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We discuss a method to achieve decoherence resistant entanglement generation in strongly interacting
ensembles of two-level spin systems. Our method uses designed gapped Hamiltonians to create a protected
manifold of multidegenerate levels which is robust against local decoherence processes. We apply the protected
evolution to achieve decoherence resistant generation of many-particle Greenberger-Horne-Zeilinger �GHZ�
states in two specific physical systems, trapped ions and neutral atoms in optical lattices, and discuss how to
engineer the desired many-body protected manifold with them. We analyze the fidelity of GHZ generation and
show our method can significantly increase the sensitivity in frequency spectroscopy.
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I. INTRODUCTION

Entangled states are a fundamental resource in quantum
information and quantum communication science �1,2�. Ad-
ditionally, certain entangled atomic states �also known as
spin squeezed states� in principle allow to significantly im-
prove the resolution in Ramsey spectroscopy �3,4�. However,
in practice entangled states are difficult to prepare and main-
tain, and noise and decoherence rapidly collapses them into
classical statistical mixtures. Thus, one of the most important
challenges in modern quantum physics is the design of ro-
bust and most importantly decoherence resistant methods for
entanglement generation.

We have recently proposed a method �5� that allows for
noise resistant generation of entangled states. Our method
uses designed gapped Hamiltonians to create a protected
manifold of degenerate levels which is robust against local
decoherence processes. While the large number of degrees of
freedom in the manifold allows us to create various quantum
superpositions and to exploit rich dynamical evolution �suit-
able, for example, for precision spectroscopy�, the energy
gap prevents decoherence as local excitations become ener-
getically suppressed. A simple example of a many-body spin
Hamiltonian that illustrates the idea of our scheme is a mul-
tispin system with isotropic ferromagnetic interactions.
These interactions will naturally align the spins. While all of
the spins can be rotated together around an arbitrary axis
without cost of energy, local spin flips are energetically for-
bidden.

This paper presents a detailed analysis of this method
when used in trapped ions and cold atoms in optical lattices.
We demonstrate its applicability for decoherence resistant
generation of N-particle Greenberger-Horne-Zeilinger �GHZ�
states �6� and the potential of the latter to be used for
Heisenberg-limited spectroscopy. The paper is organized as
follows: In Sec. II we review one of the standard procedures
used to generate multiparticle GHZ entangled states and
show the detrimental effect of phase decoherence in this
scheme. In Sec. III we explain the idea of a many-body pro-
tected manifold �MPM� and discuss how and under what
conditions it can significantly reduce the effects of decoher-

ence. In Sec. IV we discuss ways to implement the protected
manifold in trapped ion systems and the applicability of the
gap protected evolution to significantly improve the phase
sensitivity in precision spectroscopy. In this section we also
analyze the fidelity of the GHZ generation, taking into ac-
count nonideal conditions. In Sec. V we study how to engi-
neer the long-range Hamiltonian required for the gap pro-
tected evolution in optical lattice systems interacting via
short-range interactions and discuss the effectiveness of the
MPM for GHZ generation. In Sec. VI we analyze in such
systems the effect of nonideal conditions such as the mag-
netic trapping confinement and finally conclude in Sec. VII.

II. SPIN SQUEEZING IN INTERACTING SPIN
ENSEMBLES

A. Ideal case

In this section we start by reviewing a method to generate
multiparticle entangled states in a system of N spinor atoms
with two relevant internal states which we identify with the
effective spin index �= ↑ ,↓. The basic idea is to evolve an
initially uncorrelated state with the so-called squeezing
Hamiltonian,

Ĥz = �Ĵz
�0�2. �1�

As shown in Refs. �7,8� the Ĥz Hamiltonian can be imple-
mented in trapped ions by using the collective vibrational
motion of the ions in a linear trap driven by illuminating

them with a laser field �3,4,9�. In Eq. �1� we used Ĵ�
�0� to

denote the collective spin operators of the N atoms: Ĵ�
�0�

= 1
2�i�̂i

�, where �=x ,y ,z and �̂i
� is a Pauli operator acting on

the ith atom. In this paper we will use units such that �=1
and assume N to be even.

To describe the entanglement generation process we
use the basis spanned by collective pseudospin states
denoted as �J ,M ,��z �10�. These states satisfy the eigenvalue

relations Ĵ�0�2�J ,M ,��z=J�J+1��J ,M ,��z and Ĵz
�0��J ,M ,��z

=M�J ,M ,��z, with J=N /2, . . . ,0 and −J�M�J. � is an
additional quantum number associated with the permutation
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group which is required to form a complete set of labels for
all the 2N possible states. The process starts by preparing the
system at t=0 in a fully polarized state along the x direction
�N /2,N /2�x �as any state with J=N /2 is uniquely character-
ized by M, for denoting them we omit the additional � la-
bel�. Fully polarized states along x can be written as a super-
position of states with different M values along the z
direction, �MCM�N /2,M�z. During the evolution the Hamil-
tonian imprints an M2-dependent phase to the different com-
ponents. At first the winding of the phases leads to a collapse

of �Ĵx
�0��. However, at time �trev=� all components rephase

with opposite polarization, and a perfect revival of the initial

state is observed with �Ĵx
�0��=−N /2 �see Fig. 1�. Specifically,

the time evolution of �Ĵx
�0�� for systems with N	1 can be

shown to be given by

�Ĵx
�0�� =

N

2 �
k=0,1,2,. . .

�− 1�ke−N/2��t − k��2
. �2�

Right at time t0= trev /2 the system becomes a macroscopic
superposition of fully polarized states along the 
x direc-
tion, i.e., a N-particle GHZ state of the form

��x
GHZ� 	

1

2

�e−i�+�N

2
,
N

2


x

+ ei�−�N

2
,−

N

2


x
� , �3�

with �
 real phases given by −� /4 and � /4+N� /2.
Recent experiments �3,4� have used this type of scheme to

generate GHZ states in trapped ions with the aim to perform
precision measurements of 0, the energy splitting between ↑
and ↓ levels. Ideally the use of GHZ states should enhance
the phase sensitivity to the fundamental Heisenberg limit
�11�. However, decoherence significantly limited the applica-
bility of the method.

