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Many-body localization has become an important phenomenon for illuminating a potential rift between

nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic

and localized phases in models displaying many-body localization is not yet well understood. Assuming that this

is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν � 2

in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find

ν ∼ 1. We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent

ν > 2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations,

which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we

find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed

using the logarithmic negativity between disjoint blocks.

DOI: 10.1103/PhysRevB.97.201105

Introduction. It has become apparent that the Anderson

localization [1] of disordered models can survive in the

presence of interactions [2] with rigorous proof now found

for one-dimensional systems [3,4]. This phenomenon, known

as many-body localization (MBL), has attracted much interest

[5–10] in fundamental physics due to the fact that such systems

generically break ergodicity and fail to thermalize—thus lying

beyond the scope of statistical mechanics. Additionally, MBL

occurs throughout the energy spectrum, implying that its

fingerprint can be observed at all temperatures. These facts

combined have significant practical implications for quantum

transport [2] and information storage [11–13]. Experimental

advances have allowed the controlled observation of MBL

phenomena [14,15] further driving interest.

Considerable progress has been made in understanding

the strongly localized phase particularly in terms of local

integrables of motion [7,16–20], which permit a matrix-

product state description of all eigenstates [21–26]. However,

eigenstates in the ergodic phase generally have volume law en-

tanglement, restricting one to exact diagonalization techniques

and small system sizes (up to ∼20 spins)—this has constrained

the development of a clear picture of the nature of the transition

from ergodic to MBL (the MBLT). For example, questions

that still require attention include: (i) Which quantities can

best characterize the transition? (ii) Is it valid to treat the

MBLT using the same framework, based on the emergence

of a diverging length scale, developed for zero-temperature

quantum phase transitions? (iii) If so, what is the universal

critical exponent ν governing this length scale? And (iv) what

is the physical picture of the said length scale?

An extensive exact numerical analysis of the MBLT, using

a variety of quantities, can be found in Ref. [27] in which
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finite-size scaling analysis throughout the spectrum allows the

observation of a mobility edge. In fact, it is now commonplace

to diagnose the MBLT with the mean energy level statistics and

the block entanglement entropy [6,10,27–31]. These works are

largely based on the assumption that the MBLT is continuous,

and their exact numerical analyses have consistently found

ν ∼ 1. This is in striking contrast with analytic results,

found by Chayes-Chayes-Fisher-Spencer (CCFS) [32] and

Chandran-Laumann-Oganesyan (CLO) [33], which would

demand ν � 2/d for system dimension d (the CCFS/CLO

bound). A recent explanation [30] posits that, at the finite

system sizes available for exact studies, the fluctuations in these

quantities are not yet dominated by the true disorder. Thus it

is highly desirable to use a new quantity better able to capture

the real disorder-induced transition properties.

In this Rapid Communication, we bring in new tools to

understand the nature of the MBLT. First, the Schmidt gap,

which has been successfully employed as an order parameter in

quantum phase transitions [34–36]. Second, an entanglement

length computed from the logarithmic negativity [37–41],

quantifying the bipartite entanglement between two disjoint

blocks [42–46], which has been previously used to probe the

extension of the Kondo screening cloud [47,48]. We find that,

unlike previously used quantities, the Schmidt gap reveals a

critical exponent ν � 2, consistent with the CCFS/CLO bound,

although, curiously as opposed to previous studies, it does

not act as an order parameter. Moreover, we find that the

entanglement length witnesses the emergence of a diverging

length scale at the transition from the ergodic to the MBL

phase.

Model. We consider a periodic spin-1/2 Heisenberg chain

with random magnetic fields in the z direction,

H =

L
∑

i=1

(

J Si · Si+1 − hiS
z
i

)

, (1)
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FIG. 1. Schematic of the two main quantities studied here:

(a) the Schmidt gap � across a bipartition of the system and (b)

the logarithmic negativity E between disjoint blocks separated by

length lG.

with J as the exchange coupling, Si = 1
2
(σ x

i ,σ
y

i ,σ z
i ) as a

vector of Pauli matrices acting on spin i, and dimensionless

parameter hi as the random magnetic field at site i drawn from

the flat distribution [−h,h]. We diagonalize the Hamiltonian

in either the spin-0 or spin-1/2 subspaces for even and odd

L’s, respectively. For each random instance we extract 50

eigenvectors {|Ek〉} in the middle of the energy spectrum

[49,50]. Since there is evidence of a mobility edge in MBL [27],

at least for finite sizes, this targeting sharpens any transition

observed. The choice of 50 is a reasonable compromise on

numerical efficiency while being statistically representative.

