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Thermalization in many-body systems can be inhibited by the application of a linearly increas-
ing potential, which is known as Stark many-body localization. Here we investigate the fate of
this phenomenon on a two-dimensional disorder-free lattice with up to 24 × 6 sites. Similar to the
one-dimensional case, “density-polarized” regions can act as bottlenecks for transport and thermal-
ization on laboratory timescales. However, compared to the one-dimensional case, a substantially
stronger potential gradient is needed to prevent thermalization when an extra spatial dimension is
involved. The origin of this difference and implications for experiments are discussed. We argue
that delocalization is generally favored for typical states in two-dimensional Stark many-body sys-
tems, although nonergodicity can still be observed for a specific choice of initial states, such as those
probed in experiments.

I. INTRODUCTION

Many systems encountered in nature obey the ergodic
hypothesis, that is, each microstate consistent with fixed
macroscopic thermodynamic variables according to the
appropriate statistical ensemble is as likely as the other.
However, some systems are nonergodic. Understanding
the origin of nonergodicity in quantum systems [1] is of
particular relevance to describing decoherence and the
crossover from quantum to classical behavior. A paradig-
matic example of nonergodicity in quantum many-body
systems is many-body localization (MBL), which occurs
at nonzero density of excitations, driven by the interplay
between interactions and disorder [2–7].

Recently, interest has increased in studying many-body
systems that exhibit nonergodicity even without the pres-
ence of any disorder [8, 9]. One such system consists of
interacting particles under the influence of a linear poten-
tial, i.e., the interacting many-body analog of Wannier-
Stark localization. Experimental realizations in one di-
mension have shown that localization can also persist in
this case [10–12].

On the other hand, it has been observed experimen-
tally [10–13] that “Stark-MBL” systems can exhibit fea-
tures of ergodic systems. This suggests a transition
in such systems from a delocalized phase to a local-
ized one at a certain critical value of the gradient of
the linear potential. Numerical studies in one dimen-
sion have indicated that such a transition does indeed
occur [14, 15], similarly to the predicted transition in
disorder-driven MBL systems. However, as we have pre-
viously shown [16], within the purported delocalized re-
gion some states are, in fact, anomalously long-lived (see
also Refs. [17, 18]).

One may understand this phenomenon through the
Hilbert-space shattering (fragmentation) [19, 20] that oc-
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curs in the limit of an infinitely large gradient of the
potential, permitting a mapping to fractonic or con-
strained systems. Hilbert-space shattering implies that
the Hilbert space of the system is divided into an ex-
ponentially large [20] (in the system size) number of
disconnected sectors, preventing thermalization. At a
finite value of the potential gradient these sectors are
connected, but in a sufficiently weak manner such that
thermalization can be strongly suppressed on laboratory
timescales. Importantly, in the one-dimensional (1D)
case, the probability for the transport-blocking regions
of an arbitrarily large length λ to occur is unity in the
thermodynamic limit, giving rise to a finite density of
such regions. The thermodynamic limit is established in
systems whose length is exponentially large in λ.

A question of interest is to what degree nonergodic-
ity in the various systems that exhibit it shares a similar
origin and features. In this context, it is worthwhile to in-
vestigate the influence of geometry and dimensionality on
localization-related phenomena. Disorder-driven MBL is
only expected to be stable in one dimension, according
to the avalanche theory of the MBL transition [21–24].
Within this theory, a vital role is played by rare weakly
disordered regions, which lead to the emergence of grow-
ing “ergodic spots” that can eventually thermalize the
whole system. Such regions are far more likely to occur
in dimensions higher than one, destroying, in particular,
MBL in two-dimensional (2D) systems in the thermody-
namic limit. However, in the case of Stark MBL there
are no possible rare configurations of the potential. From
this perspective, Stark-MBL systems are more prone to
localization, and the above distinction between 1D and
2D geometries is less prominent.