B. Effect of decoherence

To understand the detrimental effect of decoherence we
first assume that the dominant type of decoherence is single-
particle dephasing. Such dephasing comes from processes
that, while preserving the populations in the atomic levels,
randomly change the phases leading to a decay of the off-
diagonal density matrix elements. We model the phase deco-
herence by adding to Eq. �1� the following Hamiltonian �12�:

Ĥenv =
1

2�
i

hi�t��̂i
z, �4�

where hi�t� are assumed to be independent stochastic Gauss-
ian processes with zero mean and with autocorrelation func-
tion hi�t�hj���=�ij f�t−��. Here the overbar denotes averaging
over the different random outcomes. In what follows we will
use the property that zero mean Gaussian variables satisfy
exp�−i�0

t d�h����=exp�−��t��, with ��t�= 1
2�0

t dt1�0
t dt2f�t1

− t2� �13�.
Phase decoherence causes an exponential decay of the

revival peak and N-dependent decay of the fidelity, defined
as F�t0�= ��x

GHZ��̂�t0���x
GHZ� �see Fig. 1�. Qualitatively the

effect of phase decoherence on the evolving state can be

understood from the energy levels of Ĥz �see Fig. 2�. Ĥz
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FIG. 1. �Color online� Fidelity of GHZ generation vs N with and
without gap protection. We assume a noise with steplike spectral
density with amplitude f =2 kHz and cutoff frequency c=6 kHz.
The solid red and dashed green lines are for a protected system,
�=�, with �=25 and 10 kHz, respectively. The black dotted and
blue dotted-dashed lines are for an unprotected system, �=0, with
the same parameters �=25 and 10 kHz, respectively. In the inset we

show �Ĵx
�0��t�� /N for N=50 and the various curves are for the same

parameters as those shown in the main plot. The horizontal axis in
the inset is in units of �.

FIG. 2. �Color online� Schematic representation of the energy levels of the �Ĵz
�0�2 Hamiltonian and the effect of the different types of

noise. As states with different J but equal �M� are degenerate, in the presence of phase decoherence ��z noise� they are populated during the
time evolution. �x,y noises couple states which differ by 
1 units of M and therefore the small energy gap between them, of the order of �,
naturally protects the system from these type of processes.
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commutes with both Ĵz
�0� and Ĵ�0�2, however, Ĥenv only com-

mutes with Ĵz
�0�. Consequently, in the presence of phase de-

coherence transitions between different J subspaces are al-
lowed as long as M is conserved. As all the states with the
same �M� value are degenerate, there is no energy barrier to
prevent such transitions and very quickly the initially popu-
lated J=N /2 manifold is depleted and the fidelity of gener-
ating the GHZ state significantly degraded. Moreover, the
degradation scales exponential with increasing N due to the
exponential scalability of the number of accessible states to
which the initial J=N /2 population can be transferred to.
Maximally polarized states �J=N /2,
N /2� do not couple to
other J manifolds, however, they have the drawback that
they decohere N times faster than a single spin since they
always accumulate a collective phase. The fast decoherence
rate of these states, however, is not problematic in our case
since the GHZ state is prepared along the x direction where
most of the population is distributed close to the �M�=0 lev-
els.

Quantitatively the effect of decoherence can be calculated
by using the uncoupled spin basis as it diagonalizes the total
Hamiltonian. Each state in this basis can be labeled as
��n�k��= �s1

k ,s2
k , . . . ,sN

k ��, where si
k=
1 for ↑↓ and k

=1, . . . ,2N.
If at t=0 the reduced density matrix of the system, �̂, is

given by �̂=�k,l�k,l�0��n�k���n�l��, after time t,

�k,l�t� = �k,l�0�ei/4�t���i=1

N
si
k�2−��i=1

N
si
l�2�e−i�i=1

N �0
t d�hi����si

k−si
l�.

�5�

As a consequence, �Ĵx
�0��t��=Tr�Ĵx

�0��̂�t��=e−��t���Ĵx
�0��t����=0

with ��Ĵx
�0��t����=0 the expectation value in the absence of

noise �Eq. �2��. The factor e−��t� comes from the fact that the

operator Ĵx
�0�=�i�̂i

x only probes one-particle coherence, i.e., it
only connects states with exactly one spin flipped.

Since at t=0 all atoms are polarized in the x direction, i.e.,
�k,l�0�=2−N, one can show from Eq. �5� that the fidelity is
degraded to

F�to� =
1

22N�
l,k

e−��to��i=1
N �si

k − si
l�2

= �1 + e−��to�

2
�N

. �6�

III. PROTECTED DYNAMICS

A. Many-body protected manifold

Let us now consider what happens if in addition to Ĥz we
assume that there is isotropic infinite-range ferromagnetic in-
teractions between the spins, so the system is described by
the Hamiltonian

Hc = Ĥprot + Ĥz,

Ĥprot = − �Ĵ�0�2. �7�

The isotropic Hamiltonian Ĥprot has a ground-state manifold
spanned by a set of N+1 degenerate states. They lie on the
surface of the Bloch sphere with maximal radius J=N /2 and
are totally symmetric, i.e., invariant with respect to particle
permutations. There is a finite-energy gap Eg=�N that iso-
lates the ground-state manifold from the rest of the Hilbert
space. This gap is the key for the many-body protection
against decoherence. Here, we will refer to the ground-state
manifold as the many-body protected manifold �MPM�.

B. Protection against phase decoherence

The low-energy spectrum of Ĥc is shown in Fig. 3. As Ĥz

commutes with Ĥprot, in the absence of decoherence the latter
does not affect at all the GHZ generation dynamics, however
in the presence of decoherence the latter does significantly

reduce the effect of local environmental noise. While Ĥprot
significantly reduces the environment decoherence it does

not affect the system dynamics since, within the MPM, Ĥprot
acts as a constant term. The protection can be best under-
stood by using the basis of collective states. In terms of

collective spin operators Ĥenv can be written as

FIG. 3. �Color online� Sche-
matic representation of the energy

levels of the Ĥc Hamiltonian. Ĥprot

lifts the degeneracy of the differ-
ent J manifolds and suppresses �in
the slow noise limit� couplings be-
tween them. So if a t=0 system is
in the MPM it remains there.

MANY-BODY PROTECTED ENTANGLEMENT GENERATION … PHYSICAL REVIEW A 77, 052305 �2008�

052305-3



Ĥenv =
1


N
�
k=0

N−1

gk�t�Ĵz
�k�, �8�

where gk�t�= 1

N

�hj�t�e−i2�jk/N and Ĵ�
�k�= 1

2 � �̂ j
�ei2�jk/N. Note

that allowed transitions must conserve M as both the system

and noise Hamiltonian commute with Ĵz
�0�. In the presence of

a large energy gap Eg, one can distinguish two different type
of processes: �i� Decoherence effects that take place within
the MPM due to the collective dynamics induced by the k

=0 component of Ĥenv, and �ii� transitions across the gap
induced by the inhomogeneous terms. The later couple the
MPM with the rest of the system, however they are a non-
energy conserving process and consequently perturbatively
weak.

Using a perturbative analysis, and assuming that at t=0
the system lies within the MPM, the evolution of the projec-
tion of the density matrix on the MPM, �MM̃

	 z�N /2,M̃��̂�N /2,M�z, can be written as

�M,M̃�t� = �M,M̃�0�eit��M2−M̃2�ei��M−�M̃�e−1/2��M−�M̃�. �9�

Here,

�M�t� 	 �N

2
,M��

0

t

d�Ĥenv����N

2
,M =

M

N
�

0

�

g0���

�10�

accounts for the dynamics induced by the noise within the
MPM and

�M�t� = �
J�N/2,�

��
0

t

d�MJ,�
M ei�J,��2, �11�

takes into account the depletion of the J=N /2 levels due to
transition matrix elements between � N

2 ,M�z and states outside

the MPM, MJ,�
M = z�

N
2 ,M�Ĥenv�J ,M ,��z. J,� are the respec-

tive energy splittings. Because Ĥenv is a vector operator, ac-

cording to the Wigner-Eckart theorem, Ĥenv only couples the
states in the MPM with states which have J=N /2−1 and
thus with excitation energy �N.