Characterizing the MBLT. The main quantity we compute,

new in the context of MBL, is the Schmidt gap. For two

chain halves (or as close to for odd L), A and B as shown

in Fig. 1(a), an eigenvector’s reduced density matrix is ρA,k =

TrB(|Ek〉 〈Ek|) for a particular sample of the random fields.

The disorder-averaged Schmidt gap is then defined as � =

〈λk
1 − λk

2〉k , where λk
1, λk

2 refer to the largest eigenvalues of

the reduced density-matrix ρA,k, 〈·〉k denotes the average over

eigenstates and · denotes the average over many samples.

The Schmidt gap has previously been shown to act as an

order parameter for quantum phase transitions [34,36]. We

explore the possibility of using it for characterizing the MBLT.

Unlike entanglement entropy, the Schmidt gap ignores most

of the spectrum of ρA,k , describing only the relationship

between the two dominant states across the A-B cut. This

is pertinent in light of the recent finding that, although the

Schmidt values decay polynomially in the MBL phase [22],

finite-size corrections are stronger for small Schmidt values.

In the ergodic phase we expect strong entanglement to produce

multiple, equally likely orthogonal states, thus � ∼ 0. In the

MBL phase, however, a single dominant state should appear

on either side of the cut with � rising towards 1 as h → ∞,

implying a tensor product. This behavior is shown in Fig. 2(a)

and becomes sharper with increasing L. To see this more

vividly, we plot the derivative of �with respect toh in Fig. 2(b).

The derivative has a peak at h = h̃c, which not only becomes

more pronounced, but also shifts to the right with L. We

infer this to be the finite-size precursor to the transition point,

which suggests that, in the thermodynamic limit L → ∞, the

derivative of the Schmidt gap diverges at the MBLT and h̃c

asymptotically approaches the transition point hc.

For reference, we consider the normalized half chain

entropy, widely employed to herald the MBLT [6,10,27–30].

The von Neumann entropy of subsystem A is defined as

Svn = − Tr(ρA,k log2 ρA,k). This is normalized by the Page

entropy [51] SP = (1/ln 2)
∑mn

i=n+1
1
i
− m−1

2n
with m, n as the

Hilbert space dimensions of subsystems A and B, yielding

dh
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FIG. 2. (a) and (b) The Schmidt gap � and its derivative as a

function of disorder h across the MBLT for varying chain length L.

(c) and (d) The normalized half chain entropy S and the mean energy

level spacing ratio r as a function of disorder for varying L. Error bars

shown where visible.

the disorder-averaged S = 〈Svn〉k/SP . SP is the expected

entropy for a subsystem of a random pure state; since these

overwhelmingly have entropy that scales as their enclosed

volume, S gives a measure of how far |Ek〉 has departed

towards area law behavior. In Fig. 2(c) the behavior of S

across the MBLT is shown. In the ergodic phase its value

approaches 1 (showing the volume law), whereas in the MBL

phase it falls to 0 (representing the area law) as expected.

For reference we also compute the mean energy level spac-

ing ratio r . For energy eigenvalues Ek with gaps δk = En −

En−1, this is defined as r = 〈min(δk,δn+1)/ max(δk,δn+1)〉k . In

the ergodic phase, energy-level repulsion yields statistics for

r that match those of Gaussian orthonormal ensemble random

matrices [52] with r = 0.5307(1). In the MBL phase, however,

the eigenenergies are no longer correlated, and the energy

levels are simply spaced according to Poisson statistics, giving

r ≈ 0.386 29. In Fig. 2(d) the behavior of r is shown across the

MBLT, clearly varying between these two statistical regimes.

For all of these quantities, we average over between 10 000

for L = 10 and 1000 for L = 20 samples of random fields

and compute errors using statistical bootstrapping across these

samples.

Scaling. The behavior in Figs. 2(a) and 2(b) suggests that

the MBLT is a continuous transition in which a diverging

length scale ξ ∝ |h − hc|
−ν emerges near the transition point,

consistent with Ref. [10]. In order to estimate the exponent ν,

finite-size scaling analysis [53] has previously been employed

for various quantities, including the entanglement entropy

S. These analyses, based on exact numerical methods, find

ν ∼ 1 [27,30,54], contradicting the CCFS/CLO bound. A

recently proposed explanation [30] suggests that there are

two universality classes at play here with that of intersample

randomness not yet dominant for the system sizes studied.

