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We report new experiments that test quantum dynamical predictions of polarization squeezing for

ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponen-

tially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing

is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the

simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research

represents a significant experimental test of first-principles time-domain quantum dynamics in a one-

dimensional interacting Bose gas coupled to dissipative reservoirs.

DOI: 10.1103/PhysRevLett.97.023606 PACS numbers: 42.50.Lc, 42.50.Dv, 42.65.Dr, 42.81.Dp

The nonlinear optical response of standard communica-

tions fiber provides a straightforward and robust method

[1] for squeezing the quantum noise always present in laser

light to below the vacuum noise level. This feature allows

us to design quantum dynamical experiments [2,3] operat-

ing in a very nonclassical regime where highly entangled

states can be readily produced, even in many-body

regimes involving 108 interacting particles. The squeezing

is sensitive to photon-photon interactions, as well as to

additional dissipative and thermal effects [4]. Such com-

plications have affected all prior experiments and have so

far prevented quantitative agreement between theory and

experiment.

Here we report on quantitative comparisons of first-

principles simulations with experimental measurements

on the propagation of quantum states in optical fiber. The

excellent agreement, over a wide range of initial condi-

tions, is unprecedented for direct predictions from ab initio

treatments of many-body quantum time evolution. The

approach we use has potential applications in many other

areas of science, especially to dynamical experiments with

ultracold atoms and nanotechnology.

Photons in a nonlinear fiber are an implementation of the

famous one-dimensional attractive Bose-gas model [5].

Fiber squeezing experiments thus provide a substantial

opportunity to carry out an experimental test of the pre-

dictions of many-body quantum mechanics for dynamical

time evolution. Such a test requires the same ingredients as

did Galileo’s famous tests of classical dynamics using an

inclined plane [6]: one needs a known initial condition, a

well-defined cause of dynamical evolution, and accurate

measurements. All of these essential features are present in

our experiments. The initial condition is a coherent [7]

photonic state provided by a well-stabilized pulsed laser.

The Kerr nonlinearity in silica fiber corresponds to a

localized (delta-function) interaction between the photons

[8]. Quantum-limited phase-sensitive measurements have

been developed in optics that detect quantum fluctuations

at well below the vacuum noise level [9,10].

Even though the simplest model of a 1D interacting

Bose gas has exactly soluble energy eigenvalues, the

many-body initial-value problem still remains intractably

complex. Expanding the coherent initial state directly in

terms of more than 10100 relevant eigenstates (more than

the number of particles in the universe) is simply not

practical. For such reasons, Feynman suggested [11] that

the calculation of dynamical quantum time evolution

would be impossible without special ‘‘quantum comput-

ing‘‘ hardware, which is not available at present. Even

worse, there are additional complications occurring due

to coupling to phonons in the silica fiber medium.

To deal with the exponential quantum complexity in this

dissipative system, using existing computers, we employ

quantum phase-space methods based on the work of

Wigner [12] and Glauber [7]. With modifications to treat

nonclassical fields [13], phase-space methods are able to

calculate quantum correlations in a dynamical system

without recourse to hydrodynamic approximations or lin-

ear response theory. They were successfully used for the

original prediction of quantum squeezing in optical fibers,

[14], which was qualitatively verified in several laborato-

ries [1,15]. Recently, photon-number squeezing was simu-

lated [16] and compared with experiment [17]. However,

the cause of squeezing degradation was unclear [18]. By

using an improved experimental configuration [3], and

including all relevant dissipative effects in the simulations,

we have been able to quantitatively test and verify the

phase-space predictions.

Physically, the Kerr effect that generates the squeezing

can be viewed as producing an intensity-dependent refrac-
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tive index, which distorts an initially symmetric phase-

space distribution into an ellipse. Because of energy con-

servation, however, the variance in the amplitude remains

constant. Thus the squeezing cannot be detected directly in

amplitude or intensity measurements.

Although laser homodyne measurements [10] can be

used for these phase-sensitive measurements, they require

a local oscillator, which is impractical for the high-

intensity laser pulses used here. Instead, we employ an

interferometric method known as polarization squeezing

[3], wherein two multiphoton femtosecond pulses that are

initially identical in amplitude propagate along the mutu-

ally orthogonal polarization axes x and y of a polarization-

maintaining fiber. The two output pulses are then combined

on a half-wave plate at an angle �. For the appropriate

phase-space rotation angles � � 4�, the squeezing or

antisqueezing can be detected in the number difference.

Because both pulses undergo similar evolution, most ex-

cess thermal noise is common to both modes and is thus

cancelled. An exception here is any noise induced by

birefringent, or depolarizing, effects. The experimental

setup is illustrated in Fig. 1.

Because the experiment involves ultrashort pulses, we

use photon-density operators for each polarization mode of

the optical field: �̂x�t; z� and �̂�t; z� that include a range of

spectral components â�t; k�:

 �̂ ��t; z� �
1
�������

2�
p

Z

dkâ��t; k�ei�k�k0�z�i!0t; (1)

where � � x, y labels the polarization, t is time, z is

propagation distance, and k is the wave number. The

wave number and frequency of the carrier wave are given

by k0 and !0. The commutation relations of the field

operators are ��̂��t; z�; �̂y
�0�t; z0�� � ��z� z0����0 .