On the other hand, despite the differences behind
the physics of localization, some features familiar from
disorder-driven MBL systems have been reported also in
Stark-MBL systems, such as logarithmic growth of en-
tanglement and Poissonian energy level statistics in the
localized phase [14, 15]. Furthermore, as we show be-
low, a distinction between one- and higher-dimensional
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FIG. 1. (a,b): Schematics of the geometry and initial conditions. (a): Charge-density wave (CDW) initial condition with
wavelength 2λ, where sites are either occupied (red dots) or unoccupied (light blue dots). The initial state is periodic in the
i-direction, in the same direction as the potential gradient. (b): As in panel (a), but with a perturbation that breaks the
translational invariance in the j-direction. (c): Particle density n, averaged over sites within a given column (fixed i), as a
function of time. The initial state is a unidirectional CDW as depicted in panel (a), with λ = 4. (d): As in panel (c), but
starting from the perturbed CDW initial state depicted in panel (b).

systems, as in disorder-driven MBL, is also present in
the case of Stark MBL. This distinction is present be-
cause the suppression of transport in one dimension is
related to blocking (polarized) regions, which occur with
unit probability in the limit of large system sizes [16].
However, this probability vanishes in the thermodynamic
limit for 2D systems. It is the goal of this paper to sort
out the similarities and differences between Stark MBL
and conventional MBL with regard to the role of dimen-
sionality.

From a technical point of view, a major obstacle is
that the numerical complexity of a generic, unconstrained
many-body quantum system on a lattice scales as fN ,
where N is the number of sites on the lattice and f the
number of local degrees of freedom. Exact algorithms
can only handle system sizes up to N ≈ 25, even in
the simplest case f = 2 (e.g., a spin-1/2 system). This
means that, in order to access meaningfully large sys-
tems, approximate methods need to be used. Recently,
one such method—the time-dependent variational prin-
ciple (TDVP) [25]—has proven to be exceptionally pow-
erful, yielding reliable results for (almost) localized sys-
tems [16, 24, 26–31]. This is true even up to relatively
large times and system sizes, comparable to those of the
experiment. Here, we use the TDVP to elucidate the
physics of Stark MBL in two dimensions.

II. MODEL AND METHOD

We consider hard-core bosons on a 2D square lattice
as described by the Hamiltonian:

H =
∑
〈ij;i′j′〉

[
−J

2

(
b†ijbi′j′ + H.c.

)
+ Un̂ij n̂i′j′

]
+
∑
ij

εin̂ij ,

(1)

where bij (b†ij) is the annihilation (creation) operator for

a boson on the site with indices i ∈ [1, L], j ∈ [1, d] and

n̂ij = b†ijbij . The summation over 〈ij; i′j′〉 is restricted

to nearest neighbors, with open (periodic) boundary con-
ditions in the i (j)-direction. In the following, we use
units with ~ = 1 and choose J = 1 for the energy and
time scales. Moreover, we set the interaction strength
U = 1. The on-site potential varies only in the i-
direction, namely εi = Wi, where W is the potential
gradient. This model is similar to the one studied in a
recent experiment [13], except that we consider the sim-
pler case of hard-core bosons instead of two-component
fermions.

Dynamics governed by Eq. (1) is computed, using the
TDVP, up to time t = 500. The TDVP belongs to the
matrix-product-state (MPS) class of algorithms [32], a
type of variational representation of the many-body wave
function with a controllable error. The TDVP dynamics
obeys the Schrödinger-like equation:

d

dt
|ψ〉 = −iPMPSH|ψ〉, (2)

where PMPS projects the dynamics onto the variational
manifold. The number of independent parameters in the
manifold scales with the bond dimension χ, which is the
main control parameter used to verify convergence of the
algorithm. A major appeal of this method, compared to
other MPS algorithms, is that globally conserved quanti-
ties are conserved in the numerical procedure, enhancing
accuracy. We employ the hybrid one-site and two-site im-
plementation of the TDVP [16, 24] in a parallelized fash-
ion (details and benchmarks are presented in Appendix).

III. RESULTS

With the TDVP, we compute dynamics starting from
an initial product state, using a sufficiently large bond
dimension. We consider two different initial states |ψ〉,
which are product states in the particle occupation ba-
sis. The first, depicted schematically in Fig. 1a, is a
steplike charge-density wave (CDW) configuration with
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wavelength 2λ and dimensions L in the i-direction and
d in the j-direction. This choice corresponds to the one
employed in the experimental realization of Ref. [13]. We
furthermore consider an additional initial state, depicted
in Fig. 1b, where the aforementioned state is perturbed,
breaking the translational invariance in the j-direction.
We approach the two-dimensional limit by considering a
width of up to 6 lattice sites.