In order to estimate ν for both models we consider the

following finite-size scaling ansatz,

� = f (L1/νx), (2)
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FIG. 3. (a) Schmidt gap data collapse with fitting parameters as

shown. (b) Quality of data collapse Q (lower is better) across the

whole parameter space. The dashed lines denote the minimum point

which yields the parameters shown in (a). (c) Pseudocritical points

h̃c as a function of inverse length 1/L. (d) Schmidt gap data collapse

using h̃c directly and optimizing for ν only—the value of which is

shown. Error bars shown where visible.

where f (·) is an unspecified function and x is ideally the

scaled coordinate h-hc. Given the ansatz of Eq. (2), one can

then find the best fit of hc and ν, using an objective function

quantifying quality. We use such a quality measure Q as refined

in Ref. [55], which is discussed in the Supplemental Material

[56]. In Fig. 3(a) we show the optimal data collapse of � for

various L’s, which is found to occur for hc = 5.06 ± 0.09 and

ν = 2.35 ± 0.21. Remarkably, this value for ν is consistent

with the CCFS/CLO bound, in contrast to finite-size scaling

analyses for S and r , which previous studies [27,30,54] have

generally shown to yield values of ν ∼ 1—a finding also

reproduced in our analyses (data not shown). We show the

quality of collapse Q for all possible combinations of hc and

ν in Fig. 3(b), the minimum point of which defines the best-fit

values of ν and hc. To define errors on ν and hc, we perform

the scaling with various subsets of data (see the Supplemental

Material [56]) and compute the variance among all those which

achieve a good quality.

The critical h we find with � is slightly higher than that

generally reported. One possible explanation is that a lower

effective ν fits best with a lower effective hc, a relation that

can be seen in Fig. 3(b). Thus it is possible that in other studies

using S and r , where ν ∼ 1, hc is artificially lower due to the

finite-size effects. We note that a standard method of extracting

hc independently—plotting the pseudocritical points against

inverse length, shown in Fig. 3(c)—does not give a decisive

value for the real critical point. In fact hc ∼ 3.7 would seem

to be a lower bound on the transition point with a value

between 4.5 and 5.5 more consistent. Additionally, if one were

to identify an intersection point for all lengths in Fig. 2—which

should occur at h = hc as implied by Eq. (2)—this would also

be at h ∼ 5. In contrast, the point of intersection for S and r

shifts significantly as L increases—implying a deviation from

the finite-size ansatz. As a final cross validation, to estimate

ν independently from hc, we take the pseudocritical points

h̃c directly to define the scaled coordinate x and find the best

quality of fit Q solely as a function of ν. This approach yields
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FIG. 4. Standard deviation between samples for (a) the Schmidt

gap σ�, (b) normalized block entropy σS , and (c) mean energy-level

spacing ratio σr . Shown as a function disorder h and length L. Error

bars shown where visible.

ν = 2.13 ± 0.15—in accordance with the first estimate—for

which data collapse is shown in Fig. 3. In contrast to previous

ground-state quantum phase transitions [34,36], here we find

that the Schmidt gap is a scaling function rather than an order

parameter. Namely, it corresponds to β = 0 if Eq. (2) had

prefactor Lβ/ν .

Sample fluctuations. In order to understand why the

Schmidt gap is more successful than typical quantities, we

study the fluctuation of �, S, and r between samples. Mo-

tivated by Ref. [30], we consider how the size of these

fluctuations scales with L. We define the standard devi-

ations as σ 2
� = Var[〈λk

1 − λk
2〉k], σ 2

S = Var[〈Svn〉k/SP ], and

σ 2
r = Var[〈min(δk,δn+1)/ max(δk,δn+1)〉k] with the variance

Var[·] taken across samples. These are shown across the MBLT

for various system sizes in Figs. 4(a)–4(c). All three quantities

must lie between 0 and 1, thus their standard deviation is capped

at 0.5. As the figures show however, the peaks of σS and σr

are both still rising significantly with L and not yet saturated,

whereas the peak of σ� is almost constant. The implication

is that, for S and r , the effect of the small system sizes is to

suppress the amount of fluctuations driven by the true disorder.

On the other hand, changing the length L seems to have little

effect on σ�—suggesting that it already experiences the full

disorder-driven thermodynamic-limit fluctuations. A possible

explanation is that finite-size effects are dominantly confined

to the smaller Schmidt coefficients, which still contribute

significantly to σS . This could also be phrased in terms of

the presence of various length scales, not yet very small

compared to the correlation length, that the Schmidt gap is

largely insensitive to.