Assuming the power spectrum of the noise, f��
	�dte−it f�t�, to have a cutoff frequency c �e.g., f��= f
for �c and 0 otherwise�, we find that

�M�t� �
N2 − 4M2

N
f�

0

c

d� sin�t� − Eg�/2�
 − Eg

�2

. �12�

In the limit when the noise is sufficiently slow, i.e., c�Eg,
then �M�t� is bounded for all times, �M�t�� � N2−4M2

N2 ��
fc

�Eg
�

�1, and the atomic population within the ground-state mani-
fold is fully preserved, i.e., �M�t��0 in Eq. �9�.

Consequently, in the slow noise limit type �ii� processes
are energetically forbidden and only type �i� processes are
effective and therefore the noise acts just as a uniform ran-

dom magnetic field: If at t=0 �̂=�M,M̃�M,M̃�0�� N
2 ,M̃�� N

2 ,M�,
then after time t each component �M,M̃ acquires an additional
random phase ei��M�t�−�M̃�t�� and on average

�M,M̃�t� = �M,M̃�0�ei�t�M2−M̃2�e−��t��M − M̃�2/N. �13�

The factor of 
N in the denominator of �M is fundamental for
the reduction of the effect of decoherence within the MPM.

For example, it makes Ĵx,y
�0� decay N times slower than in the

unprotected system, i.e., �Ĵx,y
�0��t��=e−��t�/N��Ĵx,y

�0��t����=0.
Assuming all atoms are initially polarized in the x direc-

tion, �M,M̃�0�=2−N
�
N

M +N /2
��

N

M̃ +N /2
�, using Eq. �13�,

the approximation �
N

M +N /2
��� 2

�N �1/4e−M2/N, valid in the

large N limit and replacing the sums over M and M̃ by inte-
grals the fidelity at a time t can be shown to be given by

F�to� =
1


1 + ��to�
. �14�

The insensitivity of F�t� on N, and the N times slower decay

rate of �Ĵx
�0�� demonstrate the usefulness of MPM to generate

a large number of entangled particles.

C. Protection against arbitrary noise

We now discuss the protection against spin flips, which
can be modeled by terms proportional to �i

x, �i
y in the noise

Hamiltonian, Eq. �4�. First, note that as the ↑ and ↓ states
have a finite-energy splitting 0, low-frequency noise asso-
ciated with such terms will be suppressed. However, most of
the spin flips are generally induced by imperfections in the
laser fields and therefore are at frequencies close to 0, i.e.,
they correspond to low-frequency noise in the rotating frame
of the laser. In the case involving GHZ state generation, the
finite-energy cost imposed by �Jz

2 between levels with differ-
ent �M� value tends to inhibit these processes as illustrated in

Fig. 2. If in addition Ĥprot is present, this natural protection
can be enhanced due to the fact that the energy gap sup-
presses the component of the noise that causes transitions
between the MPM and other manifolds. More precisely,
noise modeled as �ih

��̂i
�, when projected into the MPM re-

duces to 1

N

g�
0�t�Ĵ�

0 with �=x ,y ,z.
In Fig. 4 we quantify the protection provided by the

MPM. In the absence of any protection we find the finite-
energy cost imposed by Hz helps to protect the system
against transversal noise. Instead of the exponential decay
��e−N��t0�� of the fidelity observed when dephasing is
present, spin flips degrade the fidelity as �e−��t0�N/4 �at least
for the moderated N�12 we must restrict our simulations�.
With protection the fidelity scales even better as the transver-
sal noise is restricted to act only within the MPM. Instead of
the exponential decay of the GHZ generation fidelity with N,
with protection it decays as �e−A��t0�N0.44

with A a numerical
constant, A�1 /3 �for this result we do not have to restrict to

moderated N�. Hence, with Ĥprot we gain a factor of order

�
N. The reason why Ĵx
0 and Ĵy

0 noise degrade stronger the

fidelity than Ĵz
0 noise �which leads just to a N-independent

fidelity� is that the former do not commute with Ĥz and mix
states with different M quantum number. Additionally, in the
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figure we show that for noise with long correlation time the
use of spin-echo techniques can help to further reduce the
effect of decoherence.

IV. IMPLEMENTATION OF THE GAP PROTECTED
HAMILTONIAN IN TRAPPED IONS

A. Ideal conditions

We now proceed to review and complement the imple-

mentation of the protected Hamiltonian, ��Ĵ�0�2− Ĵz
�0�2�, pro-

posed in Ref. �14�. Consider a linear trap with a string of
ions in two relevant internal levels. The ions are assumed to
be cooled such that only the in-phase collective center-of-
mass oscillation of all ions is excited. The corresponding
oscillation frequency is denoted by �. The two internal levels
of the ions are coupled by a monochromatic laser field with
slowly varying Rabi frequencies � and with frequency 1
=0+�, where � is the detuning from resonance �see Fig. 5�.
Assuming that the field couples all ions in the same way, we

can describe the system by the Hamiltonian Ĥ= Ĥ0+ Ĥin,
with

H0 = �â†â + 0Ĵz
�0�, �15�

Ĥin =�Ĵ+
�0�ei�tei��â†ei�t+âe−i�t� + H.c., �16�

where â is the annihilation operator of the quantized oscilla-
tion mode, � is the Lamb-Dicke parameter. The detuning � is
assumed to be large compared to the linewidth of the reso-
nance, �R, but sufficiently different from the frequency of the
center-of-mass oscillation, i.e., ��� , ��
��	�R. As a conse-
quence, the dominant processes are two-photon transitions
leading to a simultaneous excitation of pairs of ions, see Fig.
5.

We first assume that the ion trap is in the Lamb-Dicke
limit, i.e., that the ions are cooled sufficiently enough, such
that all relevant excitation numbers n of the trap oscillation
�n+1��2�1 hold. In this limit one can expand the exponent
in Eq. �16� to first order in �. Confining the interest to time-
averaged dynamics over a period much longer than any of

the oscillations present in Ĥin, the oscillatory terms may be
neglected and we are left with a more simple effective
Hamiltonian �see Ref. �15� for derivation details�,

Heff = ��Ĵ�0�2 − Ĵz
�0�2� + �2�2

�
+ ��Ĵz

�0� + 2�nĴz
�0�, �17�

where �= 2��2�2

�2−�2 , �= ��
� . The first term in Heff is the desire

protected Hamiltonian. The second term acts as an effective
magnetic field which can be canceled by adding an external
magnetic field or by echo techniques. The third term comes
from the ac Stark shift of the atomic levels due to the laser
fields.