Choosing the potential to be translationally invari-
ant perpendicular to the axis of the CDW is appealing
from the perspective of investigating localization proper-
ties, because it is expected that this setup is the most
amenable to delocalization. Furthermore, with this ar-
rangement, we can directly investigate the fate of the
long-lived 1D states studied in Ref. [16] upon increasing
the width of the system, thus going towards the 2D case.

Aside from considering the expectation values of par-

ticle densities nij ≡ 〈b†ijbij〉, we consider the memory of
the initial state, as quantified using the imbalance I, an
experimentally accessible quantity [33]:

I(t) =
4

Ld

∑
ij

[
nij(t)− 1/2

][
nij(t = 0)− 1/2

]
. (3)

A state that is unchanged from the initial state obeys
I = 1, while for a delocalized state at half filling I = 0.

We further consider the bipartite von Neumann en-
tropy of entanglement S [34]:

S(t) = max
A

[−Tr(ρA ln ρA)],

ρA ≡ TrB |ψ(t)〉〈ψ(t)|. (4)

Here TrB traces out the degrees of freedom corresponding
to part B. We choose the bipartition between subsystems
A and B such that the entropy is the maximum (this is
the meaning of maxA above) of all the possible biparti-
tions, which turns out to correspond to the position of a
domain wall in the setups in Figs. 1a and b (e.g., for the
parameters in Fig. 1c, the maximum of S is achieved at
i = 8 and 16).

Let us first consider dynamics for a particular choice
of parameters L = 24, d = 6, λ = 4, and W = 4, as
shown in Fig. 1a. After a brief initial evolution (see Ap-
pendix), dynamics is frozen up to t = 500 hopping times,
without any appreciable change in the state, apart from
regular oscillations, see Fig. 1c. The possibility of trans-
verse dynamics, therefore, does not appear to lead to
delocalization in the i-direction.

In Fig. 2, we show the imbalance as a function of time.
Because the initial density pattern mostly survives (see
Fig. 1c), I remains close to 1. Strong oscillations in
time are present, which are more pronounced for smaller
widths d. This is due to the dynamics being constrained
to only a few sites. The average value (solid lines in
Fig. 2, obtained through a Fourier transform, analogous
to Ref. [17]) is only weakly dependent on system size,
suggesting convergence to an asymptotic value for larger
system sizes. This implies that localization survives up
to long times, similar to the 1D case.
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FIG. 2. Imbalance (3) as a function of time for various widths
of the system, d ∈ [3, 6]. Other parameters are the same as
in Fig. 1. Top panels show individual imbalance curves for
d ∈ [3, 6]. The thick lines in the bottom panel show the
leading behavior of the imbalance without oscillations, using
a low-pass filter.

We now consider the von Neumann entropy of entan-
glement (4). Similar to the imbalance studied above,
the entropy shows an initial rapid change and then sat-
urates at a fixed value. This saturation value of the en-
tropy scales with the system width d, roughly as S ∝ d.
Such behavior is expected, because the dynamics is con-
strained only in the i-direction. Indeed, the number of
involved sites scales linearly with d, which leads to the
same scaling for the entropy.

Perturbing the initial state in the manner depicted in
Fig. 1b breaks translational invariance in the j-direction
and introduces additional broadening of the left domain
walls (at i = 4, 12, and 20; we choose the same parame-
ters L, d, λ, and W as for Fig. 1a). Comparing the two
cases (Figs. 1c and d), we observe highly similar dynam-
ics at the right (unperturbed) domain walls, whereas the
dynamics is different for the left (perturbed) boundaries.
Nonetheless, the dynamics in Fig. 1d appears frozen over
the observed timescales, with no sign of macroscopic ther-
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FIG. 3. Entanglement entropy (4) as a function of time, for
the same parameters as in Fig. 2.

malization. Notably, in both Figs. 1c and d, the spatial
range of the domain-wall melting in the i-direction does
not exceed the width of the system d = 6. In other
words, any 2D subblocks of size 6×6 (see Figs. 1a and b)
can be considered as non-thermalized on the timescale of
observation.