Entanglement length. The nature of the diverging length

scale ξ in the context of MBLT is mysterious and a physical

picture is lacking. To shed light on this, we introduce an

entanglement length as previously used for detecting the

Kondo screening cloud [47,48]. Specifically, we consider the

entanglement between a small subsystem A, here a single

spin, and an environment E, separated by a gap of length

lG, a geometry shown in Fig. 1(b). The reduced state of the

two blocks is ρAE,k = TrG(|Ek〉 〈Ek|), where TrG removes the

2lG spins not in A or E. We use the logarithmic negativity

[37–41] to quantify the entanglement between systems A and

E, defining E(lG) = 〈log2 ||ρŴ
AE,k||1〉k with Ŵ as the partial

transpose and ‖ · ‖1 as the trace norm. Since we are only
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FIG. 5. (a) Average logarithmic negativity as a function of the gap

between two disjoint blocks as depicted in Fig. 1, the first block being a

single spin, and the second being the rest of the system. Here, L = 20,

which has a pseudocritical point at h ∼ 3. (b) Bipartite entanglement

length as computed with Eq. (3) across the MBLT for varying chain

length L.

concerned with the relative decay of entanglement we also

define the normalized entanglement as Ẽ(lG) = E(lG)/E(0).

This naturally gives information about bipartite entanglement

over a range of scales, unlike the two-site concurrence, for

example (which quickly goes to zero for large separation), and

unlike the widely used entanglement entropy (which cannot

quantify the entanglement of mixed states—which inevitably

arise when looking at two subsystems of a larger state). In the

ergodic phase, due to volume law entanglement, the eigenstates

are highly multipartite entangled between their spins. This

implies that any reduced state of two small blocks is close to the

identity and thus very weakly entangled. From this two features

can be inferred: (i) Ẽ(lG) is initially expected to decay slowly

with increasing lG, and (ii) Ẽ(lG) must go to zero as lG → L/2.

Since this precludes a linear-type decay, it is expected that there

is a distance at which Ẽ(lG) rapidly decays—indeed we find

this to be the case with a sharp drop-off when half the system

is traced out, i.e., lG ∼ L/4. In the MBL phase, however, A

will be weakly entangled with only spins close to it, and thus

Ẽ(lG) should decay quickly even for small lG. In Fig. 5(a)

we plot Ẽ as a function of lG for various disorder strengths

h in a chain of length L = 20. As is clear from the figure

the location of the main drop in Ẽ varies significantly with h.

Whereas in the ergodic phase Ẽ this decay is concentrated at

lG ∼ L/4, and in the MBL phase it is concentrated at lG ∼ 1.

Interestingly, at the pseudocritical point [h̃c ∼ 3 for L = 20,

see Fig. 2(b)], entanglement decays close to linearly—each

spin lost contributes equally to the entanglement, implying that

the bipartite entanglement is equally spread over many sites.

This fits with a picture of a self-similar structure of entangled

clusters [29,57]. The detailed behavior of Ẽ as a function of

system size can be found in the Supplemental Material [56].

To extract a length scale from Ẽ(lG) we define a length η

from the maximum inverse gradient as such,

η = max
lG

|dẼ/dlG|−1. (3)

Assuming the fastest decay is exponential-like, this quantity

naturally arises from expressions of the form Ẽ ∝ e−lG/η. This

is a more robust way of finding an exponential fit in the region

of the most rapid decay of Ẽ or a more general fit for the full

behavior. At the transition point, where Ẽ decays linearly, η

takes its maximum value since the gradient is always small, or

equivalently, a very slow exponential fit is needed.

The behavior of η as a function of h for varying L is

shown in Fig. 5(b) in which it can be seen to sharply peak

at h ∼ h̃c for each L across the critical region—evidence that

the diverging length scale ξ is closely captured by the length

η. In the Supplemental Material [56] we show that taking the

initial block as two spins yields almost identical results. A

plausible explanation for the increase in η as one approaches

the MBLT from the ergodic side is that proximal spins become

off-resonant so that bonding (bipartite entanglement) takes

place at increasingly longer scales—a process that is not

possible if the spins are part of a large multipartite entangled

block. We note several interesting approaches that made use

of the two-site concurrence [58,59] or mutual information

[60], which despite revealing other interesting features, such

as scaling, do not show a divergence in the localization length

from both sides of the transition. An alternative approach

for identifying the diverging length scale on the ergodic side

based on the entanglement spectrum has been recently devel-

oped in Ref. [61]. It is an interesting open question whether

that length is related to the entanglement length proposed

here.

Conclusions. In this Rapid Communication we have ex-

plored the MBLT using the Schmidt gap and the entanglement

length. We show that the Schmidt gap not only exhibits

scaling at the MBLT, but also does so with a critical exponent

ν > 2, compatible with analytic predictions. This compatibil-

ity is absent in all quantities studied with exact numerical

methods thus far, a fact that we attribute to the presence

of significant finite-size effects which the Schmidt gap is

less sensitive to. We have also considered an entanglement

length computed using the logarithmic negativity across two

disjoint blocks, which yields a diverging length scale at the

MBLT.
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