY model17,18
and conserves

∑
i σ

z
i , because Ising processes that flip spins along

the large field are energetically forbidden. Thus, being in a spin
configuration with half of the spins up and half of the spins down
maximizes the accessible energy states. In addition, the Néel state is
never an eigenstate, even forB� J andW� J , because the uniform
B field at each site still allows spin exchange in the z-basis.

If a system is thermal, the Eigenstate Thermalization Hypothesis
(ETH) provides a general framework where observables reach the
value predicted by the microcanonical ensemble19–21. This allows us
to calculate the expected thermal value of the reduced densitymatrix
given the Hamiltonian and an initial state (see Supplementary
Information). To further establish that the system is thermalizing,
we measure the reduced density matrix for each spin, ρi=Tr{j 6=i}ρ,
without applied disorder and B= 4Jmax, as shown in Fig. 2a. In
our experiment, the spins are initially prepared in a product state
with high fidelity. However, at long times, the measured reduced
density matrices show that each of the spins is very close to the
zero magnetization mixed state, implying the system has locally
thermalized.

We apply the randomdisordered potential,Di 6=0, with B=4Jmax
and observe the emergence of MBL as we increase the strength
of disorder. Because the many-body eigenstates in the MBL phase
are not thermal, transport of energy and spins is suppressed,
and ETH fails. Thus, observables will not relax to their thermal
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Figure 2 | Emergence of a MBL state. a, Time-evolved single-site magnetizations 〈σ z
i 〉 (di�erent colours represent di�erent ions) for the Hamiltonian in

equation (1) for B=4Jmax with no applied disorder (Di=0). The initial-state reduced density matrices for ions 1 and 10 show the spins start in a product
state along the z direction. The time-averaged reduced density matrices for Jmaxt>5 (colours from blue to red indicate increasing values of the elements of
the density matrix) agree with the values predicted by the ETH, implying the system has thermalized locally. b–e, As the disorder strength increases, the
spins retain more information about their initial state, indicating a transition towards MBL. f, Dynamics of 〈σ z

i 〉 for the strongest applied disorder,
W=8Jmax. The initial-state and steady-state time-averaged reduced density matrices for ions 1 and 10 now show that information is preserved about the
initial spin configuration at the end of the evolution. Statistical error bars (1 s.d.) are smaller than the data points.

values9 and memory of the initial conditions will be evident in the
single-site magnetization. When starting in the Néel ordered state,
Fig. 2b–f shows the time evolution of 〈σ z

i 〉 for different disorder
strengths. The frozenmoments of the spins increase with increasing
disorder as the emergent integrals of motion become more strongly
localized10.

With the maximum applied disorder, W = 8Jmax, we measure
the single-spin reduced density matrix for the initial state and
the averaged matrix for Jmaxt ≥ 5. In this case, localization of the
spins leads to a marked difference in the measured and thermal
reduced density matrices, indicating memory of the system’s initial
conditions and a breakdown of ETH.

To quantify the localization, we measure the normalized
Hamming distance (HD)22:

D(t)=
1
2
−

1
2N

∑
i

〈ψ0|σ
z
i (t)σ

z
i (0) |ψ0〉 (2)

which gives the number of spin flips away from the initial state,
ψ0, normalized by the length of the chain, N . At long times,
the HD approaches 0.5 for a thermalizing state and remains at 0
for a fully localized state. In Fig. 3a, we measure that the long-
time HD is 0.5 in the absence of disorder, and becomes smaller
as the disorder strength is increased and the system more strongly
localizes. This time evolution agrees with exact diagonalization
numerical calculations for (1) (see Supplementary Information).

Figure 3b shows that for finite but weak disorder, the time-
averaged HD for Jmaxt>5 is essentially unchanged, indicating weak
or no localization. However, once the random field is sufficiently
strong we observe a crossover from a thermalizing to a localized
state. Once in this regime, the system becomes more localized with
increasing disorder strength.

There is great theoretical interest in mapping the MBL
phase diagram with respect to interaction range and disorder
strength11,22,23. We have taken the first steps towards this goal
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Figure 3 | The Hamming distance (HD). a, The HD exhibits time dynamics
that reach their steady-state values after Jmaxt≈5. For increasing disorder,
the system becomes more strongly localized, and the steady-state HD
decreases. (Di�erent colours represent di�erent disorder strengths.) b, The
steady-state HD with respect to the strength of the random potential
indicates the state is not or only weakly localized for small disorder, but
after the random field is su�ciently strong it becomes more localized with
increased disorder. c, The steady-state HD with respect to the power-law
exponent indicates that the system becomes less localized in the presence
of longer-range interactions (smaller α). Error bars, 1 s.d.
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Figure 4 | Quantum Fisher information (QFI). a, Time evolution of the QFI
for no disorder, which is consistent with no long-time growth of
entanglement. The greyed-out area indicates the fast initial growth of QFI
that follows a Lieb–Robinson-type bound. b, Long-time logarithmic growth
of the QFI for the applied disorder ofW= (6,8)Jmax is a lower bound for the
entanglement in the system and is consistent with the expected long-time
growth of entanglement in the MBL state. Black lines are logarithmic fits to
the data. Statistical error bars (1 s.d.) are smaller than the data points.

by measuring a change in the time-averaged HD for W = 8Jmax
and Jmaxt > 5 as we adjusted the interaction range, 0.95<α<1.81
(Fig. 3c). For shorter-range interactions, the system appears more
localized, because the state approaches a fully localized Anderson
insulator as α→∞. This change in time-averaged HD with
a change in interaction range makes clear that the long-range
couplings are playing a role in the observed dynamics, thus
indicating the observed effect is a many-body phenomenon.

Although there are predictions of a many-body delocalization
transition at α= 1.5 (ref. 23), we did not observe this effect as we
tuned α across this boundary. The lack of a sharp transition, along
with the presence of MBL states for α<1, may be due to finite size
effects (see Supplementary Information). As this system is scaled
to many dozens of spins, it will allow better study of the phase
transition and mapping of the phase boundary in a regime where
numerics are intractable.

A hallmark of MBL is the characteristic growth of entanglement
under coherent time evolution24, although its experimental
observation has been elusive so far. In Anderson insulators without
many-body interactions, the entanglement production from weakly
entangled initial states shows a quick saturation after a sharp
transient regime. However, in MBL systems a long-time growth sets
in, which is logarithmically slow for short-range interactions25 and
can become algebraic with power-law interactions26.

This entanglement growth can be measured using a suitable wit-
ness operator or even full state tomography27. We instead indirectly
characterize the entanglement growth in this system by measuring
the quantum Fisher information (QFI)28–30. The QFI gives a lower
bound on the entanglement in the system while requiring only
a measurement of two-body correlators, which can be efficiently
accessedwith our site-resolved imaging. Importantly, theQFI is able
to distinguish MBL from single particle localization through the
anticipated characteristic entanglement growth (see Supplementary
Information). With no applied disorder, we observe a fast initial
growth of the QFI following a Lieb–Robinson bound17,18 as the
correlations propagate through the system, but no further growth
afterwards (Fig. 4a). In contrast, for the cases of applied disorder of
W=6Jmax andW=8Jmax, the further growth of theQFI is consistent
with a logarithmic increase of entanglement at long times in a MBL
state (Fig. 4b), but absent for single particle localized systems.

Our experimental platform is well suited for studying deep
and intractable questions about thermalization and localization in
quantummany-body systems. Moreover, the high degree of control
in our experiment may guide the use of MBL states as potential
quantum memories in naturally disordered quantum systems24.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon reasonable request.
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