Let us now inspect the dynamics of the imbalance and
entropy in the perturbed and unperturbed cases in more
detail. In Fig. 4, a comparison between the CDW initial
condition and the perturbed CDW is shown. We note two
essential differences. Firstly, in the perturbed case, the
imbalance I initially drops to a lower value, 1−I ∼ 1/d.
After the drop, similarly to the unperturbed case, no
significant decay of the imbalance is observed. Secondly,
the time dependence of the entropy is markedly different.
In the unperturbed case, the entropy quickly reaches a
plateau at S ≈ 2 from the initial value S = 0, after which
there is a barely noticeable increase in time. In the per-
turbed case, a substantially faster increase is visible at
the second stage. The maximum value of the entropy
is reached at the domain walls with the |10〉 configura-
tion found at column indices i = 8 and 16 (right domain
walls), while the perturbation is at the left domain walls.
Hence, correlations due to the perturbation do penetrate
through the domain wall. The behavior is reasonably well
fitted by a linear dependence, depicted in Fig. 4, which
provides a better fit than a logarithmic dependence over
the depicted time window. Despite this steady growth
of entanglement, no significant decay of the imbalance is
observed, suggesting long-lived stability of such localized
states. Such behavior is not contradictory: in the case
of disordered MBL in one dimension, entropy growth is
thought to be logarithmic, while transport remains frozen
[35].

If the period of the CDW is reduced, the polarized
striped regions are less effective at inhibiting transport.
In Fig. 5, we show the case where λ = 1 (and no per-
turbation to the CDW), with L = 24 and d = 3. Even
though the width of the system is limited, we can observe
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FIG. 4. Comparison of the imbalance (left panel) and entropy
(right panel) dynamics for the same choice of parameters,
L = 24, d = 6, W = 4, λ = 4, and χ = 384, but different
choices of initial condition: the charge density wave (Fig. 1a)
and perturbed charge density wave (Fig. 1b). The dashed red
lines indicate a linear fit to the curve S(t) = at + b, yielding
the values aCDW = (11 ± 5) · 10−5 and apCDW = (59 ± 4) ·
10−5 for the CDW and perturbed CDW respectively (95%
confidence intervals). The thick lines represent filtered data
using a Savitzky-Golay polynomial fitting procedure of third
order [36].
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FIG. 5. Imbalance dynamics in the case of a short-wavelength
charge-density wave, with λ = 1. Note the choice of a stronger
gradient W = 10.

a dramatic quantitative difference compared to dynamics
for the 1D case [14–16]. Namely, while in the 1D case, al-
ready a modest value W & 1 is sufficient to observe clear
saturation on these timescales, we do not observe such
saturation in the quasi-1D case even at a much stronger
value of the tilt, W = 10.

This difference is understandable as follows. In the 1D
case, violations of the eigenstate thermalization hypoth-
esis [1] result from specific nonergodic states identified in
Ref. [16]. These states with a blocking region of length
exceeding a given λ (which is a decreasing function of the
field W ) have measure zero in the whole Hilbert space in
the limit L→∞, but still occur with a unit probability
in the subspace of random product states. More specif-



5

ically, they occur with a spatial density that scales as
2−λ.

For a quasi-1D system with width d, however, these
blocking regions require polarized regions of area dλ. The
probability of finding such a state scales as 2−dλ. In the
picture presented in Ref. [16], this means that localization
is less enduring with respect to tuning the potential gra-
dient away from W → ∞ (recall that in this limit there
is a mapping to a constrained, nonergodic system [20]).
In the fully 2D limit, d = L → ∞, the appearance of a
fully blocking region then becomes vanishingly unlikely,
in stark contrast to the 1D case.

IV. CONCLUSION AND OUTLOOK

In one dimension, the application of a linearly in-
creasing potential induces localization, which survives
the introduction of interactions (Stark many-body local-
ization). Here, we have shown that long-lived localized
states exist also in higher dimensions, namely, on a 2D
lattice. This behavior is in line with the notion of Hilbert-
space shattering, following a mapping to a constrained
system that becomes exact at infinitely large potential
gradient.

