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We propose a new type of locally interacting quantum circuits which are generated by unitary interactions round–

a–face (IRF). Specifically, we discuss a set (or manifold) of dual-unitary IRFs with local Hilbert space dimension

d (DUIRF(d)) which generate unitary evolutions both in space and time directions of an extended 1+1 dimensional

lattice. We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite

dimensional completely positive trace preserving unital maps, in complete analogy to recently studied circuits made

of dual unitary brick gates (DUBG). In fact, we show that the simplest non-trivial (non-vanishing) local correlation

functions in dual-unitary IRF circuits involve observables non-trivially supported on at least two sites. We completely

characterise the 10-dimensional manifold of DUIRF(2) for qubits (d = 2) and provide, for d = 3,4,5,6,7, empirical

estimates of its dimensionality based on numerically determined dimensions of tangent spaces at an ensemble of random

instances of dual-unitary IRF gates. In parallel, we apply the same algorithm to determine dimDUBG(d) and show

that they are of similar order though systematically larger than dimDUIRF(d) for d = 2,3,4,5,6,7. It is remarkable

that both sets have rather complex topology for d ≥ 3 in the sense that the dimension of the tangent space varies among

different randomly generated points of the set. Finally, we provide additional data on dimensionality of the chiral

extension of DUBG circuits with distinct local Hilbert spaces of dimensions d 6= d′ residing at even/odd lattice sites.

Quantum many-body dynamics of generic interacting sys-

tems is essentially intractable and is amenable only to

quantum simulation. One may wonder, whether there ex-

ist non-integrable (generically, quantum chaotic) many-

body systems with local interactions which would have

exactly solvable spatio-temporal correlation functions of

local observables. These models would be understood as

quantum many-body analogs of baker and cat maps, play-

ing a similar role in classical single-particle chaos. We

outline two complementary classes of quantum dynamical

systems with exactly solvable dynamical correlations ex-

hibiting a rich ergodic hierarchy of dynamical behaviors:

the dual-unitary brickwork circuits and, newly proposed

dual-unitary face models (circuits with dual-unitary inter-

actions round–a–face (DUIRF)). Remarkably, dynamical

correlation functions of local observables in these families

of 1+1 dimensional interacting systems are non-vanishing

only along the edges of causal cones, where they are given

in terms of dissipative single-particle quantum (Markov)

dynamical systems. The latter in turn can be clearly classi-

fied as non-ergodic, ergodic and mixing, based on the spec-

trum of finite-dimensional quantum Markov matrix. The

dynamical and geometric features of such DUIRF dynam-

ical systems are discussed in relation to previously studied

dual unitary circuits. We conjecture that recent exact re-

sults on random matrix spectral statistics, entanglement

dynamics and operator spreading in dual-unitary brick-

work circuits can be adapted to dual-unitary IRF circuits.

I. INTRODUCTION

Precise definition of quantum chaos of many-body quan-

tum systems has been elusive for a long time, even in the sim-

plest context of quantum spin-lattice systems with local inter-

actions. For example, it has been observed a while ago1–3 that

spectral statistics of non-integrable spin-1/2 chain Hamilto-

nians with nearest-neighbor interactions conform to Random

matrix theory4 (RMT) and the match to RMT statistics on ap-

propriate physical time/energy scales has been considered as

a working definition of quantum chaos in condensed matter

theory community for decades. Nevertheless, the first ana-

lytical explanations5–9 or proofs10,11 of this quantum chaos

conjecture came only very recently, and only in quite re-

stricted contexts. On the other front, people have been trying

to identify the quantum analogs of Lyapunov exponents12,13

and Kolmogorov-Sinai (dynamical) entropies (characterising

algorithmic complexity of dynamics)14. Such quantum dy-

namical entropies15, however, cannot even discriminate be-

tween free and interacting evolutions in the thermodynamic

limit, as the information (entropy) is generically propagating

from an (infinite) bath of degrees of freedom to the subsystem

of interest16, and hence obscuring ‘dynamical generation’ of

entropy (the notion which thus cannot be precisely defined in

extended systems). On the other hand, quantum Lyapunov

exponents have been nevertheless defined through the out-of-

time-ordered correlation functions (OTOCs), but these con-

struction is meaningful only in the so-called “large N” theories

(models) which are essentially semiclassical (with an effective

Planck constant h̄ = 1/N). Thus, the genuinely hardest, and

arguably the most interesting cases are related to understand-

ing of dynamical complexity in spin lattice models with finite

local Hilbert space dimension and with local interactions. The

simplest among those are the local quantum circuit models,

which can be understood as a discrete-time quantum dynami-

cal systems on a lattice, or quantum cellular automata17,18.

Recently, a substantial progress has been achieved in under-

standing quantum chaos conjecture and dynamical complexity

in (Floquet) local quantum circuit models6,19–22 In those mod-
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els, besides spatio-temporal OTOCs the most fruitful measure

of dynamical complexity has been identified as the operator-

space entanglement entropy23. The latter quantifies the so-

called operator spreading, or growing bipartite correlations

of time-dependent local operators interpreted as elements of

tensor products of local Hilbert spaces. Moreover, it has

been shown that explicit and exact results on RMT spectral

correlations10,11, dynamical correlation functions24,25, quan-

tum quenches26, (operator) entanglement dynamics27–30, in-

formation scrambling31, and OTOCs32, can be obtained even

for local qudit circuits (with fixed local Hilbert space dimen-

sion d, say d = 2) provided the circuit, i.e. the local gates,

satisfy the so-called dual-unitarity (DU) condition24. It has

been shown that DU circuits include integrable and (gener-

ically) non-integrable (chaotic) systems24, in particular the

previously studied self-dual kicked Ising model33. Studying

space-time duality proved useful also to get important new in-

sights into the behavior of non-DU circuits34–42.