We will now, quantify the advantage of using the MPM
for a realistic experimental parameter. First we assume all
ions are in the vibrational ground state and ideal conditions,

i.e., Heff= Ĥc, and then proceed to discuss deviations from the
ideal situation. We consider the experimental parameters of
Ref. �3�, and identify the spin ↑ and ↓ levels with the 2s2S1/2
hyperfine states �F=2, mF=−2� and �F=2, mF=−1� of
9Be+ ions trapped in a linear Pauli trap with an axial center-
of-mass frequency �=2��3.86 MHz. Choosing ��1.2�,
��0.15, and not too strong laser intensities �=0.1�, so that
a negligible population is transferred to intermediate vibra-
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FIG. 4. �Color online� Fidelity to create GHZ state as a function
of N for systems in the presence of �y noise: without MPM �green
dashed line�, without MPM but with spin echo �dotted-dashed blue
line�, with MPM �red solid line�, and with both MPM and echo
�dotted black line�. We also show the degradation caused by pure
dephasing in an unprotected system �long dashed purple line� for
comparison purposes. For simplicity we assumed infinite correla-
tion time, f��=��� /��, �=0.1�. The echo technique consisted
of a perfect sudden � pulse around the x direction at �t=� /4.

Because the y components of the noise do not commute with Ĵz
2�0�

the dynamics was solved numerically. For the unprotected system
all the 2N states must be considered and we must limit the particle
number by N=10. On the other hand, the restriction of the dynam-
ics to the MPM in the protected scheme allowed us to extend the
calculation to larger N values. For the �y noise the fidelity with
protection does not become N independent, but instead scales as
e−0.043N0.44

�see fitted red dots�. Nevertheless we do gain a factor of
order 
N with respect to the unprotected system. The plot also
shows that the combination of MPM with spin echo provides the
best protection.

� � �� � �

� � �

� � �

� � �

� � �
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FIG. 5. �Color online� Energy-level diagram for a pair of ions
illuminated by a monochromatic beam with detuning � from the
atomic transition. The quantity n denotes the quantum number of
trap oscillations with frequency �. � is assumed to be large com-
pared to the linewidth of the resonance and consequently the domi-
nant processes are two-photon transitions. These transitions lead to
a collective Hamiltonian for the many-ion system of the form

��Ĵ�0�2− Ĵz
�0�2�.
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tional levels, we estimate ���= ���=25 kHz and a GHZ
preparation time to=63 �s. In Ref. �16�, it was determined
that in typical laboratory conditions the random magnetic
field changes are of the order of 0.1 �T with a qubit transi-
tion depending linearly on the magnetic field with a coeffi-
cient of approximately 21 kHz /�T. With these parameters
we obtain that the fidelity of the GHZ state in the absence of
protection �see Eq. �6��, is degraded even for six ions to F
=0.75 �dotted black line in Fig. 1�. On the other hand, using
the MPM, the fidelity improves to F=0.95 �solid red line in
Fig. 1�. For this implementation of Hprot it is important to
mention that whereas the GHZ fidelity does not explicitly
depend on N �see Eq. �14��, it implicitly depends on it due to
the fact that � decreases with N as 
ln N /N. The reason for
this dependence is that in an effective one-dimensional �1D�
ion chain there is a critical ratio between the axial and trans-
versal trapping frequencies �crit=�

2 /�T,crit
2 =16 ln N / �9N2�, at

which the ions become unstable �see Ref. �17� for details�
and thus � scales as �T,crit


ln N / �N�. This dependence how-
ever does not affect the protection mechanism since the gap,
Eg, grows as 
ln N.

Since the present implementation of Ĥc yields always
���= ��� a relevant question is, if it is possible to implement in

these systems Ĥprot and Ĥz independently. A possible way to
do so is to use the Mølmer and Sørensen �7� proposal for

implementing Ĥz=�Ĵz
�0�2 via virtual vibrational excitations

with bichromatic beams and to combine it with multiple
resonant pulses that rotate the Bloch vector: A resonant � /2

pulse acting simultaneously on all ions rotates the Ĵz
�0� opera-

tor into Ĵy
�0�. Hence, by applying � /2 pulses, in conjunction

with the Mølmer and Sørensen scheme, it is possible to turn

Ĥz into Ĥy. Similarly Ĥx, can be implemented. Because the

different Ĥ� do not commute, it is not possible to realize

Ĥprot by simply applying Ĥz for the desired time t, followed

by Ĥy and Ĥx. Instead one needs to stroboscopically apply
the various Hamiltonians for short time steps dt so that the
commutation error becomes only of order �dt2. This proce-
dure, which is just a practical application of the Trotter ap-
proximation, will lead to an effective implementation of

Ĥprot. The drawback however is that if the time step dt is not
short enough, it can lead to additional decoherence errors
during the dynamical evolution.

B. Applications to precision measurements using trapped ions

Recent experiments �3,4� have generated GHZ states
made of up to six beryllium ions and used them to perform
precision measurements of 0. For the ideal GHZ state
preparation, the spectroscopy should lead to Heisenberg-
limited resolution, ��0��N−1 �11�. However, in practice,
even for six ions, the phase accuracy was significantly de-
graded by decoherence.

The spectroscopy �3,4� was realized by first creating the
desired GHZ state by applying to the initial polarized state,
�J=N /2,N /2�z, the unitary gate operation UN

=ei�/2Jy
�0�

ei�/2Ĵz
�0�2

e−i�/2Jy
�0�

. Then, the GHZ state was let to
freely precess in the z direction for time t so each atom

accumulated a phase difference �= �−0�t �in a reference
frame rotating with the frequency , the frequency of the
applied field�. The phase difference was then decoded by
measuring the collapse probability into the states �J
=N /2,N /2�z or �J=N /2,−N /2�z after applying the unitary
transformation �i�i

x.
This generalized Ramsey sequence can be quantitatively

described as a measure of the expectation value of the fol-

lowing operator, Ô:

�Ô� = ���t0���
i

�cos����̂i
z − sin����̂i

y����t0�� �18�

with ���t0��=e−i�/2Ĵz
�0�2

�N /2,N /2�x.