However, it is noteworthy that the values of the field
W required to observe localization in higher dimensions
are substantially larger than in the 1D case [16], where we
observed long-lived localization in the 1D analog of the
model (1) even for W = 0.3. The additional dimension,
therefore, aids thermalization of the system. We can ex-
plain this dependence on dimensionality by noting that
the blocking polarized regions represent an exponentially
smaller part of the whole Hilbert space as a function of
width d, compared to the 1D case. Therefore, there is a
parallel to the “standard” type of MBL in a disordered
potential, in which dimensionality is argued to play a cru-
cial role [21, 23, 24] in that it determines the importance
of rare fluctuations of disorder responsible for delocal-
ization. In the Stark-MBL case, no disorder is present,
but “rare events”—rare states with local constraints—
also play a crucial role, favoring, in contrast to the rare
ergodic spots in the disordered case, localization. (In
this sense, they are similar to transport-hindering rare
events of the Griffiths type [4, 5].) The relative num-
ber of such states as a fraction of the Hilbert space is
greatly suppressed for higher dimensions, again in con-
trast to the disordered case, where the ergodic spots are
more probable with increasing dimensionality. Remark-
ably, the proliferation of rare ergodic regions in conven-
tional 2D MBL and the suppression of blocking regions
in 2D Stark MBL both have a delocalizing effect. The
key difference between 1D and 2D Stark MBL is that,
in two dimensions, the polarized blocking regions are ex-
pected to be irrelevant for the thermalization of typical
(product) states, in contrast to the 1D case [16].

At smaller values of the gradient W , an analytical de-
scription, assuming an incoherent (hydrodynamic) pic-

ture, predicts subdiffusive transport [13, 37]. This leads
to strong growth of the entanglement, and is, there-
fore, extremely demanding for the numerical simulations
based on matrix product states. The experiment of
Ref. [13] does find, however, an exponential decrease
of the delocalization rate in the observed subdiffusive
regime as a function of the size of polarized regions, sug-
gesting a trend toward localization for the CDW initial
states. It may nonetheless be difficult to observe robust
localization in a 2D system, as it is more challenging to
prepare a cleanly polarized plaquette as opposed to a 1D
charge-density wave. Indeed, as we have seen, a single
(hole) defect in any one site at the boundary of the pla-
quette region quickly destroys polarization in the direc-
tion perpendicular to the field gradient (see Appendix).

An intriguing open question is whether the numeri-
cally observed localization represents a genuine long-lived
localized phase, or a transient “prethermal” state [38].
Contrary to the one-dimensional case [16], we observe
growth of entanglement with time, while transport re-
mains frozen. This is potentially a signature of such a
prethermal regime at timescales far beyond the numeri-
cally accessible range. Note, however, in disordered MBL
systems the growth of entanglement is characteristic of
both the ergodic and nonergodic states [35]. We stress
that, in the context of this work, by “MBL” we mean
long-lived localized states – the weakest possible crite-
rion for MBL. The stability criteria for the MBL phase
and the properties of the transition in the thermody-
namic limit are still debated even for 1D disordered MBL
[23, 39–47]. It is difficult to address questions pertain-
ing to the thermodynamic limit through experimental or
numerical means, especially in two dimensions, so that
further analytical work in this direction is needed.

ACKNOWLEDGMENTS

We thank F. Pollmann and P. Sala for useful discus-
sions. Simulations were performed using the TeNPy li-
brary [48], version 0.7.2.

Appendix A: Numerical details

In this Appendix, we discuss technical details of the
numerical simulations, as well as provide several bench-
marks and a comparison to a different algorithm. In this
work, we have employed matrix product states (MPS)
simulations, a class of variational algorithms for solving
many-body problems [32], in which the number of vari-
ational parameters is controlled by the bond dimension
χ.

We employ the time-dependent variational principle
(TDVP) [25] in a hybrid implementation (the same as
used in Refs. [16, 24]), where the two-site algorithm,
which allows expansion of χ at every time step, is used
up to τ = max(2, τχ), where τχ is the time in which
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FIG. 6. Comparison of the dynamics in the case of the CDW
initial condition for different choices of the bond dimension
χ = {256, 384}, for both the imbalance (top panel) and the
entropy (bottom panel).