DU circuits are thus a representative class of exactly solv-

able chaotic quantum systems, very much like the baker and

cat maps in classical chaos theory43. In analogy to structural

stability of hyperbolic flows44,45 in classical chaos theory we

conjectured (and found partial evidence of)46 perturbative sta-

bility of DU quantum dynamical systems.

In this paper we propose an extension of a class of local

quantum circuits in terms of a concept of unitary interactions

round–a–face (IRF). Unitary IRF circuits can be thought of

as a complementary model to brickwork quantum circuits and

yet another realization of quantum cellular automata. Specifi-

cally, IRF gate is just a controlled (or kinetically constrained)

local unitary gate, where the control is placed on the neigbour-

ing two qudits and could hence capture the dynamics of (Flo-

quet) driven Rydberg atom chains47 or similar manipulated

systems. As a deterministic version of unitary IRF dynamics,

we should mention a rule 54 reversible cellular automaton48.

While Yang-Baxter integrable IRF models (also known as

RSOS models)49,50 can give rise to integrable quantum spin

chain Hamiltonians51, it is not clear if unitary integrable IRF

circuits can be generated beyond the singular case of classical

reversible cellular automata mentioned earlier48,52 (for which

Yang-Baxter structure is not clear at the moment anyway).

Another related integrable kinetically constrained continuous

time (Hamiltonian) dynamics has been studied in Ref.53–55.

We then extend the concept of IRF circuits to DU IRF cir-

cuits of qudits (d = 2,3 . . .). We show that, similarly as for

DU brickwork circuits, the space-time correlation functions of

any local observable supported on a pair of neighbouring sites

can be shown to be non-vanishing only along two light-rays,

where it is evaluated in terms of a pair of completely positive,

trace preserving, unital maps acting on pairs of qudits (note

that for DU brickwork circuits the correspondig maps act on a

single qudit). This map can in fact be interpreted as a classical

Markov chain as it acts non-trivially only on a (d−1)2+1 di-

mensional subspace spanned by diagonal operators with van-

ishing partial traces plus the identity operator.

We show how to completely characterise DUIRF circuits

of qubits, d = 2, and explicitly parametrize the correspond-

ing 10-dimensional manifold DUIRF(2). We also empirically
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FIG. 1. Brickwork local circuit composed of brick gates (local gate

indicated on the right) for t = 2 (depth 4). Note that the dimensions of

the even/odd local spaces could be different (indicated by thin/thick

wires). Evolution time runs bottom-up throughout the paper.

estimate dimensions of DUIRF(d) and of related DU brick

gates DUBG(d,d′) (where dimensions of local Hilbert spaces

on even and odd checkerboard sublattices of the brickwork, d

and d′ respectively, can be different), for d(d′) = 3,4,5,6,7.

It is remarkable that both sets DUIRF(d), DUBG(d,d′) have

non-uniform dimensions, i.e. the dimensions of tangent space

at different generic (random) elements of the set are differ-

ent for d,d′ ≥ 3. Nevertheless, we find consistently that

dimDUIRF(d) > dimDUBG(d,d), locally everywhere, i.e.

for all elements of the sets. We sketch as well some other in-

teresting problems that one could approach using DUIRF cir-

cuits, most specifically the problem of spectral statistics and

the idea of the proof of RMT spectral form factor for DU IRF

circuits.

II. UNITARY IRF CIRCUITS

Let us consider a chain of even number, 2L, L∈N, of qudits

(d-level quantum systems), such that the Hilbert space of the

system is given as a d2L dimensional tensor product H =
H
⊗2L

1 , H1 = C
d .

We may also consider a more general, chiral situation,

where the pair of neighboring sites have different Hilbert

space dimensions H1 = C
d , H ′

1 = C
d′ , and two isomor-

phic system Hilbert spaces (with even/odd sublattices inter-

changed), H = (H1 ⊗H ′
1 )
⊗L, H ′ = (H ′

1 ⊗H1)
⊗L. In

many physical situations, such as when discussing periodi-

cally driven (Floquet) spin chains, or Trotterized Hamiltonian

evolutions with local one-dimensional interaction (in the lat-

ter only the case d′ = d makes sense), as well as in proto-

cols for analog quantum simulation56 of local interactions, it

is customary to consider brickwork quantum circuits. For sim-

plicity, we assume space-time homogeneity57. Hence, con-

sidering a single unitary gate U ∈ U(dd′) interpreted as a lin-

ear map H1⊗H ′
1 →H ′

1 ⊗H1, or in explicit matrix/Dirac

notation58

Ubr =
d

∑
j, j′=1

d′

∑
s,s′=1

U
s′ j′
j s |s′〉⊗ | j′〉〈 j|⊗ 〈s| , (1)

we define a generator (or Floquet propagator) of a brickwork
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FIG. 2. Face local circuit composed of IRF gates (local gate indi-

cated on the bottom-right) with duration t = 3 (depth 6), using two

different notations, either in terms of controlled unitary gates (top)

or face plaquettes (bottom).

local circuit as

U = U
o
U

e : H →H (2)

where

U
e =

L

∏
x=1

Ubr
2x−1,2x : H →H

′, (3)

U
o =

L

∏
x=1

Ubr
2x,2x+1 : H

′→H
′,

and where the subscripts in Ubr
x,y denote the positions x,y of

two qudits (sites) where the brick gate Ubr acts non-trivially

(see Fig. 1 for an unambiguous graphical definition). Periodic

boundaries are assumed throughout: x+2L≡ x.