The phase sensitivity ��2Ô� achievable by repeating the
above scheme during total time T is related to the signal

variance ��2Ô�= �Ô2�− �Ô�2 and given by ��0�
=
 1

tT
��2Ô�

���Ô�/���2
�12�. Because Ô2=1, we only need to calcu-

late �Ô�=Tr��̂�t0�Ô� to evaluate �0.
Experimentally, magnetic field noise is one of the sources

of phase decoherence. Assuming that such dephasing mainly
takes place during the GHZ generation, as during the Ram-
sey interrogation time the atoms are essentially freely evolv-
ing, using Eq. �5� one can show that for the unprotected
system

�Ô� = ��x
GHZ��

i

�cos����̂i
z − e−��t0� sin����̂i

y���x
GHZ�

=
1

2
� ei��1 − e−��t0�� + e−i��1 + e−��t0��

2
�N

+ H.c. �19�

Consequently the maximal phase resolution, achieved at
�opt=n� �for integer n�, can be shown to be given by

��0�opt = ��0�sh/G , �20�

with G=
��N−1�e−2��t0�+1� and ��0�sh= 1

tTN

the shot-noise
resolution. The factor G explains the strong limitations intro-
duced by decoherence. In the limiting case that the time re-
quired to generate the GHZ state is slow enough that G�1
�i.e., when ��t0� ln�
N��, the phase accuracy is reduced to

the classical shot-noise resolution. However, if instead Ĥc is
used for the GHZ generation, G is replaced by

��N−1�e−2��t0�/N+1�. Due to the N times slower decay rate
of the atomic coherences, the same preparation time that
leads to shot-noise resolution without protection, can lead to
a much higher sensitivity with protection.

In Fig. 6 we plot ��0�opt using realistic experimental pa-
rameters and compare the achievable sensitivity with and
without protection. The figure shows an enhancement in sen-
sitivity up to 30% even for the few ions in consideration.

C. Nonideal conditions

So far we have used the Lamb-Dicke and the rotating-
wave approximation. Now we perform a more detailed
analysis of the validity of these approximations and estimate
the effect of deviations from the ideal situation in an actual
experiment.
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1. Finite temperature

The Sørensen and Mølmer scheme used to create Ĵz
�0�2,

leads to an effective Hamiltonian independent of vibration
quantum numbers due to the destructive interference of the
transition paths to intermediate vibrational states that the two
applied laser frequencies provide. On the contrary, our

implementation of Ĥc, which requires a monochromatic
beam, lacks the desired cancellation and a term proportional

to 2�nĴz
�0�, appears in the effective Hamiltonian, see Eq.

�17�. This term, if not corrected, can certainly degrade the
fidelity to

F�to� = �
n

Pn exp�−
N2�2�2n�2to

2

8
� � 1 −

n̄

n̄ + 1
, �21�

where Pn is the initial population of the state with n phonons
and n̄ is the mean vibrational quanta. For a thermal state with
n̄=1, F�to��0.5, which is quite low. In order to prevent this
effect one must cool the ions to the ground state, Pn=�n0,
which is feasible with the state-of-the-art technology. Alter-
natively one can use spin-echo techniques. For example, if at
time to /2 the sign of the laser detuning � is changed, then the
different components will rotate in the opposite direction and
at to the net effect due to the extra second and third terms in

Ĥeff will be canceled out. Assuming this cancellation, we
proceed to estimate the small nonideal deviations by using
perturbation theory.

2. Direct coupling

Going from Eq. �16� to Eq. �17� the off-resonant term

Hd=�Ĵ+
�0�eit�+H.c. was neglected. This term corresponds to

direct single atom spin flips without any vibrational excita-
tion.

Changing to the interaction picture of Heff and using the
fact that Hd oscillates to a much higher frequency than

Û�t�=eiHefft, so that the latter can be treated as constant in the
integrals used in the Dyson series, one can show that

F�to� = 1 −
�2

�2 �N2 sin2��to� + 4N sin4��to/2� + ¯� .

�22�

The degradation of fidelity is a factor of N larger than the
degradation caused by direct couplings in the standard real-
ization of Jz

�0�2, where F�to�=1− N�2

�2 sin2��to�. Even for six
ions, using a modest Rabi frequency �=0.1�, to=63 �s, �
�1.2�, and �=2��3.86 MHz, this effect can cause signifi-
cant loss in fidelity, F�to��0.75. Therefore, it is important
for the implementation of the protected Hamiltonian to use
weak laser power and to control the system parameter such
that �t0=2K� with K as an integer.

3. Lamb-Dicke approximation

In Ref. �8� it has been shown that relaxing the Lamb-
Dicke approximation and including higher order terms re-
sults in an effective �n which depends on the vibrational
number of phonons in the collective mode, �n=��1−�2�2n
+1�+�4�5 /4n2+5 /4n+1 /2��. As this effect is global, the
gap does not protect against it and it leads to a degradation of
the fidelity given by

F�to� = �
n

Pn�1 +
N�N − 1���/2 − �nto�2

4
�−1/2

� 1 −
�2N�N − 1��4

32 �
n

Pn�2n + 1�2. �23�

Assuming a typical Lamb-Dicke parameter of order �
�0.15 and ground-state cooling, these corrections limit the
number of ions to less than 40 if one requires a degradation
in fidelity no greater than 30%.

4. Other vibrational modes

With N ions in the trap, assuming that the transversal
potential is strong enough to freeze the transversal degree of
freedom, only the N longitudinal vibrational modes are rel-
evant. So far we have assumed that only the collective
center-of-mass motion is excited and neglected other modes.
If we include the effect of other modes, the fidelity is de-
creased. The main sources of decoherence are �a� off-
resonant direct couplings to other modes and �b� reduction of
the coupling to the center-of-mass mode, �, due to the vibra-
tion of the other modes. However, all of these effects are
local and the gap energetically suppresses them.

5. Spontaneous emission

Another fundamental source of decoherence arises from
spontaneous emission effects. In typical ion-trap experiments
the �↑ � and �↓ � levels are coupled through Raman transitions
to a third excited level �e�. We denote by �1��2� the energy
splitting between �↓ � ��↑ �� and �e� �see Fig. 7�. Assuming
two-photon resonance conditions, that is e1−e2=�1−�2
=0 and �=e1−�1=e2−�2, where � is the detuning of the
fields from the one-photon resonance, e1,2 and �1,2 are laser
frequencies and Rabi frequencies, respectively, the Hamil-
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FIG. 6. �Color online� Phase sensitivity in precision spectros-
copy with trapped ions as a function of N. The vertical axis is in a
logarithmic scale. We used the same parameters as Fig. 1 for the
noise �=25 kHz, �=0.05�, and �=2��3.86 MHz. The blue line
shows the phase sensitivity without protection �Eq. �20�� and the
red dashed line with protection. Even with these reduced number of
ions we observe up to a 30% improvement.
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tonian of the system in the appropriate rotating frame can be
written as

Ĥs = − ��
i

�̂ee
i + ĤIs, �24�

ĤIs =�1�
i

��̂↓e
i + �̂e↓

i � +�2�
i

��̂↑e
i + �̂e↑

i � , �25�

where �̂ee
i = �e�ii�e�, �̂↓e

i = �↓ �ii�e�, and �̂↑e
i = �↑ �ii�e�.