χ has reached the maximum set value. After the time
t = τ , the remainder of the dynamics is computed using
the single-site algorithm. This algorithm does not allow
further expansion (or reduction) of the bond dimension,
but has the benefit that the energy is globally conserved
by the dynamics. This is opposed to other MPS-based
algorithms, in which the various truncation procedures
leads to violations of energy conservation, even for a time-
independent Hamiltonian, which results in accumulating
errors. Loosely speaking, one can identify this difference
as the difference between implicit and explicit numerical
integration schemes for solving partial differential equa-
tions. Instead of the parallel implementation used for
disorder [24], here we employ parallelization of the Intel
Math Kernel Library (MKL) routines for an additional
speedup.

1. Bond dimension

Let us first consider the dependence of the result on
the bond dimension χ of the MPS. Recall that χ con-
trols the number of variational parameters in the MPS,
allowing for stronger entanglement throughout the sys-
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FIG. 7. Imbalance dynamics (top) and entropy (bottom) for
a choice of the initial condition corresponding to λ = 6.

tem as χ increases. We should then expect the result
of the simulation to converge for sufficiently high χ. A
comparison for the choices χ = {256, 384} is shown in
Fig. 6. The results are in good agreement, with only a
small discrepancy visible at late times.

2. Influence of the wavelength λ

In the following, we consider the effect of changing the
wavelength λ of the initial charge-density wave. As long
as we are in the localized phase, we should expect local-
ization to remain robust upon increasing λ; this increases
the length of polarized regions in the system. Results for
the parameters L = 24, d = 3, W = 4, and λ = 6
are shown in Fig. 7. Comparison to the case λ = 4
in the main text indeed reveals the results are mostly
unchanged: the maximum bipartite entropy is approxi-
mately the same. The imbalance also appears to saturate
at a finite value, which in this case is slightly closer to
1, corresponding to the reduced number of domain wall
borders.

Of interest is also the case where the wavelength is rela-
tively small. If λ = 1, we obtain the so-called (columnar)
Néel state as an initial condition, where columns are ini-
tially occupied and unoccupied in an alternating fashion.
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FIG. 8. Imbalance dynamics (top) and entropy (bottom) for
λ = 1, with a larger value of the tilt (W = 10) compared to
the main text. Convergence with χ is lost at t ≈ 200.

This state should be among the most susceptible to de-
localization (out of the possible states with translational
invariance in the j-direction), as is indeed observed nu-
merically (see Fig. 8 and the main text). Even for a much
larger choice of the tilt W = 10, the system tends to de-
localize over time, and convergence with bond dimension
is lost around t ≈ 200 due to the growth of entanglement.

3. Influence of system size L

Similarly to the above section, we can investigate the
effect of changing system size. As per the same reason-
ing as for what happens in the case of increasing λ, little
should change upon increasing the system size in the lo-
calized regime. The results for the choice L = 32, d = 3,
W = 4, and λ = 4 are shown in Fig. 9. Again, the results
are highly similar to the choice L = 24 shown in the main
text.

4. Dynamics in the transverse direction

It is instructive, also for the purposes of benchmark-
ing, to investigate the dynamics of individual sites. Let
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FIG. 9. Imbalance dynamics (top) and entropy (bottom) for
a different choice of system length compared to the main text,
L = 32.

us consider the case of the perturbed CDW as discussed
in the main text. In the transverse direction, no potential
gradient is present. Hence, particles are allowed to move
freely in this direction, and we should expect rapid “ther-
malization” – albeit restricted only to this transverse di-
mension. This is precisely what is found, as depicted in
Figs. 10 and 11. On a relatively modest timescale O(d)
the site densities reach a value 1−〈n〉 ∼ 1/d, correspond-
ing to the average density in the initial state. Around this
average value, there are oscillations that are not damped
because the dynamics is unitary and the system is closed.

Note that due to symmetry in the initial condition,
the dynamics for the site pairs j = {1, 5} and j =
{2, 4} is identical. Since this symmetry is not explic-
itly imposed by the algorithm (in fact, the symmetry
is broken through the mapping from a 2D lattice to a
1D chain, which breaks translational symmetries in the
transverse direction), this provides another benchmark
for the method. Only a very small difference in the den-
sities is found, barely visible on the scale of the plot, even
at the latest time window t ∈ [475, 500] (Fig. 11).
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FIG. 10. Dynamics for the on-site particle density 〈n〉j for
a fixed row i = 5 in the case of the perturbed CDW initial
condition. Parameters are L = 24, d = 6, W = 4, λ = 4, and
χ = 384. Shown is the early time window t ∈ [0, 25].
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FIG. 11. As Fig. 10, but at a late time window t ∈ [475, 500].