To describe the polarization squeezing, we define gen-

eralized Stokes operators:

 Ŝ 0 � N̂xx�L� � N̂yy�L�; Ŝ1 � N̂xx�L� � N̂yy�L�;
Ŝ2 � N̂xy�L� � N̂yx�L�; Ŝ3 � iN̂yx�L� � iN̂xy�L�;

(2)

where L is the fiber length and N̂��0�z� �
R
dt�̂y

��t; z��̂�0�t; z�. Ŝ0 corresponds to the combined in-

tensity, Ŝ1 gives the number difference between the x and y

modes, and Ŝ2 and Ŝ3 are operators sensitive to the relative

phase difference. In the Stokes measurement after the fiber,

we measure a given Stokes parameter orthogonal to the

bright excitation in Ŝ3. This, the dark Ŝ1-Ŝ2 plane, is

scanned by rotating a half-wave plate to measure Ŝ� �
cos���Ŝ1 � sin���Ŝ2. Following from the Stokes operator

commutation relations [19], the number difference is

squeezed if the variance of Ŝ� is below, for S3-polarized

light,

 �2Ŝ� < jhŜ3ij � jhŜ0ij: (3)

To simulate the evolution of the photon density �̂��t; z�,
we employ a quantum model of a radiation field propagat-

ing along a fused silica fiber, including the ��3� nonlinear

responses of the material and the nonresonant coupling to

phonons [4,20]. The phonons act as a reservoir with finite-

time correlations (non-Markovian) that generates addi-

tional, delayed nonlinearity, as well as spontaneous and

thermal noise. Classical, low-frequency phase noise can be

neglected, because it is common to both polarization

modes, unless there is a depolarizing component. The

phonon spectrum is based on the experimentally deter-

mined Raman gain for pure fused silica �R�!� [21].

Because of the fiber birefringence, the two polarization

components do not temporally overlap for most of the fiber

length, so we neglect the cross-polarization component of

the Raman gain.

To simplify the theoretical description, we use a prop-

agative frame with rescaled time � � �t� z=v�, rescaled

propagation distance � � z=z0, and dimensionless photon-

flux field 	̂� � �̂�

������������

vt0= �n
p

. Here t0 is the pulse duration,

z0 � t20=jk00j is the dispersion length, and 2 �n is the photon

number in a fundamental sech��� soliton pulse. Other

parameters are pulse velocity v, and dispersion parameter

k00.
From the multimode Hamiltonian for the full system [4],

we obtain Heisenberg equations of motion for the quantum

fields. The phonon equations are integrated to derive quan-

tum Langevin equations for the photon-flux field

PBS
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FIG. 1. Experimental detail for the efficient generation of

polarization-squeezed states. Pairs of coherent, 130 fs FWHM

sech-shaped laser pulses at 1:5 
m are coupled into a birefrin-

gent fiber. A prefiber variable delay ensures that the pulses

overlap upon exiting the fiber. A relative phase shift of �
2

is

maintained by means of a piezoelectric crystal in a feedback

loop, resulting in circularly or S3-polarized light. The squeezing

measurement is performed by use of a half-wave plate, polariz-

ing beam splitter and two balanced detectors. Although the

squeezing is broadband, it is sampled at a frequency of

17.5 MHz to avoid technical noise.
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���0; ��	̂���0; ��	̂���; ��; (4)

where the nonlinear response function h��� includes both

the instantaneous electronic response and the Raman re-

sponse determined by the gain function �R�!� [4,20,21].

The correlations of the reservoir fields are

 h�̂y
��!0; � 0��̂�0�!; ��i � �R�j!j�

n
�nth�j!j� ����!��

	 ��� � � 0���!�!0����0 ;

(5)

where nth is the temperature-dependent Bose distribution

of phonon occupations. The Stokes (!< 0) and anti-

Stokes (!> 0) contributions to the Raman noise are in-

cluded by means of the step function �. These equations

can easily be modified to include coupling to gain and

absorption reservoirs, but this is unnecessary for the short

distances in these experiments.

The exact quantum dynamics can be simulated using the

positive-P ( � P) phase-space representation [14].

However, for large photon number �n and short propagation

distance L, it is known that the �P method gives squeezing

predictions in agreement with a truncated Wigner phase-

space method [22], which allows faster calculations. We

have chosen the latter method to reduce computational

overheads. This method maps a field operator to a stochas-

tic field: 	̂���; �� ! 	���; ��, with stochastic averages

corresponding to symmetrically ordered correlations of

the quantum system. Because of the symmetric-ordering

correspondence, quantum effects enter via vacuum noise.

The Kerr effect merely amplifies or diminishes this noise in

a phase-sensitive manner, which makes the Wigner ap-

proach ideally suited for squeezing calculations.