The decoherence processes due to spontaneous emission
can be described by means of Heisenberg-Langevin equa-
tions �19� given by

�̇̂↑↓
j = �i�1 + f̂↓e

j†��̂↑e
j − �i�2 − f̂↑e

j ��̂e↓
j , �26�

�̇̂↑e
j = − �i� + �e/2��̂↑e

j − �i�2 − f̂↑e
j ���̂ee

j − �̂↑↑
j �

+ �i�1 − f̂↓e
j ��̂↑↓

j , �27�

�̇̂e↓
j = �i� − �e/2��̂e↓

j + �i�1 + f̂↓e
j†���̂ee

j − �̂↓↓
j � �28�

− �i�2 + f̂↑e
j†��̂↑↓

j , �29�

where �e=�1+�2 with �1 and �2 are decay rates from �e� to

�↓ � and �↑ �, respectively, and the noise operators f̂ have zero

mean and are � correlated: � f̂↓e
j �t� f̂↓e

k†�t���=�1��t− t��� j,k and

� f̂↑e
j �t� f̂↑e

k†�t���=�2��t− t��� j,k.
In the large photon detuning limit �	�1�2 ,�1 ,�2, one

can adiabatically eliminate the operators �̂e↓
j and �̂e↑

j and
their Hermite conjugates and then use the projected equa-

tions of motion to solve for �̇̂↑↓
j ,

�̇̂↑↓
j = FH + i�Ĥnoise,�̂↑↓

j � , �30�

Ĥnoise�t� =
1

2�
j

�hjz
s �t��̂ j

z + hjx
s �t��̂ j

x + hjy
s �t��̂ j

y� , �31�

where FH accounts for the Hamiltonian part of the dynamics
and

hjz
s �t� =

�1

i�
� f̂↓e

j† − f̂↓e
j � −

�2

i�
� f̂↑e

j† − f̂↑e
j � , �32�

hjx
s �t� = −

�2

i�
� f̂↓e

j† − f̂↓e
j � −

�1

i�
� f̂↑e

j† − f̂↑e
j � , �33�

hjy
s �t� = −

�2

�
� f̂↓e

j† + f̂↓e
j � +

�1

�
� f̂↑e

j† + f̂↑e
j � . �34�

From the previous expressions one can estimate the degrada-
tion of the fidelity due to dephasing �similar degradation of
the fidelity is caused by x or y types of noise�. In the adia-
batic limit, i.e., �	�1�2 ,�1 ,�2, hjz

s are independent sto-
chastic white-noise processes with zero mean and autocorre-
lation function hiz

s �t�hjz
s ���=�sp�ij��t−�� with �sp

=
��1�1

2+�2�2
2�

�2 . Consequently the gap cannot protect against this
broad band noise and according to Eq. �6� they will cause a
degradation of the GHZ fidelity given by

F = 1 −
�spNto

4
. �35�

In current experiments spontaneous emission is one funda-
mental source of decoherence. For the particular case of Ref.
�4�, with a gate duration time to�50 �s, they estimated for
six ions an 18% probability of spontaneous emission per
gate. In order to reduce the strong degradations due to this
type of high-frequency decoherence process one can increase
the Raman detuning �18� at the expense of slower evolution
which in turn will make the system more susceptible to other
kind of local noise �e.g., magnetic field inhomogeneities�. On
the other hand, the latter can be suppressed by the MPM.

From this analysis we conclude that overhead of imple-

menting Ĵ�0�2− Ĵz
�0�2 instead of Ĵz

�0�2 is mainly the additional
echo technique required to remove the n dependence of Heff.
Besides that, on average the same type of nonideal distur-
bances are found in both Hamiltonians with the advantage of

Ĵ�0�2− Ĵz
�0�2 that the gap protects the system against those of

them which are local in character.

V. IMPLEMENTATION IN OPTICAL LATTICES

A. Engineering long-range interactions

Up to now we have explored only the generation of an
MPM via isotropic long-range interactions. In practice, how-
ever, it is desirable to have a similar kind of protection gen-
erated by systems with short-range interactions such as those
provided by cold atoms in optical lattices. These systems
offer the possibility to dynamically change the Hamiltonian
parameters at a level unavailable in more traditional con-
densed matter systems. We now show how an MPM can be
created in lattice systems and can be used to robustly gener-
ate N-particle GHZ states.

We consider ultracold bosonic atoms with two relevant
internal states confined in an optical lattice. We will assume
that the lattice is loaded with one atom per site, and again
identify the two possible states of each site, with the effec-
tive spin index �= ↑ ,↓, respectively. For deep periodic po-
tential and low temperatures, the atoms are confined to the
lowest Bloch band and the low-energy Hamiltonian is given
by �20�

FIG. 7. �Color online� Raman transition to a third level with
atomic decay. Here � is the detuning of the laser fields with fre-
quencies e1,2 from the one-photon resonances with frequencies
�1,2, i.e., �=e1−�1=e2−�2, and �1,2 are laser Rabi frequencies.
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ĤBH = − ��
�i,j��

â�,i
† â�,j +

1

2�
j�

U���n̂�,j�n̂�,j − 1��

+ �
j

U↑↓n̂↑,jn̂↓,j . �36�

Here â�,j are bosonic annihilation operators of a particle at
site j and state �, n̂�,j = â�,j

† â�,j, and the sum �i , j� is over
nearest neighbors. In Eq. �36� the parameter � is the tunnel-
ing energy between adjacent sites �which we assume spin
independent� and U�,�� are the different on-site interaction
energies which depend on the scattering length between the
different species. Both U��� and � are functions of the lattice
depth. We are interested in a unit-filled lattice in the regime
��U��� where the system is deep in the Mott insulating
phase �21,22�. In this limit, to zero order in � the ground state
is multidegenerate and corresponds to all possible spin con-
figurations with one atom per site. A finite � breaks the spin
degeneracy. By including virtual particle-hole excitations
one can derive an effective Hamiltonian which describes the
spin dynamics within the one atom per site subspace �23�,

Ĥlat = ĤH + ĤI = − �̄ �
�i,j�,�

�̂i
��̂ j
� − �̄�

�i,j�
�̂i

z�̂ j
z. �37�

Here the coefficients are �̄=�2 /U↑↓ and �̄=�2�U↑↑
−1+U↓↓

−1

−2U↑↓
−1�. For simplicity we will now restrict the analysis to

one-dimensional systems and assume periodic boundary con-
ditions.

ĤH is spherically symmetric and in terms of collective
spin operators it can be written as

ĤH = −
4�̄

N
Ĵ�0�2 −

4�̄

N
�

k=1,. . .,N−1,�
Ĵ�

�k�Ĵ�
�−k� cos�2�k

N
� .