Although we will use brickwork circuits later for compar-

ison, we make a twist in this paper and propose to study an-

other physics paradigm of generic local spatiotemporal dy-

namics on 1+1 dimensional lattice. Specifically, we propose

unitary face circuits where the local interactions are given

in terms of nearest-neighbor controlled (e.g., kinetically con-

strained) local unitary gates or, equivalently, in terms of uni-

tary interactions round–a–face. Here we assume all local

spaces to be isomorphic59 d = d′.
Consider a set of d2 arbitrary unitary matrices {uik ∈

U(d)}i,k∈{1,...,d} which define a general 2-controlled 3-qudit

unitary gate (as a unitary over H
⊗3

1 )

U IRF =
d

∑
i, j,k, j′=1

(uik)
j′
j |i〉⊗ | j′〉⊗ |k〉〈i|⊗ 〈 j|⊗ 〈k| (4)

Equivalently, a set of d4 amplitudes (uik)
j′
j can be understood

as defining a (unitary) IRF model (see Fig. 2). Such 3-qudit

gates, embedded into the many-body Hilbert space H as

U IRF
x−1,x,x+1 now define locally interacting unitary circuit with

the generator of the form (2), where

U
e =

L

∏
x=1

U IRF
2x−1,2x,2x+1, (5)

U
o =

L

∏
x=1

U IRF
2x,2x+1,2x+2.

Similarly to brickwork circuits (3), which behave as quan-

tum cellular automata17, namely they propagate informa-

tion/correlation by one-site per layer of the gates, one notes

the same feature for IRF circuits (5).

An example of a unitary IRF circuit is a Trotterization60,61

of the so-called PXP model62,63 beautifully modelling ki-

netically constrained Rydberg atom chains47. Specifically,

the three site Hamiltonian of the PXP model hx−1,x,x+1 =
Px−1XxPx+1, where

P =

(

1 0

0 0

)

X =

(

0 1

1 0

)

,

clearly exponentiates to a unitary IRF gate U IRF
x−1,x,x+1 =

exp(−i∆thx−1,x,x+1), where ∆t is the time step. Other re-

cently studied examples of unitary IRF cicruits are classi-

cal reversible cellular automata52, like the rule 5448,64,65 or

the rule 201 (‘classical PXP’)66. More broadly, unitary IRF

circuits represent a natural language to describe Floquet or

driven quantum kinetically constrained models.

It is interesting to note that both manifolds of brick and

IRF local gates share the same number of independent real

parameters (for d′ = d), specifically d4, i.e. the number of

parameters of U(d2) or the number of parameters for d2 inde-

pendent elements of U(d), respectively. However, we should

then also mention different gauge-invariance groups of these

parametrizations. While the brick gate can be transformed as

Ubr← (h†⊗g†)Ubr(g⊗h), (6)

for arbitrary g∈ SU(d),h∈ SU(d′), to yield an equivalent cir-

cuit, the IRF gate can be gauge-transformed as

U IRF← (∆†⊗g†⊗∆†)U IRF(∆⊗g⊗∆), (7)

where g ∈ SU(d) arbitrary and ∆
j′
j = δ j, j′e

iθ j , θ j ∈ [0,2π), is

a diagonal phase matrix (where one of the phases θ j can be

fixed without loss of generality). We thus have the following

gauge groups for the two classes of circuits

Gbr = SU(d)⊗SU(d′), for brickwork circuits, (8)

GIRF = SU(d)⊗U(1)⊗(d−1), for IRF circuits. (9)
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FIG. 3. Definition of the folded (Heisenberg picture) brick (top)

and IRF (bottom) gate. Note that thick wires correspond to doubled

Hilbert space (ket=left, bra=right thin wire).

One may wish to investigate dynamics, entanglement prop-

agation and operator spreading in IRF circuits and compare to

existing results for brickwork circuits. Specifically, it would

be desirable to derive analogous results to19–22 for random

IRF circuits where matrices uik are independent Haar-random

U(d) matrices for all pairs of components i,k and for each

space time point. In this paper, however, we aim at investi-

gating IRF circuits with an additional structure, namely, the

dual-unitarity.

III. CORRELATION DECAY IN DUAL-UNITARY
QUANTUM LATTICE DYNAMICAL SYSTEMS

A. Spatio-temporal correlation function and folded circuit
representation

Here we set the fundamental problem of quantum dynamics

on a space-time lattice, specifically, the computation of space-

time correlation function of local observables in the tracial

(infinite temperature/maximum entropy) state. Considering a

pair of local traceless observables a,b, with ax,bx being their

embedding into H at site x, we aim at calculating

Ca,b(x,y; t) = lim
L→∞

1

dimH
tr(axU

tbyU
−t). (10)

Explicit, exact or analytical computation of correlation func-

tions, being the fundamental importance in diverse areas of

condensed matter and statistical physics, represent an insur-

mountable obstacle even in the simplest (say integrable) in-

teracting theories. Nevertheless, we will show below how the

correlations can be explicitly treated in a class of generically

non-integrable cuircuit models.

In the so-called folded-circuit representation67, one de-

fines a doubled (operator) Hilbert space H op = H ⊗H ,

which can be considered as composed of doubled local spaces

H
op

1 = H1⊗H1 ≃ C
d2

, and possibly different local opera-

tor space H
op′

1 = H ′
1 ⊗H ′

1 ≃ C
d′2 for even-site sublattice.