5. Quadratic modulation of the potential

In Refs.[14, 49] it has been argued that adding a small
perturbation to the potential, taken to be in the form of
a small quadratic term, can dramatically influence the
localization properties of the model. The reason put for-
ward is that the unperturbed linear potential permits
resonant processes, enhancing delocalization. However,
in Ref. [50] the effect of this type of perturbation on the
melting of domain walls has been considered, and the
authors have not found crucial differences caused by the
quadratic modulation. Here we show the effect of such
a quadratic modulation in the 2D case, as considered in
the main text. To wit, the full potential is now given by:

εi,quad = Wi− αi2, (A1)

where α = 0.01. Hence, the gradient of the field as a
whole is approximately W close to the left end of the
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FIG. 12. Comparison of dynamics in the case where a small
quadratic perturbation is present, compared to the case where
it is absent. The initial condition is chosen to be the perturbed
CDW.

system, but for W = 4 the potential reaches zero at L =
20, and then becomes negative. This is, thus, a rather
significant perturbation of the potential.

The results for the dynamics in both cases α = 0 and
α = 0.01 are shown in Fig. 12. Here the initial con-
dition with a perturbed CDW is chosen, corresponding
to the green line in Fig. 4 of the main text. The addi-
tion of the quadratic potential reduces the magnitude of
oscillations in the imbalance, which can be attributed to
the breaking of the aforementioned resonances. However,
the qualitative behavior appears unchanged, with only a
slightly lower imbalance and slightly higher entropy in
the case of the quadratic modulation. The increased de-
localization can be attributed to the effectively weaker
gradient for the rightmost domain wall, enhancing the
melting thereof [50].

6. Comparison to the WII method

We now compare the results of the TDVP algorithm,
used in the main text, to a different method also be-
longing to the class of MPS algorithms: the WII method
[51] (we again use the TeNPy library [48] to implement
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FIG. 13. Comparison of the TDVP and WII algorithms over
the time window t ∈ [0, 10].

it). This method shares some features of the TDVP al-
gorithm, such as the ability to handle long-range terms.
The latter is an essential ingredient used for the mapping
of the two-dimensional square lattice to the 1D structure
of the MPS. A key difference between the methods is
that the WII method suffers from a truncation error at
each time step, associated with truncated singular value
decompositions. This type of error does not appear in
single-site TDVP; however, a projection error, induced by
the projector PMPS takes its place. Moreover, single-site
TDVP is an implicit integration method; such methods
tend to be suitable for oscillatory problems. The reader
is referred to the review [52] for a detailed discussion of
the differences between these two algorithms, and to the
review [31] for an in-depth discussion of the application of

MPS-type algorithms to the MBL problem. In the partic-
ular case of our model, we find that the TDVP performs
better in terms of computational time, primarily because
a smaller time step of the integrator is required for the
WII method, δt = 0.01 as opposed to δt = 0.05 for the
TDVP.

The result is shown in Fig. 13. At short times, the
two methods are in good agreement, but the agreement
deteriorates over time; the maximum bond dimension
χ = 256 is reached at t ≈ 1, and repeated truncation er-
rors cause the result to diverge from the TDVP method.

7. Exact results

For sufficiently small system sizes, we can compare to
numerically exact results, where there is no truncation
of the Hilbert space through χ. In Fig. 14, we show
such results, where we take L = 8, d = 2, W = 4, and
λ = 4. The dynamics is almost entirely frozen, with the
imbalance (not shown) saturating at I ≈ 0.993. This is
because the orientation of the single domain wall is from
unoccupied sites on the left side to occupied sites on the
right side. As seen in the main text, it is the opposite
orientation that allows for a greater degree of domain
wall melting. The symmetry is broken through the sign
of the hopping J .
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FIG. 14. Numerically exact dynamics of the density, for L =
8, d = 2, W = 4, and λ = 4.
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