�38�

All the N+1 fully symmetric states with J=N /2 are degen-

erate and span the ground state of ĤH. ĤI is not spherically
symmetric but we can also write it in terms of collective
operators as

ĤI = −
4�̄

N
Ĵz

�0�2 −
4�̄

N
�

k=1,. . .,N−1
Ĵz

�k�Ĵz
�−k� cos�2�k

N
� . �39�

If the condition �̄	�̄ is satisfied, which can be engineered in
this atomic system by means of a Feshbach resonance, the
effect of the Ising term can be studied by means of pertur-
bation theory. Assuming that at t=0 the initial state is pre-
pared within the J=N /2 manifold, a perturbative analysis

predicts that for times t such that �̄t�� / �̄, ĤH confines the
dynamics to the ground-state manifold and transitions out-
side it can be neglected. As a consequence, only the projec-

tion of ĤI on it, which corresponds to PĤI=�eĴz
�0�2+ �̄N

N−1 with
�e	− 4�̄

N−1 , is effective and HI acts as a long-range Hamil-

tonian. Here we used the relation Pk�0�Ĵz
�k�Ĵz

�−k��=−
Ĵz�0�2

N−1

+ N2

4�N−1� , with P the projection into the J=N /2 subspace. The
nonzero projection of the latter term comes from the fact that

the operators Ĵz
�k�Ĵz

�−k� and Ĵz
�0�2 are not independent as they

satisfy the constraint �k=0
N−1Ĵz

�k�Ĵz
�−k�=N2 /4.

In Fig. 8 we contrast the dynamical evolution of a system

in the presence and absence of ĤH assuming at time t=0 all
of the spins are polarized in the x direction. If only the Ising

term is present, �̄=0, it induces local phase fluctuations that

leads to fast oscillations in �Ĵx
�0��=N /2 cos2�2�̄t�. On the

other hand, as the ratio � / �̄ increases, the isotropic interac-

tion inhibits the fast oscillatory dynamics and instead �Ĵx
�0��

exhibits slow collapses and revivals. For �̄	� the dynamics

exactly resembles the one induced by Ĥc and at �et=� /2 the
initial coherent state is squeezed into a GHZ state.

B. MPM in lattice systems

ĤH also provides protection against phase decoherence.

However, ĤH is not as effective as Ĥprot because the energy

gap between the MPM and the excited states of ĤH vanishes

in the thermodynamic limit as Eg→ �̄ /N2. This is a drawback
of the short-range Hamiltonian for the purpose of fully pro-
tecting the ground states from long-wavelength excitations.
Note, however, that one-dimensional systems are the worst
scenario as for higher dimensions the gap vanishes as N−2/d

with d the dimensionality of the system. Nevertheless, the
many-body interactions can still eliminate short-wavelength
excitations since in the large N limit they remain separated

by a finite-energy gap, 8�̄.
We quantify the effectiveness of the MPM to protect the

system against Ĥenv by using time-dependent perturbation

theory. For this analysis we restrict to the limit �̄	�̄, where

the Ising term can be treated as an effective �eĴz
�0�2+ �̄N

N−1
Hamiltonian. In this limit a convenient basis to study the
quantum dynamics is the collective spin basis. Assuming that
at t=0 the system lies within the J=N /2 manifold, the evo-

lution of the matrix elements �MM̃ 	 z�N /2,M̃��̂�N /2,M�z
can be written as
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FIG. 8. �Color online� Fidelity to generate a GHZ state vs �̄ / �̄.

In the inset we show �Ĵx
�0��t��. The x axis there is in units of �. The

blue dotted-dashed, dotted black, dashed green, and solid red lines

correspond to �̄=0,5 ,10,20, respectively. The plots are obtained
by numerical evolution of Eq. �37� for N=10.
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�M,M̃�t� = �M,M̃�0�eit�e�M2−M̃2�ei��M−�M̃�e−1/2��lat
M −�lat

M̃ �,

�40�

where the random phase, given by Eq. �10�, characterizes the
dynamics induced by the noise within the MPM and �lat

M �t�
=�J�N/2,���0

t d�MJ,�
M ei�J,�

lat
�2, takes into account the depletion

of the J=N /2 levels due to transition matrix elements with
states outside the symmetric manifold, MJ,�

M

= z�
N
2 ,M�Ĥenv�J ,M ,��z. J,�

lat are the respective energy split-
tings. Up to this point the expressions are structurally iden-
tical to the ones obtained for long-range interactions. The
difference appears in the evaluation of �lat. In contrast to

Ĥprot, not only the excitation frequencies J,�
lat are not degen-

erated but also they become smaller as N is increased. As a
consequence Eq. �12� is replaced by the following equation
for the lattice system:

�lat
M �t� �

N2 − 4M2

N�N − 1�
f �

k=1

N−1 �
0

c

d� sin�t� − �Ek�/2�
 − �Ek �2

�41�

with Ek the excitation energies of the states that belong to the

J=N /2−1 manifold given by �Ek=8�̄ sin2��k /N�, with k
=1, . . . ,N−1 �24�. From Eq. �41� we can estimate the deg-
radation of the fidelity due to phase decoherence as

F�to�! e−�lat
0 �t� 1


1 + ��to�
. �42�

In Fig. 9 we plot F calculated from Eq. �42� as a function of
N. In the lattice the fidelity is degraded as N grows because
the gap decreases and the generation time increases with N.
Moreover, an abrupt drop of the fidelity occurs at the value
of N at which Eg=c.

VI. NOISE AND DECOHERENCE IN LATTICE SYSTEMS

In the preceding section we used the effective Hamil-
tonian given by Eq. �37� to study the GHZ generation in
lattice systems. Here we perform a more detailed analysis of

its validity and estimate the effect of deviations from the
ideal situation in an actual experiment. For this analysis we

restrict to the limit �̄	�̄ where the Ising term can be treated

as an effective �eĴz
�0�2+ �̄N

N−1 Hamiltonian.

A. Particle-hole excitations

Deriving Eq. �37� from the Bose-Hubbard Hamiltonian
we only included virtual-particle hole excitation. However,
during the time evolution real transitions from singly to dou-
bly occupied states can take place and they degrade the fi-
delity.

To account for these effects, we write the many-body
wave function as �"�t��=�nCn��n�+�mBm��m�, where ��n�
span the Hilbert space with one atom per site and ��m� span
the subspace with two particles and one hole adjacent to each
other and N−2 singly occupied sites. The latter are the states
that directly coupled to ��n� through tunneling. Solving the
time-dependent Schrödinger equation from the Bose-
Hubbard Hamiltonian, using the assumption that U�,���U,
and that at time t=0 no doubly occupied states are populated,
one obtains

iĊn = �
k

��n�Ĥlat��k��1 − e−iUt�Ck. �43�

Here we also assumed that �Cn� change at a rate much
smaller than U and treated them as constants during the time
integration. Equation �43� yields the following lost of fidelity
due to real particle hole excitations:

F�to� � 1 −
4�̄

U
sin2�Uto/2� , �44�

remembering that �eto=� /2. As long as �̄ /U�1, we con-
clude that particle-hole excitations do not significantly affect
the GHZ generation.