Defining doubled local brick gate over (H
op

1 )⊗2 (Fig. 3-top)

W br =Ubr⊗ (Ubr)T (11)

where T denotes the matrix transposition, and local operator

states

|a〉〉= 1√
d

∑
i, j

a
j
i |i〉⊗ | j〉 , (12)

|b〉〉= 1√
d

∑
i, j

b
j
i |i〉⊗ | j〉 , (13)

|◦〉〉= 1√
d

∑
i

|i〉⊗ |i〉 , (14)

with possibly d replaced by d′ for even-labelled sites, one im-

mediately writes an equivalent expression for the correlation

function

Ca,b(x,y; t) = lim
L→∞
〈〈by|W t |ax〉〉, (15)

where |ax〉〉 = |◦〉〉⊗(x−1) ⊗ |a〉〉 ⊗ |◦〉〉⊗(L−x)
and 〈〈by| =

〈〈◦|⊗(y−1)⊗〈〈b|⊗ 〈〈◦|⊗(L−y)
. Here W is the operator circuit

over H op built as in Eqs.(2,3) with U’s replaced by W ’s.

Completely analogous folded circuit construction applies

also for IRF circuits, where the (folded) IRF operator gate

reads as (Fig. 3-bottom)

W IRF =U IRF⊗ (U IRF)T (16)

which is a unitary IRF gate as well (over local Hilbert spaces

of dimension d2). Unitarity conditions for, respectively,

brick and IRF local gates can be now expressed as unitality

(schematically in Figs. 5,8-top)

W br|◦〉〉⊗ |◦〉〉= |◦〉〉⊗ |◦〉〉, (17)

〈〈◦|⊗〈〈◦|W br = 〈〈◦|⊗〈〈◦|, (18)

W IRF|◦〉〉⊗ |◦〉〉⊗ |◦〉〉= |◦〉〉⊗ |◦〉〉⊗ |◦〉〉, (19)

〈〈◦|⊗〈〈◦|⊗〈〈◦|W IRF = 〈〈◦|⊗〈〈◦|⊗〈〈◦|. (20)

These rules, and the fact that the operators are traceless,

i.e. 〈〈◦|a〉〉 = 〈〈◦|b〉〉 = 0, immediately imply strict causal-

ity of the correlator, namely that the maximal speed of in-

formation propagation equals 1 (one site per circuit layer):

Ca,b(x,y; t) = 0 for |x−y|> 2t. Aside from that, the computa-

tion of the correlator Ca,b(x,y; t) for a generic local gate circuit

is believed to be hard, i.e. to have a positive Kolmogorov al-

gorithmic complexity in t.

B. Dual-unitary brickwork circuits: review

It has been noted in Ref.24 that there exist a rich class of

brickwork unitary circuits where computation of arbitrary lo-

cal correlations can be drastically simplified. These are the

so-called dual-unitary brickwork circuits which generate uni-

tary dynamics not only in time (vertical) direction, but also in

space (horizontal) direction. In other words, not only the local

brick gate Ubr (1) is unitary, but also the space-time reshuffled

gate

Ũbr =
d

∑
j, j′=1

d′

∑
s,s′=1

U
s j′

j s′ |s
′〉⊗ | j′〉〈 j|⊗ 〈s| , (21)
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FIG. 4. Dual-unitarity: time unitarity (left) and space unitar-

ity (right) condition for the dual-unitary brick gate (element of

DUBG(d,d′)). Wires are drawn at 45◦ angles from the gates to stress

the space-time symmetry.

is unitary

Ũbr(Ũbr)† = ✶ . (22)

The gate Ũbr is referred to as the space-time dual of Ubr, and

the condition (22) (see Fig. 4-right) as space unitarity. The

gates which are both, time unitary and space unitary, form a

local submanifold (locally smooth subset) DUBG(d,d′) of the

Lie group U(dd′) and can be completely characterized24 for

qubits. Specifically, one can write an arbitrary dual unitary

gate for d = d′ = 2 as

DUBG(2,2) = {(u⊗ v)Sei(β✶+γ σ⊗σ)(w⊗ r)}, (23)

where u,v,w,r ∈ SU(2), β ,γ ∈ R, and σ
j′
j = (−1) j−1δ j, j′

(Pauli-Z matrix), S
i′ j′
i j = δi, j′δ j,i′ (SWAP, S | j〉⊗|s〉= |s〉⊗| j〉).

Counting the number of independent real parameters, one

should note that out of 3 parameters (e.g. Euler angles) deter-

mining each local SU(2) gate, two can be removed, as Euler

rotations around z−axis commute with the Ising interaction,

so one is left with dimDUBG(2,2) = 12 independent param-

eters.

Although large multi-parametric families of DU gates have

been proposed25,68,69 for d > 2, the complete characteriza-

tion of DUBG(d,d′) remains a challenging open problem (see

section IV for some empirical observations). One should

note that dual-unitarity condition is equivalent to requiring

that (SUbr)T1 is unitary, where T1 is a partial transposition.

Using the result (Theorem 3.1) of Ref.70 one can show that

DUBG(d,d′) can be identified with the set of unital chan-

nels over Cd⊗C
d′ , whose complete characterisation is, how-

ever, still open. We note that the entangling power of such

bi-partite partial-transpose unitaries have been discussed also

in Refs.71,72.