Using the Wigner mapping, we obtain a Raman-

modified stochastic nonlinear Schrödinger equation for

the photon flux that is of exactly the same form as

Eq. (4) [4,20]. The correlations of the Raman noise fields

�� are also of the same form as their operator equivalent

Eq. (5), except that the step function is replaced by a

constant 1=2. Because of the symmetrically ordered map-

ping, the Stokes and anti-Stokes contributions to the

Wigner Raman noise are identical. The initial condition

of the stochastic field is the mean coherent level plus

fluctuations that correspond to vacuum noise:

 h�	���; 0��	

�0��0; 0�i �

1

2 �n
���� �0����0 : (6)

Simulations [23] of the pulse propagation reveal the

importance of including the system’s multimode nature,

which affects small-amplitude and intense pulses in differ-

ent ways. As Fig. 2 shows, the evolution of the amplitude

profile of a weak pulse is dominated by dispersion. In

contrast, an intense pulse reshapes into a soliton, whose

subsequent evolution reveals the effect of the Raman self-

frequency shift. The range of input pulse energies in the

experiment includes both of these extremes.

Figure 3 gives the phase-space rotation angle � at which

squeezing is observed at different input energies. The

simulations and experiments agree very well for the intense

pulses, but there is a divergence for weak pulses. Now

classical phase noise has a relatively strong effect on the

weaker pulses, because the antisqueezing produced by the

Kerr effect is then smaller and at a greater angle to the

phase quadrature. We therefore include the effect of excess

phase noise by a nonlinear least-squares procedure. A new

relative noise variance is calculated from

 �2Ŝ�=hŜ3i � �psin
2��N� � �scos

2��N � �K�
� �asin

2��N � �K�; (7)

where �K�E� are the angles for Kerr squeezing with input

energy E, and where �s�E�, �a�E�, and �p�E� are the

relative variances of the Kerr squeezing, Kerr antisqueez-

ing, and phase noise. The Kerr variances and angles �K�E�
are taken from the simulation data, and the phase noise is

assumed to depend linearly on pulse energy [24]. The

coefficient of the phase noise is determined by a nonlinear

least-squares fit of the angles �N�E� that minimize the new

variance to the measured squeezing angles. The result

gives an excellent fit to the experimental data, even though

there is only one parameter for each fiber length. This

parameter was larger for the longer fiber length, indicating

FIG. 2 (color online). Propagation of (a) E � 4:8 pJ and

(b) E � 53:5 pJ pulses, with initial width t0 � 74 fs.
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FIG. 3 (color online). Phase-space rotation angle � versus total

input energy E. Squares and diamonds give the experimental

results for the L1 � 13:4 m and L2 � 30 m fibers, respectively.

Continuous (dashed) lines give the simulation results with (with-

out) excess phase noise. Other parameters are t0 � 74 fs, z0 �
0:52 m, �n � 2	 108, and �0 � 1:51 
m.
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that phase noise is largely a fiber-induced effect, such as

depolarizing guided acoustic wave Brillouin scattering

(GAWBS). However, there also seems to be a smaller

birefringent noise source outside the fiber.

Antisqueezing and squeezing results are shown in Fig. 4,

for 13.4 and 30 m of fiber, with the excess phase noise

included. The theoretical results for both squeezing and

antisqueezing closely match the experimental data, after

estimated linear losses of 24% are taken into account. That

the theoretical antisqueezing results match the experiment

indicates that the fit obtained from the rotation angle

accounts for all the excess classical noise. A deterioration

of the squeezing is seen at higher intensity due to Raman

effects, especially for longer fiber lengths.

As an indication of the accuracy of the simulations, we

predicted from comparisons of the rotation angle and the

antisqueezing curves in theory and in experiment that the

30 m fiber should have a 5% larger core diameter than the

shorter fiber. This was verified by fiber measurements.

There is a residual discrepancy in the highly sensitive

squeezing measurements for the 30 m case at large pulse

energies. This could be due to effects such as cross-

polarization Raman scattering, higher-order dispersion,

or initial pulse-shape distortion.

In conclusion, the efficiency of the squeezing experi-

ments described here means that a comprehensive theo-

retical model must be formulated and solved to quanti-

tatively account for all observations. Solving the model

requires a first-principles simulation of quantum time evo-

lution in a many-body system coupled to a non-Markovian

reservoir. We have achieved this by means of a Wigner

phase-space representation, thus obtaining excellent agree-

ment between simulation and experiment over a wide

range of energies and fiber lengths. The simulations reveal

that Raman effects limit squeezing at high intensity and for

longer fibers and that depolarizing phase noise (i.e.,

GAWBS) limits squeezing at low intensity.
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FIG. 4 (color online). Raw antisqueezing (a) and squeezing (b)

for L1 � 13:4 m (squares) and L2 � 30 m (diamonds) fibers.

Error bars on the squeezing data indicate the uncertainty in the

noise measurement; for the antisqueezing, the error bars were

too small to be plotted distinctly. Solid and dashed lines show the

simulation results with additional phase noise for L1 and L2,

respectively. Dotted lines indicate the sampling error in the

simulation results.
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