B. Magnetic confinement

In Eq. �36� we assumed a translationally invariant system.
However, in most of the experiments an additional quadratic
magnetic confinement is used to collect the atoms. Actually,
it is due to this quadratic potential that a unit-filled Mott
insulator has been experimentally realized. In its absence it
would be difficult to create a unit-filled Mott insulator as in
an homogeneous system it only takes place when the number
of atoms is exactly equal to the number of lattice sites. A
drawback of the magnetic confinement is that it generates
always superfluid regions at the edge of the cloud, so only a
fraction of the total trapped atoms located at the trap center
must be selected as the quantum register. Assuming we work
on this unit-filled Mott insulator subspace, here we quantify
the effect of the magnetic potential in the GHZ generation in

the �̄ / �̄	1 limit.
The magnetic confinement is accounted for by adding a

term W� j,�j2n̂�,j in the Bose-Hubbard Hamiltonian: W
=1 /2mT

2aL
2 with m the atom mass, T the frequency of the

external trapping potential, and aL the lattice spacing. This

term modifies the global coupling constants �̄ and �̄ when
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FIG. 9. In the presence of phase decoherence the fidelity of the
GHZ state preparation in the lattice is degraded as N grows because
in the lattice the gap decreases and the generation time increases

with N. In this plot we assumed the limit �̄��̄, where Eq. �42�
holds and used a system with c= �̄, �̄=100�̄, and �=0.01�̄. At
N=90, �Eg=c and it explains the drop of F for N 90.
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the effective Hamiltonian is derived and makes them site

dependent, �̄→ �̄i
W	�2 / Ũi,↑↓ and �̄→ �̄i	�2�Ũi,↑↑

−1 + Ũi,↓↓
−1

−2Ũi,↑↓
−1 �. Here Ũi,���=U��� / �U���

2 −W2�2i+1�2�. Assuming
that the gradient of the external potential is weak compared
to the on-site interaction energy, as is in general the case for
current experiments, the effective Hamiltonian in the pres-
ence of the magnetic trap becomes

Ĥlat
W = Ĥlat + Ĥ1

T, �45�

Ĥ1
T = − �

�i,j�
Ti�� i · �� j , �46�

Ti = −
�2W2�2i + 1�2

U3 . �47�

The corrections on the fidelity of the GHZ state intro-

duced by Ĥ1
T can be estimated by calculating the effective

projection of it on the MPM, PĤ1
T. As the latter is just pro-

portional to the identity matrix I, PĤ1
T=�iTiI, it effects only

a global phase and it does not cause any main degradation of
the fidelity. Similarly any other perturbation induced by local
fluctuations in the magnetic field or the lasers used to gener-
ate the lattice become irrelevant thanks to the MPM.

From this analysis we conclude that except from sponta-
neous emission or heating mechanisms the MPM effectively
protects lattice systems against common nonideal situations
encountered during their experimental realization. On the
other hand, lattice-based GHZ state generation faces the scal-
ability problem due to the fact that the gap decreases and the
generation time increases with increasing N.

VII. CONCLUSIONS

In this paper we studied the use of a decoherence-free
multilevel manifold for robust preparation of multiparticle
GHZ entangled states of trapped ions or cold atoms in an

optical lattice. The MPM is isolated from the rest of the
Hilbert space by an energy gap which energetically sup-
presses any local decoherence processes. We have presented
analytical estimates for the fidelity of the GHZ preparation.

In trapped ions we demonstrated that the fidelity can be
significantly better than the one achievable without any gap
protection and therefore that our scheme is in the position to
improve the spectroscopy resolution in current Ramsey spec-
troscopy experiments.

We also showed that cold atoms in optical lattices inter-
acting via short-range interactions can be utilized to engineer
long-range interactions which in turn can be used for gener-
ating many-body entanglement. We calculated the effects of
nonideal conditions and concluded that the main restriction
in these systems is the scalability as the MPM protection
degrades with increasing N.

The scalability certainly limits the use of lattice systems
for massive entanglement generation, however it is not a
problem for recent quasi-one-dimensional experiments �25�
where an array of 1D tubes with an average of 18 atoms per
tube has been realized. In such systems therefore it should be
possible to create few-particle collective entangled states us-
ing our scheme and to perform proof-of-principle experi-
ments demonstrating the improvement of spectroscopic sen-
sitivity.

We emphasize that, even though we have limited the dis-
cussion to ensembles of spin S=1 /2 particles, the MPM
ideas can be straightforwardly generalized to systems com-
posed of higher spin atoms. Besides entanglement genera-
tion, the MPM might have also important applications for the
implementation of good storage memories using, for ex-
ample, nuclear spin ensembles in solid state �26� or photons
�27�.

ACKNOWLEDGMENTS

This work was supported by ITAMP, NSF �Career Pro-
gram�, USAFOSR, ONR MURI, and the David and Lucille
Packard Foundation.

�1� M. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Communication �Cambridge University Press, Cambridge,
2000�.

�2� J. Preskill, J. Mod. Opt. 47, 127 �2000�.
�3� D. Leibfried et al., Science 304, 1476 �2004�.
�4� D. Leibfried et al., Nature �London� 438, 639 �2005�.
�5� A. M. Rey, L. Liang, M. Fleischhauer, E. Demler, and M.

Lukin, e-print arXiv: cond-mat/0703108.
�6� D. M. Greenberger, M. A. Horne, A. Shimony, and A.

Zeilinger, Am. J. Phys. 58, 1131 �1990�.
�7� K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 �1999�.
�8� A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311 �2000�.
�9� G. J. Milburn, S. Schneider, and D. F. V. James, Fortschr. Phys.

48, 801 �2000�.
�10� F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.

Rev. A 6, 2211 �1972�.

�11� J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Phys. Rev. A 54, R4649 �1996�.

�12� S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.
Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 �1997�.

�13� A. Papoulis, Probability, Random Variables, and Stochastic
Processes �McGraw-Hill, New York, 1965�.

�14� R. G. Unanyan and M. Fleischhauer, Phys. Rev. Lett. 90,
133601 �2003�.

�15� D. F. V. James, Fortschr. Phys. 48, 823 �2000�.
�16� C. Langer et al., Phys. Rev. Lett. 95, 060502 �2005�.
�17� G. Morigi and S. Fishman, Phys. Rev. Lett. 93, 170602

�2004�.
�18� R. Ozeri et al., Phys. Rev. Lett. 95, 030403 �2005�.
�19� C. W. Gardiner, Quantum noise �Spinger, Berlin, 1991�.
�20� D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

MANY-BODY PROTECTED ENTANGLEMENT GENERATION … PHYSICAL REVIEW A 77, 052305 �2008�

052305-11



Phys. Rev. Lett. 81, 3108 �1998�.
�21� M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 �1989�.
�22� M. Greiner et al., Nature �London� 415, 39 �2002�.
�23� L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,

090402 �2003�.

�24� B. Sutherland, Beautiful Models �World Scientific, Singapore,
2004�.

�25� B. Paredes et al., Nature �London� 429, 277 �2004�.
�26� A. C. Johnson et al., Nature �London� 435, 925 �2005�.
�27� C. Mewes and M. Fleischhauer, Phys. Rev. A 72, 022327

�2005�.

REY et al. PHYSICAL REVIEW A 77, 052305 �2008�

052305-12