Computation of local spatiotemporal correlation functions

of DU brickwork circuits can be largely simplified, namely it

is easy to show that both, the (time) unitarity (17,18), as well

as the space unitarity (schematically depicted in Fig. 5)

W̃ br|◦〉〉⊗ |◦〉〉= |◦〉〉⊗ |◦〉〉, (24)

〈〈◦|⊗〈〈◦|W̃ br = 〈〈◦|⊗〈〈◦|, (25)

where W̃ br = Ũbr⊗(Ũbr)T imply that the expression (15) van-

ishes unless |x− y| = 2t. This is a consequence of causality

within both, space-like and time-like cones, so the correlator

can be non-vanishing only along two light-rays24. There, it is

Anni rant

that

that

FIG. 5. Compact expressions of unitarity (top) and dual unitarity

(bottom) for folded brick gates.
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FIG. 6. The non-vanishing (light-ray) contribution to correlation

function between local observables a,b for the DU brickwork circuit

– using the folded circuit formulation – (the second term of (34) for

t = 2), and the definition of the corresponding transfer matrix M−
(right).

expressed as

Ca,b(x,y; t) = δy,x+2tδmod(x,2),1 tr(bM
2t
+ (a))

+ δy,x−2tδmod(x,2),0 tr(bM
2t
− (a)) (26)

in terms of completely positive, trace preserving and unital

maps over End(H1), and End(H ′
1 ), respectively (see Fig. 6),

M+(a) =
1

d′
(tr⊗ I)

(

(Ubr)†(a⊗✶)Ubr
)

, (27)

M−(a) =
1

d
(I⊗ tr)

(

(Ubr)†(✶⊗a)Ubr
)

. (28)

I represents an identify map over the local space H
(′)

1 , hence

I⊗ tr and tr⊗ I denote the partial traces. As M± are linear

non-expanding maps, their spectra are confined within the unit

disk. Depending on whether there are additional eigenvalues,

besides one eigenvalue 1 corresponding to trivial eigenvector

✶, which lie on the unit circle (respectively, at 1), our Floquet

circuit system is non-mixing (respectively, non-ergodic), oth-

erwise it is mixing and ergodic. It has been shown in24 (and

elaborated further in other DU models in25,73) that one can

have all different types of ergodic behavior even in the sim-

plest class of DU brickwork circuits with d = d′ = 2. In the

generic case (with probability 1 for a suitably random element

of DUBG(d,d′)) the maps M± have full rank (d2 or d′2) with
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FIG. 7. Time unitarity (left) and space unitarity (right) condition for

the dual-unitary IRF gate (element of DUIRF(d)).

FIG. 8. Compact expressions of time unitarity (top) and space uni-

tarity (bottom) for the folded IRF gates.

all eigenvalues, except the trivial one, lying strictly inside the

unit disk implying asymptotic exponential decay of correla-

tions (15) (mixing behavior) with the exponent given by the

spectral gap of M±.

C. Dual-unitary IRF circuits

In somewhat close analogy to brickwork circuits we define

DU IRF circuits, composed of IRF gate (4), for which also the

space-time dual Ũ IRF ∈ End(H ⊗3
1 ):

Ũ IRF =
d

∑
i, j,k, j′=1

(u j j′)
k
i |i〉⊗ | j′〉⊗ |k〉〈i|⊗ 〈 j|⊗ 〈k| (29)

is unitary

Ũ IRF(Ũ IRF)† = ✶. (30)

This condition is equivalent to a condition that a set of

d2 (space-time flipped) matrices ũ j j′ ∈ End(H1), j, j′ =
1,2 . . . ,d, defined as

(ũ j j′)
k
i := (uik)

j′
j , (31)

is unitary, ũ j j′ ũ
†
j j′ = ✶, j, j′ = 1, . . . ,d. See Fig. 7 for a di-

agrammatic illustration of these properties. In the next sub-

section III D we provide a complete parametrization of a set

DUIRF(d) of DU IRF gates for d = 2, while in section IV we

estimate its dimensionality for larger d.

In terms of the folded IRF gate W̃ IRF = Ũ IRF ⊗ (Ũ IRF)T ,

cf. (16), the space unitarity (30) of DU IRF gate is elegantly

0

a

FIG. 9. Schematic illustration of computation of correlation func-

tion between local (2-site) observables in the folded IRF circuit for-

mulation. The yellow-shaded area indicates the intersection of tem-

poral causal cones to which the correlator can be simplified using

only unitarity (Fig. 8-top). For DU IRF circuit one can apply (all)

rules of Fig. 8 to show that such correlation function identically van-

ishes (unless the supports of operators a and b are shifted precisely

by 2t, as used in Fig. 10.

ii
T 42

lie

a K ji
a

g
jj
i

e

iz
ra in

FIG. 10. The nonvanishing (light-ray) contribution to correlation

function between local observables a,b for the DU IRF circuit – us-

ing the folded circuit formulation – and the definition of the corre-

sponding transfer matrix K− (right).

expressed in terms of the second set of unitality conditions

(graphically encoded in Fig. 8-bottom)

W̃ IRF|◦〉〉⊗ |◦〉〉⊗ |◦〉〉= |◦〉〉⊗ |◦〉〉⊗ |◦〉〉, (32)

〈〈◦|⊗〈〈◦|⊗〈〈◦|W̃ IRF = 〈〈◦|⊗〈〈◦|⊗〈〈◦|. (33)

The complete set of unitality relations (19,20,32,33) is then

facilitated to show that the correlator (15) (Fig. 9) vanishes

unless |x− y| = 2t. Without loss of generality we can now

assume that local operators are supported on two sites a,b ∈
End(H ⊗2

1 ) (including single-site observables which are triv-

ial on the second site) and write |ax〉〉 = |◦〉〉⊗(x−1) ⊗ |a〉〉 ⊗
|◦〉〉⊗(L−x−1)

and 〈〈by|= 〈〈◦|⊗(y−1)⊗〈〈b|⊗ 〈〈◦|⊗(L−y−1)
.

Diagrammatically, this is illustrated in Fig. (10), where the

resulting light-cone correlators:

Ca,b(x,y; t) = δy,x+2tδmod(x,2),1 tr(bK
2t
+ (a))

+ δy,x−2tδmod(x,2),0 tr(bK
2t
− (a)) , (34)

are expressed in terms of completely positive, trace preserving
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and unital maps over End(H ⊗2
1 ),

K+(a) =
1

d
(tr⊗ I⊗ I)

(

(U IRF)†(a⊗✶)U IRF
)

, (35)

K−(a) =
1

d
(I⊗ I⊗ tr)

(

(U IRF)†(✶⊗a)U IRF
)

, (36)

(see Fig. 10-right for graphical defintion of K−).

Although the maps K± act on a much larger (2-qudit) space

as M±, they also have a large trivial subspace (of eigenvalue

0) and hence can be reduced to a simpler form. This essen-

tially follows from the trivial action of the IRF gate on the

control (left and right) qudits. Let

D(| j〉〈 j′|) = δ j, j′ | j〉〈 j′| (37)

represent a projector to diagonal subspace of End(H1). The

correlation maps clearly satisfy the identities (following from

diagrammatics of Fig. 10):

K+(D⊗ I) = (I⊗D)K+ = K+ , (38)

K−(I⊗D) = (D⊗ I)K− = K− .

Defining the diagonally projected maps

K
′
± = (D⊗D)K±(D⊗D), (39)

and using the projector property D2 = D , one finds that Eqs.

(38) imply, for any t ∈ Z:

(D⊗D)(K±)
t(D⊗D) = (K ′

±)
t . (40)

This in turn implies that the correlation functions (26) are

given in terms of simple iteration of diagonally projected

maps

tr
(

bK
t
±(a)

)

= tr
(

bd(K
′
±)

t(ad)
)

(41)

where ad = D ⊗Da, bd = D ⊗Db are diagonal (projected)

2-site observables. In fact the maps K ′
± can be identified with

the classical Markov chains. By identifying the basis { j ←
| j〉〈 j|}, the explicit matrix representation of correlation maps

reads

(K ′
+)

i′ j′
i j =

1

d

∣

∣

∣(ui j′)
i′
j

∣

∣

∣

2

, (K ′
−)

i′ j′
i j =

1

d

∣

∣

∣(ui′ j)
j′
i

∣

∣

∣

2

. (42)

These matrices are bistochastic. In fact, they are bistochastic

also under the flip of indices ( j↔ i′) which would correspond

to space-time flip if one composes from them a brickwork

classical Markov circuit like those studied in Ref.46, hence

they may be referred to as dual bistochastic.74

It follows from the form (42) and unitarity of uik and ũ j j′

that the map K ′
± annihilates the diagonal operators of the

form ✶⊗ad or ad⊗✶, where ad ∈ End(H1), trad = 0. Hence

K ′
± act nontrivially within a subspace spanned by ✶ and trace-

less operators supported on no less than 2 neighbouring sites,

which yields their maximal rank

max rankK± = 1+(d−1)2. (43)

The above observation also implies that all correlation

functions between single-site (ultra-local) observables vanish,

while the simplest non-trivial correlations involve two-site ob-

servables. In summary, the decay of correlation functions of

local observables in DU IRF circuits is thus completely deter-

mined by the spectra of dual bistochastic d2×d2 matrices K ′
±

(in fact, by their (d− 1)2 dimensional nontrivial blocks) and

the absence of nontrivial eigenvalue 1 (respectively, unimodu-

lar eigenvalue) signals ergodic (respectively, mixing) dynam-

ics.

D. Complete parametrization of dual-unitary IRF qubit gates

Let us now consider the case d = 2 with an attempt to

parametrize all DU IRF gates. We start by Euler angle

parametrization of U(2) matrices uik

uik = eiφik

(

eiνik cosθik eiηik sinθik

−e−iηik sinθik e−iνik cosθik

)

, (44)

where φik,νik,ηik,θik ∈ [0,2π), i,k = 1,2, are 16 real parame-

ters (note that such parametrization is non-injective). Solving

for unitarity of ũ j j′ , defined in (31), separates nicely into two

sets of equations: The equations for θik

cos2 θ11 = sin2 θ12, cos2 θ22 = sin2 θ21,

cosθ11 cosθ21 + cosθ12 cosθ22 = 0, (45)

sinθ11 sinθ21 + sinθ12 sinθ22 = 0,

and a set of linear equations for the other variables which

fixes, say 22-components of the angles νik,ηik,φik in terms

of components 11,12,21:

ν22 = ν12 +ν21−ν11,

η22 = η12 +η21−η11, (46)

φ22 = φ12 +φ21−φ11.

Eqs. (45) in turn result in expressing three θik in terms of the

fourth, say θ22. There are two equivalent solutions, while

without loss of generality we take:

θ11 = θ22 +π, θ12 = θ21 = θ22 +
π

2
. (47)

We thus parametrized DUIRF(2) in terms of 10 independent

free parameters {θ22,ν11,ν12,ν21,η11,η12,η21,φ11,φ12,φ21},
hence dimDUIRF(2) = 10. Considering 4-dimensional gauge

symmetry (9) and a global (overall) phase, we have in fact

10− 4− 1 = 5 parametric set of physically inequivalent IRF

gates of qubits.

Expressing the diagonally projected transfer matrices we

obtain a simple result

K
′
+ = K

′
− =

1

2









cos2 θ22 sin2 θ22 sin2 θ22 cos2 θ22

sin2 θ22 cos2 θ22 cos2 θ22 sin2 θ22

sin2 θ22 cos2 θ22 cos2 θ22 sin2 θ22

cos2 θ22 sin2 θ22 sin2 θ22 cos2 θ22









.

(48)

K ′
± have rank 2 and a single nontrivial eigenvalue λ =

cos(2θ22) with the corresponding left&right eigenvector
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d d′ N = (dd′)2 dimDUBG(d,d′) dimDUIRF(d)
2 2 16 12 (12) 10 (10)

3 3 81 45 (45,43,41) (33,29,25)

4 4 256 112 (94) (49)

5 5 625 225 (97) (81)

6 6 1296 396 (141) (121)

7 7 2401 637 (193) (169)

3 2 36 24 (24) —

4 2 64 40 (40) —

5 2 100 60 (60) —

6 2 144 84 (84) —

7 2 196 112 (112) —

4 3 144 72 (66,64) —

5 3 225 105 (77) —

TABLE I. Local dimensions of manifolds DUBG(d,d′) and

DUIRF(d) estimated as dimensions of the tangent spaces at ran-

domly sampled solutions of DU constraints (numbers within brack-

ets). For comparison we show for DUBG also dimensions of tangent

spaces at random instances of explicit parametrization69 of DU brick

gates of Eq. (51) (unbracketed numbers).

(1,−1,−1,1) corresponding to eigenoperator a = σ ⊗σ . We

have thus shown that the only nontrivial (nonzero) correlation

function – autocorrelation of the Ising interaction – of all DU

IRF circuits with d = 2 has a universal form

Cσ⊗σ ,σ⊗σ (x,y; t) = (δy,x+2tδmod(x,2),1 +δy,x−2tδmod(x,2),0)λ
2t ,

(49)

independent of all other parameters (but θ22) of the gate.75

Of course, we expect, and find, that DU IRF curcits for

higher d have much richer behavior, as reported in the next

section.

IV. ESTIMATING THE DIMENSION OF MANIFOLDS OF
DUAL-UNITARY GATES FOR d > 2 (d′ > 2)

This is an experimental section of the paper where we pro-

vide some empirical observation which can hopefully guide

further progress. Earlier we managed to fully characterize the

manifolds of DU brick and IRF gates for qubits d = 2. It has

become clear that obtaining rigorous results in this direction

for DU brick gates with d > 2 or d′ > 2 is notoriously diffi-

cult, while this task does not appear to get any easier for DU

IRF gates with d > 2.

Therefore we take a different approach here and try to es-

timate numerically the number of free real parameters (di-

mensionality) of DUBG(d,d′) and DUIRF(d). We do this

by determining the dimensions of tangent spaces at random

instances of solutions to dual (time and space) unitarity con-

ditions.

A. Dual unitary brick gate manifolds

Writing N = 2(dd′)2 real components of a dd′× dd′ com-

plex matrix Ubr in terms of a vector ~z = (z1,z2, . . . ,zN)

we can write the dual unitarity conditions Ubr(Ubr)† = ✶,

Ũbr(Ũbr)† = ✶, in terms of a zero of a nonlinear (quadratic)

vector function ~f (~z). Note that the number M of components

of ~f (number of equations) is in general different (larger) than

the number of variables N.

Considering an instance~z∗ of a solution ~f (~z∗) =~0, corre-

sponding to an elelement Ubr ∈DUBG(d,d′) we can estimate

a local dimension dim(~z∗) of DUBG(d,d′) as the dimension

of the tangent space, i.e. by the rank of the M×N deriva-

tive matrix F(~z∗) = {∂ fi(~z∗)/∂ z j}i=1...M
j=1...N , which is numeri-

cally determined by the number of nonvanishing singular val-

ues of F(~z∗):

dim(~z∗) = N− rankF(~z∗) . (50)

If DUBG(d,d′) were a simple manifold the dimension should

not depend on the point ~z∗ ∈ DUBG(d,d′). This, however,

does not seem to be the case when both d,d′ ≥ 3, so different

pieces of the set DUBG(d,d′) may have different topological

dimensions.

We made the following numerical experiment. We sampled

an ensemble of the order of 102−104 (depending on values of

d,d′) random solutions~z∗ of ~f (~z∗) =~0 which were obtained

by running Wolfram’s Mathematica routine FindMinimum on

|~f (~z)|2 applied to random initial seeds where z j were i.i.d.

Gaussian random with zero mean and variance 1/(dd′) (re-

producing unitarity in the limit d,d′→ ∞). We note that ran-

dom instances of DU gates could also be generated by iter-

ation of a non-linear map proposed in Ref.76. We have then

determined the possible values of dim(~z∗) and collected them

in Table I. We note that numerical values of |~f (~z∗)| were

typically between 10−13 and 10−7 and there was always a

clear cutoff in the singular value spectrum of F(~z∗), where

the ‘zero’ singular values were at least five orders of magni-

tude smaller than the rest. For d = d′ = 2 we reproduce the

expected analytical result dim = 12. For d = d′ = 3 we ob-

tain three different values dim = 45,43,41 within our data,

while for larger d,d′ we empirically find only a single dimen-

sion (as shown within brackets in Table I). We suspect that

for d,d′ > 3 we do not observe other (higher) local dimen-

sions simply because hitting such solutions ~z∗ becomes sta-

tistically increasingly unlikely. We confirm this speculation

by analysing the parametrization that has been proposed by

Balázs Pozsgay69. Specifically, one can write the elements of

essentially the largest known subset of DUBG(d,d′) as

Ubr = S
d′

∑
s=1

us⊗|s〉〈s| , (51)

where S | j〉⊗|s〉= |s〉⊗| j〉. Clearly, Ubr is dual-unitary when

us are arbitrary d×d unitary matrices. This gives us d2d′ free

parameters, where we can assume d ≥ d′ without loss of gen-

erality. It is striking that empirically found local dimensions

in Table I are smaller than d3 for d = d′ ≥ 4. However, deter-

mining the dimension (50) for ~z∗ parametrizing random DU

brick gate of the form (51) (considering us as Haar random)

we obtain consistent (non-fluctuating) numbers considerably

larger than d2d′ shown as unbracketed numbers in Table I.
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When the smaller of the spaces is a qubit (d′ = 2) we con-

sistenly find that all random solutions of ~f (~z∗) =~0 give the

same dimension (as well as random instances of (51)), so the

complexity/topology of the space DUBG(d,d′) seems funda-

mentally different when both spaces are non-qubit.

We have also checked that the correlation maps M± have

full ranks, d2 and d′2 respectively, for all randomly generated

solution instances~z∗.

Conjecture: Data of Table I suggest a clear conjecture

on dimensions of the manifolds of dual unitary brick gates:

(i) When one of the spaces is a qubit (d′ = 2) we find a simple

quadratic scaling of manifold dimensions

dimDUBG(d,2) = 2(d +1)d , (52)

while (ii) in general we find that, although the local dimen-

sions are fluctuating, the maximal dimension (tangent to (51)

is perfectly fitted by a cubic polynomial in d,d′

maxdimDUBG(d,d′) = (53)

(d2 +d′2)d′+(4d−5d′)d′+6(d′−d) , if d ≥ d′ ,

with d,d′ swapped if d ≤ d′. For d = d′ we have maxdim =
(2d−1)d2.

B. Dual unitary IRF manifolds

Completely analogous Mathematica program has been de-

veloped for targeting the local dimensions of the manifold

DUIRF(d) where ~f (~z) now encodes the constraints on dual

(space and time) unitarity of the IRF gate, while vector~z com-

pletely encodes the matrices uik, and initial seed variables zn

were taken as Gaussian i.i.d. with zero mean and variance

1/d. We have found consistently smaller dimensions than

for DUBG(d,d) (see Table I). We reproduced the correct ana-

lytic result dim = 10 for d = 2, and again, for d = 3, we have

found multiple local dimensions depending on the instance of

the solution ~f (~z∗) = 0. For d ≥ 4 the empirical dimensions

were again unique, but this might be a statistical effect, like in

the case of DU brick gates. Obtaining a systematic (analytic)

parametrization (of large subsets) of DUIRF(d) for d ≥ 3 re-

mains an open problem.

We have checked as well that the correlation maps K ′
± have

maximal ranks (43), d2−2(d−1), for all randomly generated

solution instances~z∗.

V. DISCUSSION

Dual unitary circuits, either in brickwork or IRF form, al-

low for an exact reduction of dynamics of an interacting the-

ory in 1+1 (space-time) dimensions to an open, dissipative

(markovian) quantum dynamics of a single particle (qudit) or

a pair of particles (qudits). Although this connection has so far

been elaborated only for ultra-local (for brickwork circuits) or

2−local (for IRF circuits) observables, it is straightforward to

generalise it to observables with arbitrary finite range support:

the resulting quantum Markov chain process is then defined on

a sufficiently large (finite) set of qudits reflecting the range of

the observables.

We expect that other recent exact results on dynamics of

DU brickwork circuits can be extended to DU IRF circits.

Firstly, one may attempt to compute the spectral form factor

written as11

K(t) = E

(

∣

∣trU t
∣

∣

2
)

= E
(

trW t
)

(54)

where E represents a suitable quench-disorder averaging. The

natural form of disorder is now a random unitary diagonal

transformation ∆x = diag{eih
( j)
x ; j = 1, . . . ,d} at each site x,

after each half-time-step (2), which preserves the DU IRF

gate structure, where the fields h
( j)
x are i.i.d. random variables

(of essentially arbitrary smooth distribution). After a space-

time flip we can perform averaging locally (in full analogy to

Refs.10,11) and write

K(t) = E
(

trW̃ L
)

= tr
(

EW̃
)L

, (55)

where W̃ denotes the folded circuit propagator in space direc-

tion, composed as Eqs. (2,5) with U IRF replaced by W̃ IRF and

L replaced by t (which depends on site-independent random

fields h
( j)
x at fixed x). Averaging should then again result10,11

in additional non-expanding piece O to the transfer matrix

T = EW̃ = OW̃ . Translational invariance in time (together

with the structure of the generic gate U IRF and absence of

time-reversal symmetry) should then result in T having ex-

actly t-dimensional eigenspace of eigenvalue 1 and the rest

of the spectrum gapped within the unit disk, resulting in exact

RMT expression in the thermodynamic limit limL→∞ K(t) = t.

Similarly, we expect that the explicit results on solvable ini-

tial states in quenched DU circuits26, as well as on maximal

growth rate of entanglement27, operator spreading28–30, and

tripartite information31, should have their close analogs for

DU IRF circuits.

Lastly, it is an interesting open question if one can find map-

pings between brickwork and IRF circuit models on abstract

level, similarly as the class of integrable IRF models could

be understood in terms of a subalgebra of integrable vertex

models77.
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